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Abstract 

In both spherical and cylindrical coordinates, the radial Dirac equation can be written in the 
form of a Schrodinger equation with an effective potential. It is shown that the difficulties 
at r -+ 0 for the Dirac equation in the field of a point charge for Z > 137 are the same as 
those for the Schrodinger equation with a l/r2 potential. The effective potential is used 
to show that similar difficulties do not arise for the field of a line charge, so allowing the 
consideration of the motion of electrons in the field of a charged superconducting cosmic 
string without considering the internal structure of the string. 

1. Introduction 

Interesting effects occur for relativistic wave equations with strong external 
fields, and have been discussed extensively in Greiner et al. (1985), which 
contains references to the earlier literature. Most treatments are one-dimensional 
or with spherical symmetry. A possible source of strong fields is a charged 
superconducting cosmic string (Allen 1990), so that one needs to treat the 
case of cylindrical symmetry corresponding to a straight infinite piece of 
charged cosmic string. The Klein-Gordon equation for this case has already 
been treated (Allen and Tassie 1991) and it has been shown that the vacuum 
is unstable for a sufficiently large charge. In the present paper we look at the 
Dirac equation for an electron in the electric field of a straight line charge. 
We first revise the case of an electron in the field of a point charge and use 
the method of the effective potential to show that the difficulties at short 
distances arising in this case for the Dirac equation for Z> 137 are essentially 
the same as those for the Schrodinger equation with a l/y2 potential. We then 
show that no difficulties arise at short distances for the field of a line charge. 

2. Electron in the Field of a Point Charge 

The eigenvalues are given by the well-known result (e.g. Dirac 1958) 

where 

W/mc2 = (),+n){t'2 +(),+n)2r1/ 2 , 

)' = {V + ~)2 - t'2}1/2, 

t' =Ze2/hc, 

(1) 

(2) 

(3) 
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n is an integer and fn is the total angular momentum of the electron. At 
small r the radial wave functions are - ry- 1• 

For j = ~, we have y = {l_,2}l/2. For' > 1, Y is imaginary giving unacceptable 
wavefunctions. These difficulties can be overcome by replacing the point 
charge by a finite charge distribution. However, further insight into the 
problem can be obtained by following the procedure (Mott and Massey 1965, 
p. 228) of bringing the radial wave equation into the Schr6dinger form with 
an effective potential, 

d2G.e + (_I_(W2 _ m2c2) _ .e(.e + 1) _ u.e(r»)G.e = 0, 
dr2 h2c2 r2 (4) 

where j =.e + ~. For j =.e - ~, .e is replaced by -.e - 1. The effective potential 
Ue(r) is given by 

U.e(r) = --V--- - --- + ~ - - l-2W V2 .e+la' (a l )2 a' 
h2c2 h2c2 r a .. a "- a ' 

where 
1 

a = hc(W - V +mc2). 

For V = -Ze2/r, we have 

2W, ,2 .e, 3 ,2 
U.e(r) = -- - - - - + --. 

r r2 ar3 4a2 ,A 

Then, as r- 0, we get 

,2 .e 3 1 
U.e(r)--2 + 2 + 42' 

r r r 

(5) 

(6) 

(7) 

(8) 

For .e = 0 and ,2 > ~, the wave equation (4) is of the form of a Schr6dinger 
equation with an attractive 1/r2 potential, a problem which has been discussed 
by Mott and Massey (1965, p. 41). Writing 

U.e(r) = f3/r2 (9) 

gives 
f3 = _,2 +.e + ~. (10) 

Mott and Massey showed that there are wavefunctions well-behaved at the 
origin for 

1 f3 >-4 

but for .e = 0 and f3 < -~ the wavefunction near the origin is proportional to 
exp(±ialogr), which is inadmissible because there is no criterion as to which 
solution to take. Case (1950) has shown how to overcome the mathematical 
difficulty for the Schr6dinger case for a l/r2 potential and the Dirac case for 
a 1/r potential. As we have seen, these two cases are the same. The physical 
difficulty must be overcome by modifying the potential at short distances. 
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3. Wave Equation for Spin-l Particles in the Field of a Line Charge 

We use the same representation of the Dirac matrices as Greiner et al. 
(1985). Because the system possesses cylindrical symmetry, the z-component 
of angular momentum, mj, is a good quantum number. The eigenvalue equation 
for mj thus holds: 

( 1 a 1 ) 7 ocp + -ZUz 1f = mj1f. 

With 

~-n;) 
equation (11) yields 

and therefore 

( 1 a 1) 7 ocp +"2" CPl,3 = mj!/Jl,3, 

(~o°!/J -! )1/12.4 = mjl/l2.4, 

1f = R2(r)e l(m}+t)4» ° (

Rl (r)e i(mrt)4> 

R3(r)e i(mr tl 4> e'kz • 

R4(r)ei(mftt)4> 

Setting Ii = c = I, substitution of (14) into the Dirac equation yields 

( d mo+l) 
(W-V-m)Rl = kR3-; dr+~ R4, 

( d mj- 1) 
(W - V - m)R2 = -; dr -7 R3 - kR4, 

( d m o + 1) 
(W-V+m)R3 = kRl-; dr +~ R2, 

(W-V+m)R4 = -; --~ Rl-kR2. ( d mo_l) 
dr r 

If k = 0, the four equations decouple into two sets of two equations, 

o( d mj +!) (W - V - m)Rl = -I dr + -r- R4, 

o( d mj -!) (W-V+m)R4 = -I dr --r- Rl, 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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and 

.( d mj-~) (W - v - m)R2 = -I dr - -r- R3, 

(W-V+m)R3 = -; _+--1........l.. R2. ( d m·+ 1) 
dr r 

(17) 

Replacing mj by -mj transforms the second pair of equations into the first. 
We note that the solution of the equations obtained from (16) by replacing 
mj by -mj will in general not be degenerate with the original solution, but is 
degenerate with a solution of (17). So we need only consider (16). 

Equations (15) have solutions with 

R3 = k[(m 2 +k2)~ +m]Rl, 

R2 = k[(m2 + k2) ~ + m]R4 , (18) 

where Rl and R4 are solutions of 

( ( 2 k2)!) .( d mj + ! ) W-V- m + 2 Rl = -I dr +-r- R4, 

(W-V+(m2+k2)hR4 = _;(~_ mj+!)R dr r 1, 
(19) 

which are of the form of equations (16) for k = 0 but with m replaced by an 
effective mass (m 2 + k2)1/2. So with no loss of generality we can confine the 
treatment to k = O. 

To obtain further insight, we transform equations (16) to the Schrodinger 
form with an effective potential, following the same procedure that Mott and 
Massey (1965) used for the spherically symmetric case. Defining 

oc=W-V+m, /3=W-V-m 

and eliminating R4 from equations (16) gives 

[ d2 1 d oc l d mJ - mj + i ocl mj - ~ r -+oc/3+------ +--- 1 =0. (20) 
dr2 r dr oc dr r oc r 

The first derivative terms may be eliminated by the substitution 
1 1 

Rl = oczr-zC(r) (21) 

giving an equation 

Q mJ mJ - mJ oc 3 oc 1 oc C - 0 [ d2 .( . 1) . I (/)2 II] 
dr2 + oc,., - r2 + r IX -"4 IX + "Z"a -, (22) 

which may be written as 

[~ + W2 -m2 _ mj(mj+ 1) _ Um.(r)]c = 0 
dr2 r2 J 

(23) 
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with an effective potential 

U () m af (f)2 II 
mj r = 2 WV - V2 - -1.. _ + 3 ~ _ 1 a r a '4 a '2"(X' 

For a line charge the potential is 

where 

v = X log r/ro, 

ep 
X= 2rr 
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(24) 

(25) 

(26) 

and where p is the charge per unit length. As in the Klein-Gordon case (Allen 
and Tassie 1991) it can be seen from (24) for the effective potential that a 
cut-off must be applied at large distances to enable bound states to form. 
The behaviour at large distances has been dealt with in more detail elsewhere 
(Allen 1991, 1992). 

We examine here the short distance behaviour of the effective potential, as 
short-distance singularities can be troublesome for the Dirac equation: 

a = W + m - X log (r/ro), 

a f =-x/r, a" = x/r2 . 

For small r, we get 

a ~ -X log (r/ro) 

and 
m·-~ 3 1 

2 J" + -_ ... 2' Umj ~ 2WV - V - r2 log r '4 r2(log r) 

The second term, - V2 , is attractive at small r but is less Singular than 
the a f and a" terms. It was already present in the Klein-Gordon case and 
presented no problems (Allen and Tassie 1991). The last term presents no 
problems because it is repulsive, despite being singular at r = O. The third 
term is attractive for mj ~ ~ but its effect would be swamped by the repulsive 
centrifugal term, mj(mj + 1)/r2. Unlike the point charge, no difficulty occurs 
near r = 0 as the strength of the field increases. For mj =~, the wavefunction 
at small r is given by 

3 . 
Rl = r-3/ 2 ~ aij r j logl r /ro, 

i,j=O 

3 . 
R2 = r-3/ 2 ~ bij r j logl r/ro, 

i,j=O 

where aoo is arbitrary and the other nonzero aij and bij are 

a02 = (4 -4W2 -2X- 6WX- 3x2)aoo/16, 

a12 = X(4W + 3x)aoo/4, 

b02 = (2 - 2W - x)aoo/4, 

a22 = _X2aOO/4 , 

b12 = Xaoo/2 . 
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4. Discussion 

To deal with the physics of an electron in the field of a nucleus with charge 
z> 137 it is not sufficient to treat the nucleus as a point charge, but it is 
necessary to consider the structure of the nucleus. Fortunately, the charged 
cosmic string can be considered as a line charge and it is not necessary 
to consider the very small thickness of the cosmic string. The results of 
numerical integration of the Dirac equation in the field of a charged string 
will be given elsewhere (Allen 1991, 1992). 

References 
Allen, T. J. (1990). Phys. Lett. B 250, 29. 
Allen, T. J. (1991). Ph.D. thesis, Australian National University. 
Allen, T. J. (1992). in preparation. 
Allen, T. J., and Tassie, L. J. (1991). J. Phys. G to be published. 
Case, K. M. (1950). Phys. Rev. 80, 797. 
Dirac, P. A. M. (1958). 'The Principles of Quantum Mechanics' (Clarendon Press: Oxford). 
Greiner, W., Muller, B., and Rafelski, j. (1985). 'Quantum Electrodynamics of Strong Fields' 

(Springer: Berlin). 
Mott, N. E, and Massey, H. S. W. (1965). The Theory of Atomic Collisions' (Clarendon Press: 

Oxford). 

Manuscript received 11 April, accepted 29 July 1991 




