
Aust. J. Phys., 1991, 44, 639-46 

Nuclear Equation of State as Determined bV 
the Quantum Virial Expansion 

Daniel Sperber,A Smita Srinivas B and Malgorzata Zielinska-PfabeB 

A Department of Physics, Rensselaer Polytechnic Institute, 
Troy, NY 12180-3590, U.S.A. 
B Department of Physics, Smith College, 
Northhampton, MA 01063, U.S.A. 

Abstract 

The quantum virial expansion is used to investigate the properties of neutron matter in the 
temperature range 20 < kT < 60 MeV. The pressure as a function of temperature is determined 
for various densities of neutron matter. Also the stiffness, the energy and the coefficient of 
volume expansion all as a function of temperature and density are studied. 

1. Introduction 

In this communication we discuss some of the thermal properties of nuclear 
matter for the intermediate temperature range, when the value of kT (k being 
the Boltzmann constant and T the temperature) lies between 20 and 60 MeV. 
We start from a quantum mechanical partition function and use the quantum 
cluster expansion (Kilpatrick et al. 1954; Hirschfelder et al. 1954; Huang 1987). 
We calculate the temperature dependence of the second virial > coefficient and 
study the equation of state for neutron matter using the nucleon-nucleon 
phase shifts. 

The great advantage of this method is that it does not depend on a detailed 
knowledge of the interaction which is not so well known, but instead relies 
on a knowledge of the experimentally well-established energy dependence of 
the phase shifts. The nuclear equation of state has been investigated on 
numerous occasions (Kupper et al. 1974; Bonche et al. 1985; Levit and Bonche 
1985; ter-Haar and Malfliet 1987; Jaqaman et al. 1983, 1984; Bandyopadhyay 
et al. 1989; Sperber 1989; Suraud 1987; Brack et al. 1985) in the low energy 
regime or for kT < 20 MeV. The other extreme of the temperature range where 
kT is above 150 MeV has also been studied to some extent to determine if a 
quark-gluon plasma can be formed (Satz 1985; Karsch 1988). There is virtually 
no information on the thermostatic properties of nuclei or nuclear matter in 
the temperature regime which we are reporting. Various methods have been 
used to determine the equation of state and other thermostatic properties of 
finite nuclei as well as the properties of nuclear matter. In most cases, one 
first considers infinite nuclear matter and later makes appropriate corrections 
for finite nuclei. There are difficulties in a rigorous derivation of an equation 
of state for charged matter due to the long range of the electric Coulomb force. 
Hence, the corrections due to the Coulomb energy can only be introduced in a 
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semi-phenomenological way. We therefore focus on uncharged infinite nuclear 
matter. In particular, we carry out our calculations for neutron matter, as the 
results may have some astrophysical significance. The vi rial expansion was 
used previously Oaqaman et al. 1983) to study the nuclear equation of state. 
In the present paper we consider the most important contributions to the virial 
expansion and limit ourselves to the first two terms in the nuclear equation 
of state. First, we determine the second virial coefficient B2(n. We then use 
this information to study the dependence of the pressure on temperature for 
various nuclear densities. We study the energy per nucleon as a function of 
temperature, as well as the stiffness and the volume expansion coefficient. 

2. Theory 

The virial-cluster expansion is a very useful tool to obtain an equation of 
state for a classical gas. This expansion allows one to write the pressure as 
a power series in the density. The expansion coefficients may be obtained 
from the partition function and are temperature dependent, such that 

P = kTp{l +B2(np+B3(n p2 + ... }. (1) 

Here P is the pressure and p the density. The vi rial expansion yields the 
equation of state for a real gas, and the terms beyond the first term are due 
to the short range two-body interaction and represent the deviation from an 
ideal classical gas. For example, the second classical vi rial coefficient can be 
written as 

B2(T) = -2rrfooo [exp{-U(r)/kT} -1]r2 dr, (2) 

where U(r) is a central two-body potential. 
Since the classical partition function has a quantum mechanical analog, 

one can use a similar formalism to determine the quantum virial coefficients. 
However, there is a notable difference between the classical and quantum 
mechanical case. In the classical case, when there is no interaction, all 
the vi rial coefficients vanish and one obtains an equation of state for a 
classical ideal gas. In the quantum mechanical case, even in the absence 
of interactions, the virial coefficients do not vanish. This is due to specific 
symmetry requirements imposed on the wavefunction of the system. For 
a system of fermions which we consider, the effect of the Pauli exclusion 
principle is equivalent to the existence of a repulsive force, hence the virial 
coefficients without an interaction are not equal to zero. They are positive, 
leading to an increase of pressure for an ideal Fermi gas as compared with an 
ideal classical gas. There are then two terms for any of the vi rial coefficients 
for a Fermi gas, one due to the Pauli exclusion principle Bf(n and the other 
Bint(n to interactions between particles. In particular, the first term for the 
second vi rial coefficient is given by 

B~(n = r S/ 2;\Vg. (3) 
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Here AT = h/(2rrmkn1/ 2 is the thermal wavelength, g a spin degeneracy factor 
and m the nucleon mass. 

As mentioned before, in the case of a classical approach the higher terms 
in the virial expansion starting with B2 reflect the deviation from an ideal gas 
and are attributed to the interactions between the constituents of the gas. 
The quantum mechanical virial coefficients also depend on the interaction or 
potential between the particles. Unfortunately, the nuclear interaction is not 
very well known. For this reason we decided to express the second vi rial 
coefficient due to the interaction between particles in terms of experimentally 
measured and relatively well-known nucleon-nucleon phase shifts. The idea 
behind this approach is that asymptotically the interaction between nucleons 
modifies the partition function by changing the density of states in the phase 
space. The contribution to the second vi rial coefficient from nucleon-nucleon 
scattering can be then written (Hirschfelder et al. 1954) in the form 

1 roo d· (h2X2 ) B~t(n=-23/2A~4(2j+1)rrJo d~exp -2JlkT dX· 
J 

(4) 

Here X is the wave number, rlj the phase shift and Jl the reduced mass. 
There are no equivalent simple forms in terms of phase shifts for higher 
vi rial coefficients. The higher order terms due to interaction in the vi rial 
expansion correspond to three- and more-body clusters and their contribution 
to the equation of state is expected to be considerably smaller than B~nt. The 
higher terms coming from the Pauli exclusion principle can be easily included. 
Their values decrease with temperature; for example, the contribution due to 
B~ at kT = 20 MeV for the range of densities considered is of the order of a 
few per cent. Luckily enough at higher temperatures, the contributions from 
higher order clusters and many-body forces are less significant and can be 
neglected. It is important to recall that the measured phase shifts are for p-n 
scattering, while we are interested in the equation of state of neutron matter. 
However, since the wavefunction for an n-n system must be antisymmetric, in 
the summation over the angular momentum j we consider only contributions 
from the phase shifts of antisymmetric states properly weighted. 

It should be noticed that we use free space phase shifts. It is expected 
that in nuclear matter the phase shifts will be modified due to the density 
dependence of the nucleon-nucleon interaction. This effect, as well as the 
neglect of higher coefficients, is believed to be of second order. 

3. Results 

We now discuss some of the results which we have obtained. First, we 
consider the temperature dependence of the second virial coeffiCient. In Fig. 1 
we show B~nt(n, as calculated from the phase shifts according to equation (4) 
(dashed curve), and B2(n which combines the contribution due to the Pauli 
principle with the one due to the interaction (solid curve). It is important to 
notice that, as expected, the Fermi contribution to the second vi rial coefficient 
is always positive but decreases with temperature. The interaction term is 
negative but for high temperatures its magnitude slowly decreases, so one 
can see the effect of the hard core in the nucleon-nucleon interaction. As can 



642 

c::;-
~ 
cO' 

3 

o ....... 

D. Sperber et al. 

I I i I r I I I I ,., i i II I I 1"'''''-TlTrT.-rr~-I I 1 1 I I /,,=1 -1.5 

"....... ./ -..... ./" ----
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

-1.55 

N~ 
-1.6 _ 

-1.65 

3 
..53 

-1 I I I I I I I I ! I I I I I I I I I J I I I' I , 

20 .~ ~n ~5 ~ 

kT(MeV} 

Fig. 1. Values of the second virial coefficients B2(n. The dashed curve 
shows the values calculated from the interaction only (right scale) and the 
solid curve shows the total second vi rial coefficient. 

14 

12 

'710 
.E 
> 

8 Ql 

~ 
Q 

6 

4 

2 
....... -.--

Po ...... .-.-. 

-.- -'-'-'7''';;;'':~'- _.-.-.-.-

- ..... ...-/...- ................ . 

25 30 35 

.-<:.----

40 

kT(MeV} 

---------
--

Fig. Z. Dependence of the pressure on temperature. The solid 
curve is for normal density. P = Po. and the dot-dash curve for 
p = 2Po. The dashed curve corresponds to an ideal gas of normal 
density. while the dotted curve shows the pressure of an ideal gas 
of density p = 2po. 

be seen in Fig. 1 the second virial coefficient is positive for temperatures up 
to about 35 MeV and then drops below zero. For very high temperatures we 
found that B2 asymptotically approaches zero suggesting that. as expected, 
the gas of interacting fermions approaches an ideal classical gas. 
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In Fig. 2 we display the pressure dependence on temperature for P = Po 
(solid curve) and P = 2po (dot-dash cruve). Here Po is the density of normal 
nuclear matter. The dashed curve corresponds to an ideal gas of density 
Po, while the dotted curve shows the pressure of an ideal gas of density 
P = 2Po. For both densities we see that the behaviour of our equation of 
state is dominated at lower temperatures by the Pauli principle and at higher 
temperatures by the attractive nuclear interaction. 
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Fig. 3. Energy per neutron as a function of temperature for 
four different densities. The dotted curve is for p = po/2, the 
solid curve for normal density, the dashed curve for p = 3po/2 
and the dot~dash curve for p = 2po-

In Fig. 3 we show the energy per neutron as a function of temperature 
for different nuclear densities: P = Po/2 (dotted curve), P = Po (solid curve), 
P = 3po/2 (dashed curve) and p = 2po (dot-dash curve). It is important to note 
that the energy of an interacting Fermi gas is always above the value for the 
classical non-interacting gas and it converges to the value of E = ~kT for very 
high temperatures. 

In Fig. 4 we show the volume expansion coefficient as a function of 
temperature for the same densities as previously. It is rewarding to note 
that in the high temperature limit this expansion coefficient is independent 
of density and converges to the classical limit liT. The coefficient of volume 
expansion ex is defined as 

ex=-~(~it· (5) 

Finally, in Fig. 5 we show the stiffness as a function of temperature for the 
two densities p = 2po (dot-dash curve) and p = Po (solid curve). This coefficient 
is defined as (Preston and Bhaduri 1974) 

K= 9(~~)T' (6) 
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Fig. 4. Volume expansion coefficient as a function of temperature for 
four densities. The dotted curve is for p = po/2, the solid curve for normal 
density, the dashed curve for p = 3po/2 and the dot-dash curve for p = 2Po. 
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Fig. 5. Stiffness as a function of temperature for two different 
densities. The solid curve is for normal density and the dot-dash 
curve for twice the normal density. 

So far this coefficient has been studied mainly for nuclear matter at equilibrium. 
Here we display its values for hot neutron matter at two different densities. 

In our study we chose the relatively unexplored region of temperatures 
20 < kT < 60 MeV. In this temperature range the virial expansion for a Fermi gas 
converges fast even for high densities. We decided to stop our investigation 
at kT = 60 MeV because above this temperature pionic degrees of freedom may 
play an important role. Clearly, it does not make sense to extend this approach 
to high temperatures where quark-gluon degrees of freedom dominate the 
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scene. We feel that in the temperature regime which we investigated, the 
model used here is realistic. The corrections due to our choice of free space 
phase shifts and due to the neglect of higher terms in the virial expansion 
are not significant. The present model can be used as a starting point in 
bridging the gap in our knowledge of the equation of state between the low 
and high temperature regimes. 

Extrapolating the information from lower temperature regimes Oaqaman et 
al. 1983) yields results consistent with our conclusions. It is important to keep 
in mind that the lower energy regime has been investigated in considerable 
detail, but there are no universally accepted values for the thermostatic 
parameters. The extrapolation of our results to the lower temperature range 
is in accord with quoted values. 

4. Conclusions 

We would like to make some concluding remarks about the vi rial expansion 
and its role in investigating the nuclear equation of state. Most studies of the 
equation of state take advantage of the energy density formalism based on the 
Thomas-Fermi and extended Thomas-Fermi models. These approaches in turn 
hinge on mean field theory and in most cases one uses a zero range Skyrme 
interaction. Within the framework of this approximation very sophisticated 
and elaborate calculations have been carried out. On the other hand, the 
work of Jaqaman et al. (1983) took advantage of the virial expansion. It is 
important to note that the approach of those authors and our approach differ. 
Their work is, in principle, based on mean field theory using a Skyrme force. 
They calculated directly only the Fermi virial coefficients due to Pauli blocking 
and reproduced the interaction by replacing the mass by the effective mass. 
They included more terms in their vi rial expansion, which is required in the 
lower temperature regime where the virial expansion does not converge as 
fast. This is also possible in their approach since the Fermi virial coefficients 
can be calculated to any order. On the other hand, our expansion hinges on 
investigating the departure from ideal gas behaviour by studying directly the 
role of the two-body interaction when replacing the interaction dependence of 
the second vi rial coefficient by its dependence on the nucleon nucleon phase 
shifts. We apply our method to a higher temperature regime where the virial 
expansion converges much faster. 

In summary, we have demonstrated that many thermal properties of very 
hot neutron matter can be determined using a quantum virial expansion. We 
calculated the second virial coefficient 82(n and included both contributions due 
to the Pauli principle and to two-body interactions using the nucleon-nucleon 
phase shifts. The model also allows the determination of other quantities 
such as specific heats which are not given here. We have thus embarked on 
the exploration of the equation of state in a previously uncharted temperature 
regime. 

Acknowledgments 

The authors would like to thank Professor J. S. Levinger for many fruitful 
discussions and suggestions and Professor R. Arndt for supplying us with the 
energy dependent phase shifts. 



646 D. Sperber et al. 

References 
Bandyopadhyay, D., De, j. N., Samaddar, S. K., and Sperber, D. (1989). Phys. Lett. B 218, 39l. 
Bonche, P., Levit, S., and Vautherin, D. (1985). Nucl. Phys. A 436, 265. 
Brack, M., Gut, C, and Hakansson, H. B. (1985). Phys. Rep. 123, 275. 
Hirschfelder, O. H., Curtiss, F. C, and Byron-Biral, R. (1954). 'Molecular Theory of Gases and 

Liquids' (Wiley: New York). 
Huang, K. (1987). 'Statistical Mechanics' 2nd edn (Wiley: New York). 
jaqaman, H. R., Mekjian, A. Z., and Zamick, L. (1983). Phys. Rev. C 27, 2782. 
jaqaman, H. R., Mekjian, A. Z., and Zamick, L. (1984). Phys. Rev. C 29, 2067. 
Karsch, Z. (1988). Z. Phys. C 38, 147. 
Kilpatrick, j. E., Keller, H., Hammel, M., and Metropolis, S. (1954). Phys. Rev. 94, 1103. 
Kiipper, W. A., Wegmann, G., and Hilf, E. R. (1974). Ann. Phys. (New York) 88, 454. 
Levit, S., and Bonche, P. (1985). Nucl. Phys. A 437,426. 
Preston, M. A., and Bhaduri, R. K. (1974). 'Structure of the Nucleus' (Addison-Wesley: New 

York). 
Satz, H. (1985). Annu. Rev. Nucl. Part. Sci. 35, 245. 
Sperber, D. (1989). In 'Nuclear Reaction Mechanism' (Ed. S. Mukherjee), p. 265 (World Scientific: 

Singapore). 
Suraud, E. (1987). Nucl. Phys. A 462, 109. 
ter-Haar, B., and Malfliet, R. (1987). Phys. Rev. Lett. 59, 1652. 

Manuscript received 17 january, accepted 16 August 1991 




