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The classical equations of motion for a particle moving in a parallel longitudinal wave of 
arbitrary phase speed are discussed and the case of subluminal waves is considered in detail. 
Motion of both trapped and untrapped particles is explored with particular reference to the 
ability of a wave to accelerate particles to relativistic energy. The particle orbit is found in 
both closed and expanded forms, taking the electric field into account exactly. Expressions 
are also found for the 'drift velocity' of a particle, which is an important quantity because it 
is a constant of the particle motion that describes the motion of the centre of oscillation. 

1. Introduction 

This is the first of two papers in which the motion of a charged particle in the 
field of an electrostatic wave of arbitrary phase speed and amplitude is explored 
in detail. Waves with phase speed less than the speed of light in vacuo are called 
subluminal, waves with phase speed greater than the speed of light are called 
superluminal and waves with phase speed equal to the speed of light are called 
luminal waves. In this paper we treat motion in subluminal waves. Motion in 
luminal and superluminal waves is treated in Part II (see the following paper). 

There are two motivations for the calculations presented in this paper and 
in Part II. The first is to extend the understanding of particle motion in 
electromagnetic fields to the case of longitudinal waves. Gunn and Ostriker (1971) 
presented calculations for the transverse wave case and Melrose (1978) considered 
briefly the emission by particles in an arbitrary longitudinal electric field to first 
order in a perturbation expansion in the field. Krishan and Sivaram (1983) 
attempted to expand the work of Melrose to oblique wave-particle trajectories. 
Neither the work of Melrose nor Krishan and Sivaram can be used to consider 
strong electric fields since by assumption the field is small enough to be treated 
as a perturbation. A solution for the equation of motion for a relativistic 
particle moving in a longitudinal wave is also vital for solving the self-consistent 
field problem, that is finding a distribution of particles which can create the 
longitudinal wave in which they move. Finding such a solution to Vlasov's 
equation and simultaneously Maxwell's equations allows the consideration of the 
emission by particles in a strong coherent plasma wave. 

The second motivation is possible application of a linear acceleration mechanism 
in astrophysics. One application is in radio emission from pulsars where the 
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superstrong magnetic field makes gyromagnetic motions unimportant due to the 
short lifetime of the first excited state. The idea is that a strong coherent 
plasma wave causes particles to emit radiation due to linear acceleration in the 
wave. Having an exact solution to the particle motion allows very strong electric 
fields to be treated and thus stronger emission. In the literature a favoured 
emission mechanism for radio pulsars is curvature emission by particles moving 
along curved magnetic field lines. However, it is difficult to obtain the necessary 
coherence or brightness of the radiation since maser amplification is not possible 
(Blandford 1975). In the linear acceleration mechanism, maser action is possible 
(Melrose 1978). Another application is in the treatment of electrostatic double 
layers (e.g. Kuijpers 1990) which can be modelled as a few wavelengths of a 
coherent, self-consistent plasma wave. The theory developed here is valid for one 
dimensional particle motion with or without a magnetic field. These applications 
of the theory will be discussed elsewhere. Here we concentrate on giving solutions 
for the particle motion, treating the electric field exactly and including relativistic 
effects. We deal only with the case of particle motion along the direction of wave 
propagation; but the results can be generalised to allow a perpendicular motion. 

The format of this paper is as follows. In Section 2 we write down the equation 
of motion for a particle in the field of an electrostatic wave moving parallel 
to the particle motion and give first integrals for the subluminal, superluminal 
and luminal wave cases. These first integrals are simple combinations of the 
total particle energy and the particle momentum. In Section 3 we solve for the 
particle velocity as a function of the phase of the wave in the subluminal case 
and determine the conditions for particle trapping. Section 4 deals with the exact 
solutions of the particle orbit. In the subluminal case there are two solutions, 
one for untrapped particles and the other for trapped particles. From these exact 
solutions one may identify the 'drift velocity' of an untrapped particle and what 
we call the 'bounce speed' of trapped particles. These quantities demonstrate 
the effect of the electric field on the constant part of the particle velocity (the 
velocity of the 'centre of oscillation'). In order to proceed further, in calculating 
the Fourier transform of the particle current for example, an expansion of the 
orbit is required. This is developed in Section 5. In the untrapped case we expand 
first in harmonics of the wave, obtaining integrals for the coefficients introduced, 
including an integral form for the drift velocity. The first of these coefficients 
is also given analytically. The asymptotic behaviour of these coefficients is 
determined in the trapping limit and an expansion which is useful in the weak 
field case is given. In the trapped particle case we expand in harmonics of the 
bounce motion of the particle and write down an integral form of the average 
'bounce speed' of the particle. The behaviour of the coefficients introduced is 
determined for a particle which is almost untrapped and for a particle at rest in 
the trough of the wave. We use units with Ii, = c = 1 throughout this paper. 

2. Equations of Motion 

We start from the equation of motion for a particle under the influence of the 
Lorentz force in an arbitrary reference frame 

dp = q(E+v x B), 
dt 

(1) 
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where v, p and q are the particle velocity, momentum and charge and E and B 
are the electric and magnetic fields. In this paper we consider only the case of 
E, v and B all parallel whence the equation becomes one dimensional 

dv qE 

dt = m'l' (2) 

Although the magnetic field and gyromagnetic effects are now irrelevant (2) is 
a useful model for fermions in a strong magnetic field since their perpendicular 
energy is quickly radiated away and their ground state is independent of B [by 
contrast the ground state for bosons depends on B (see e.g. Witte et al. 1988; 
Rowe 1991) and so this model cannot be used]. The equation in this form 
has been discussed before (e.g. Melrose 1978); the appearance of the electric 
field linearly on the right hand side being used to recursively generate terms in 
an expansion for the particle orbit. This method fails for strong electric fields 
(lq¢1 > m,,(, where ¢ is the electric potential). It is possible to generalise the 
above discussion to particle motion in a non-parallel electric field (excluding a 
magnetic field), and to motion following an arbitrarily curved field line with the 
electric field parallel to the magnetic field. We do not give the details here; 
suffice it to say that the calculations are similar to those presented below (this 
is not to say that the results contain no additional information). 

In solving (2) we choose an electric field of the form 

E = Eo sin{K(z - zo) - net - to)}z, (3) 

which represents a longitudinal wave of amplitude Eo and phase speed v", = n/ K 
moving in the positive z direction. On substituting (3) into (2) one may rewrite 
the resulting equation as a system of three equations which can then be solved, 
as follows. Defining 

'Ij; = net - to) - K(z - zo) , (4) 

one has 
d'lj; 
ill = n-Kv, (5) 

d'lj; _ ~-K 
dz - v ' (6) 

dv q Eosin'lj; 
(7) d'lj; = -m,,(3 n-Kv . 

Equation (5) is non-trivial for K =1= 0 as is (6) for n =1= 0 and (7) corresponds to 
(2). There are only two independent equations and so there are two independent 
constants of the motion (one is a momentum or energy constant and the other is 
a phase like constant giving the initial particle position). One of these constants 
is obtained directly from (7) 

qEo 
"(1- v",v) + mK cos'lj; = C1 , (8) 

or 

( 1) qEo "( v - - - - cos 'Ij; = C2 • 
v", mn (9) 
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The form (8) is suitable for K"# 0 and has the dimensions of energy, while 
the second form is suitable for n"# 0 and has dimensions of momentum. The 
significance of the constants C1 and C2 is determined as follows. 

The Constants C1 and C2 

In the case v</> < lone can consider the rest frame of the electrostatic wave 
(v</> = 0) in which the description of the physical system is simplest. From (8) 
one has 

qEo 
"I + --;:;:- cos 1/1 = ho , 

m.n.o 
(10) 

where ho is a constant and the subscript 0 is used to stress that a quantity 
is as defined in the rest frame (with the exception of Eo which is invariant 
in all parallel reference frames). The constant ho is then the total energy or 
Hamiltonian per unit mass of the particle in the rest frame (h = "I - q¢/m). It 
must be a constant by virtue of the fact that there is no explicit time dependence 
in this frame. 

Performing a Lorentz transform (see Appendix 1) on the quantities on the left 
hand side to the frame where the wave phase speed is v</>, one regains (8) with 

C1 = ho 
"I</> ' 

(11) 

where 

"I - 1 
</> - (1- v~)~ . 

(12) 

Thus the constant of the motion (8) is the total particle energy per unit mass 
in the wave rest frame written in terms of the new frame quantities. 

In the case v</> > lone can consider the frame in which the electrostatic wave 
appears to be a uniform time varying field. In this frame v</> is infinite and the 
physical system has its simplest description. From (9) one has 

qEo 
V'Y - ~ cos 1/1 = boo , 

m~£oo 
(13) 

where the subscript 00 is used to stress that a quantity is in the frame in which 
v</> is infinite. The constant boo represents the canonical momentum per unit 
mass of the particle (pc = V'Y + qA/ m). This quantity is a constant in this frame 
by virtue of the fact that the system is independent of the space coordinate. 

Performing a Lorentz transform (see Appendix 1 of Part II) to a frame where 
v</> is finite gives 

where 

b 
C2=~ 

"I; , 

1 
"I; = (1 - l/v~)~ . 

(14) 

(15) 
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The asterisk is used to distinguish between (12) and (15) which are in fact the 
'i'-factors relating a wave rest frame to an observer's frame in the subluminal case 
(the relative velocity between frames is -vcf» and an infinite phase speed frame 
to an observer's frame in the superluminal case (the relative velocity between 
frames is -1/vcf». While'i'cf> is related in a natural way to the wave phase speed, 
'i'¢ is not. In this case the constant of the motion (9) is the canonical momentum 
per unit mass in the infinite phase speed frame written in terms of quantities in 
the arbitrary frame. 

In the case vcf> = 1 one has from (8) or (9) 

qEo 
'i'(1 - v) + mO cos 'I/J = a, (16) 

where a is a constant and 0 = K. There is no specific reference frame in this 
case. No further mention of luminal or superluminal waves is made until Part II. 

3. Particle Motion 

Solving (8) with (11) for the velocity of the particle, one has 

where 

Vcf>'i'~ ± (ho - ro cos 'I/J){(ho - ro cos 'I/J)2 -I}! 
V= 2 2 2 ' 

vcf>'i'cf> + (ho - ro cos 'I/J) 

qEO 
ro = mKo' 

(17) 

(18) 

is a dimensionless constant. The solution with the upper sign represents a particle 
moving to the right in the wave rest frame and the solution with the lower sign 
a particle moving to the left. The phase 'I/J can only take values for which the 
quantity under the square root is non-negative and this is assured if 

ro cos 'I/J :S ho - 1 , (19) 

which is the condition that the particle momentum in the wave rest frame is 
always physical b 2:: 1 in that frame). Suppose, without loss of generality, that 
ro 2:: O. Then we have 

(~-1) (~-1) 2N7r + cos -1 ~ :S 'I/J :S 2(N + 1)7r - cos -1 ~ , (20) 

which admits three possibilities. Untrapped particle motion occurs for ho > 1 +ro, 
trapped motion for 1 - ro :S ho :S 1 + ro and there is no solution if ho < 1 - ro. In 
Fig. 1 plots of the particle velocity as a function of phase are given illustrating 
how particles can be trapped in the wave and how particles tend to be dragged 
along by a wave with nonzero phase speed. 

The parameter ro determines the strength of the electric field; its value is half 
the change in the kinetic energy per unit mass during one period of the particle 
motion for untrapped particles in the wave rest frame. The corresponding change 
in kinetic energy for trapped particles is smaller depending on the degree of 
trapping. The range of values possible for ro, in the case of pulsars, is considered 
in Section 6. 
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A useful quantity to consider is the acceleration potential of the wave. One 
way to characterise this is by calculating the ratio of the maximum particle 
kinetic energy attained during the motion to the minimum particle kinetic energy, 
R = "fmax/"fmin (this quantity contains more information about the particle 
acceleration than ro which is only the difference between two energies). We call 
R the energy gain of the particle. The particle undergoes this acceleration at 
least once each wave period. In the wave rest frame the values of the kinetic 
energy per unit mass at the ends of the orbit are "fa = ho + ro and "fb = ho - ro 
respectively. Note that "fb may not be the minimum kinetic energy as the particle 
may change direction during the motion. After Lorentz transforming to a general 
frame one has the corresponding quantities 

ga± = "f¢ba ± v¢h~ - 1)~}, 

gb± = "f¢bb ± v¢hl- 1)!}, 

(21) 

(22) 

with the upper sign for particles moving positively in the rest frame and the 
lower sign for particles moving negatively. The energy gain in a general frame is 
given in Table 1 for untrapped particles and in Table 2 for trapped particles. It 
involves ga± and gb± in various combinations depending upon the value of the 
Lorentz boost-as this determines precisely how the orbit appears in the general 
frame. 

The energy gain is shown in Fig. 2 for three values of ro in the wave rest 
frame and for v~ = ~. The qualitative features are as follows. The three main 
regions of interest in order of the magnitude of the acceleration possible in the 

Table 1. Energy gain for untrapped particle motion in a subluminal longitudinal wave 
The first and second columns give the values of ro and ho for which the particular result is 

valid. The third column describes the type of particle motion involved 

Range of ro Range of ho Comments /max//min 

All values ho > l+ro v> v</> ga+/9b+ 

ho ;::: /</>+ro v<O 9a-/9b-
/</> - 1 

l+ro ::; ho ::; /</>-ro 0< v < v</> 9b-/9a-ro<--- 2 
(22/2)1 v> 0 mostly /</>-ro ::; ho::; /</>+ro v</> 2" 9b-

(2 2/2)1 V < 0 mostly /</>+ro v</> 2" ::; ho ::; /</>+ro ga-
/</> -1 2 2 2 2 2) 1 V> 0 mostly -2- ::; ro ::; v</>/</> l+ro ::; ho ::; C1 </>+ro/v</> 2" 9b-

2 2 2 1 V < 0 mostly C1</>+ro/v</»2" ::; ho ::; /</>+ro 9a-

ro ;::: vh; l+ro ::; ho ::; /</>+ro v < 0 mostly 9a-

Table 2. Energy gain for trapped particle motion in a subluminal longitudinal wave 

Range of ro 

ro < /</>-1 
- -2-

ro > /</> -1 
2 

Range of ho 

l-ro < ho < l+ro 

l-ro < ho ::; /</>-ro 

/</>-ro ::; ho < l+ro 

Comments /max//min 

v>O 9a+/9a-

v>O 9a+/9a-

v> 0 mostly 9a+ 
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Fig. 2. Energy gain R for particles in a subluminal longitudinal wave as a function of ho. 
In (a) vI/> = 0 and curves are shown for three values of roo On the left of the peaks particles 
are trapped and on the right they are untrapped. In (b), (c) and (d) v~ = £ and there are 
three curves for each value of roo In order of magnitude these curves are for trapped particles, 
untrapped particles with V> vI/> and untrapped particles with v < vI/>. In all cases the ho axis 
is at R = 1. 

wave are: trapped particles, untrapped particles with velocities greater than v", 

and untrapped particles with velocities less than v",. The acceleration of trapped 
particles increases steadily as total particle energy per unit mass increases from 
the minimum value allowed (ho = 1 - ro) to the trapping limit (ho = 1 + ro). 
The maximum energy gain attained at ho = 1 + ro is 

{ 
1 + 2ro + 2vt/>{ro(1 + ro)}! r < 1("1 -1) 

)} l 0-2'''' Rl = 1 + 2ro - 2v",{ro(1 + ro 2 

'Y",[1+2ro+2v",{ro(1+ro)}ij ro > ~b",-l), 
(23) 

which increases with both ro and v",. For untrapped particles with velocities 
exceeding v"" the maximum energy gain occurs at ho ~ 1 + ro, 

R2 = 1 + 2ro + 2v",{ro(1 + ro)}! , (24) 

which also increases with ro and v",. If ro > b", -1)/2 the ratio of the maximum 
trapped energy gain to the maximum untrapped energy gain is 'Y '" which is 
dependent only on the wave phase speed (in the wave rest frame these maximum 
energy gains are equal). An important point is that the slope of R for particles 
with velocity greater than v", is negative, becoming arbitrarily steep at ho = l+ro, 
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so that R drops rapidly away as ho increases from its minimum value and thus to 
obtain an energy gain which is close to the maximum allowed for such particles, 
they must be very close to being trapped. 

The situation is similar for particles with velocities less than Vcp except that 
the maximum value of R depends more critically on ro and it is generally much 
smaller than Rl or R2 • The details are thus unimportant; qualitatively R drops 
away as ho increases (as in the case of particle velocities exceeding vcp) and then 
slightly increases as particle velocities become negative only to decrease again 
towards a value of unity. 

4. Exact Solutions For Particle Orbits 

(aJ Untrapped Particles 

We start by calculating the orbit in the wave rest frame. It is then 
straightforward to perform a Lorentz transformation to an arbitrary frame. In 
the wave rest frame the equation for the orbit (5) can be written 

dt 1 Y 1 
dY = =F ± Ko (y2 -I)! {ro _ (ho _ -y)2}! ' (25) 

with Y = ho - ro cos 1/J. The first choice of sign in (25) comes from the particle 
velocity (17) with the upper sign for positive velocities and the lower sign for 
negative velocities, and the second from the jacobian between Y and 1/J with the 
upper sign for sin 1/J positive and the lower sign for sin 1/J negative. The choice 
of sign introduced by the jacobian implies that the exact solution for a complete 
period of the wave must be written in a piecewise manner. 

In integrating we define the following parameters: 

e± = b~ ±r~, 

~o = (e: - 4r~)! , 

ao (e+ - ~o)! 
e++~o ' 

_ (e- - ~o) t 
ko - e- +~o ' 

1 e+ - ~o - 2horo cos 1/J 
170=- , 

ao e+ + ~o - 2horo cos 1/J 
2r5 cos 21/J - 2horo cos 1/J + e-

Po = 
e+ - 2horo cos 1/J 

with bo = (h~ - 1)~ and the functions 

FO(17o) = K(ko) ± F(sin-1170, ko) , 

IIo(17o) = II(a5, ko) ± II( sin-1 170, a5, ko) , 

Bo(Po) = ± (sin-1po - i) , 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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with the upper sign for 'l/J E [2N1r, (2N + 1)71"] and the lower sign for 'l/J E 

[(2N + 1)71", 2(N + 1)71"] where F, K and II are elliptic integrals [Byrd and Friedman 
(1954, pp. 8-10); the definiton of II differs from that used by Gradshteyn and 
Ryzhik (1980, p. 905) in which 0:5 is essentially replaced by -0:5] and N is an 
integer. Again we use the subscript 0 to indicate the wave rest frame case. The 
parameter .6..0 can also be written as 

.6..0 = [{(ho - 1)2 - r~}{(ho + 1)2 - rn]! , (35) 

and it is only real if the particle is untrapped or if it is trapped with ho < ro - l. 
It is also an important quantity in that all the other parameters which involve 
it tend to unity in the limit as .6..0 tends to zero and it can be used to quantify 
the particle trapping limit. The solution to (25) is then 

t - N 71" ± 1 [ 2 + ~- - .6..0 Po 
0- f3DoKo Ko ho{2(~- + .6..0)}! 0(1]0) 

.6..0 { 2}! 1]-+ ho ~_ +.6..0 IIo(1]O) + 2S0 (PO) - to, (36) 

where the upper sign is for particles moving in the positive z direction and the 
lower sign is for particles moving in the negative z direction. The integer N is 
the number of completed half periods, fa is an arbitrary constant and f3DO has 
the form of a drift velocity. In a general frame we have 

( l</>V</» 
t = I</> to - T'l/J . (37) 

The drift velocity f3DO describes the average motion of the particle over one 
wave period (it is defined as .6..z /.6..t calculated for an integer multiple of half 
periods). In Section 5a, in which an expansion of the orbit is made, it is shown 
that this drift velocity contributes the linear part of the motion and is analogous 
to the motion of the guiding centre of a particle gyrating in a magnetic field. 
The analytic result for the drift velocity is obtained directly from (36) and (4). 
One has 

1 ± 2 [ 2 + ~_ - .6..0 .6..0 { 2 } ! ] 
f3Do = -; ho{2(~- + .6..0)}! K(ko) + ho ~_ + .6..0 II(o:~, ko). (38) 

Fig. 3 shows how the drift velocity varies as a function of the zero order velocity 
Uo (corresponding to the total rest frame particle energy per unit rest mass or the 
particle velocity where the electric potential is zero), for four values of ro. The most 
notable features are that the curves tend to straight lines with slope unity as Uo tends 
to the speed of light and that, as Uo approaches a value corresponding to ho = l+ro, 
the drift velocity falls very rapidly to zero. The first feature illustrates that for high 
enough particle energy the effect of the wave becomes small and that then f3 DO ~ Uo, 
and the second feature illustrates the trapping of particles with energy ho ::; 1 +ro. 
There is a relatively small range of zero order velocities for which the wave is neither 
strong enough to trap the particles nor weak enough to be treated as a small effect. 
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0.2 0.4 0.6 0.8 

Ua 

Fig. 3. Drift velocity of an 
untrapped particle in a subluminal 
wave as a function of the zero order 
velocity Uo, for four electric field 
strengths. 

(b) Trapped Particles 

In the trapped particle case equation (25) still applies, however many of the 
quantities defined in the previous solution now become complex. An alternative 
solution for this case with only real parameters involves replacing some of the 
previous definitions with 

L:::..T = {16ro(1 + rO - ho)(l + rO + ho)}~ , (39) 

k ~ [{2(ro + 1)2 - L:::..T}2 - 4h~(1- ro)2] ~ 
T - {( )2 }2 2( )2' 2 ro + 1 + L:::..T - 4ho 1 - rO 

(40) 

2 r _ {2 (ro + 1) - 2ho (1 - ro) - L:::..T "2 

aT - 2 ' 2(ro + 1) - 2ho(1 - ro) + L:::..T 
(41) 

1 4horo - L:::..T - 4ro(ro + 1) cos'¢ 
(42) 'TJT = - , 

aT 4horo + L:::..T - 4ro(ro + 1) cos'¢ 

PT = 
rocos2,¢ - ho cos '¢ + 1 

(ro + l)cos '¢ - ho 
(42a) 

-1 (ho -1) '¢T = cos ----:;:;;-' (43) 

and 
FT('TJT) = K(kT) ±F(sin-1'TJT,kT) , (44) 

I1T ('TJT) = I1(a~,kT)±I1(sin-1'TJT,a~,kT)' (45) 

ST(PT) = ±( sin-1 PT +~), (46) 

with the upper sign for '¢ E ['¢T,7I'] and the lower sign for '¢ E [71',271' - ,¢T] and 
where we use the subscript T to denote quantities in the trapped particle case. 
Note also the difference between (34) and (46). 

The appropriate solution is now 

t = N7I' ± ~ [ 4ho - L:::..T 
20B Ko 2(ro+1){(ro+1)2+4ro-h~+L:::..d~FT('TJT) (47) 

+ ~ 1 ] 
(ro + l){(ro + 1)2 + 4ro - h~ + L:::..d ~ I1T ('TJT) - 'i,ST(PT) , 

with the upper sign for particles moving in the positive z direction (i.e. '¢ from 
'¢T to 271' - '¢T) and the lower sign for particles moving in the negative z direction 
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(Le. 't/J from 271" - 't/JT to 't/JT) and where the integer N represents the number 
of quarter periods completed. In analogy with the determination of (3 DO in the 
untrapped case one finds the bounce frequency nB : 

_1_ _ 4 [ 4ho - tlT 
nB - 7I"K o 2(ro+1){(ro+1)2+4ro-h~+tlr}!K(kT) (48) 

+ ~ ] 
(ro + l){(ro + 1)2 + 4ro _ h6 + tlT}! II(o:~, kT) . 

The bounce frequency is defined as 271" times the reciprocal of the period of 
the particle motion and is shown in Fig. 4. Close to the trapping energy the 
bounce frequency rises abruptly from zero as the particle energy decreases. It 
then increases almost linearly as the particle energy decreases before increasing 
rapidly again close to the minimum allowable particle energy. The maximum 

1-
bounce frequency is nB = KorJ which increases as the parameter ro increases. 
An interesting feature of Fig. 4 is that for a particle with zero energy (ho = 0), 
the bounce frequency is nB = K o, independent of the electric field strength. 
The intersection of the nB / Ko curves implies that positive energy particles 
have bounce frequency less than Ko and increasing with ro, whereas negative 
energy particles have bounce frequency greater than Ko and decreasing with roo 
Although we do not treat emission here we note that the emitted frequencies in 
the wave rest frame are the harmonics of this bounce frequency. 

5 

3 

D.alKo 

2 

-15 -10 -5 o 
ho 

5 10 15 20 

Fig. 4. Bounce frequency of trapped particles in a stationary 
longitudinal wave as a function of ho and for six values of the electric 
field strength parameter TO. Part of the TO = 100 curve is shown 
(dashed). 

5. Orbit Expansions 

For the purposes of approximation, and of evaluating the Fourier transform 
of the single particle current, some form of expansion of the particle orbits 
is required. We employ two levels of expansion; the first is an expansion in 
harmonics of the electrostatic wave and the second is an expansion in the weak 
field limit. 
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(a) Untrapped Particles in Subluminal Waves 

We start by expanding the particle orbit in the wave rest frame and then 
perform a Lorentz transformation to obtain the more general frame. We know 
from the exact solution that t is a function of 1j; and so expanding in harmonics 
of 1j; one must have 

00 1j;_ 
"c . (01,) -- -to, to = - ~ psm P'l' - Kof3DO 
p=l 

(49) 

where the Cp are constants to be determined or alternatively 

dto 00 1 
dol. = - L pCp cos(p'I/J) - ~f3 ' 

'I' p=l 0 DO 
(50) 

with the left hand side given by (5) with (17). Note that equation (50) includes 
only cosine terms sinc.e there can be no nonzero sine contributions from (17) and 
also that the expansion converges for untrapped particles with the Cp strictly 
decreasing in size with p. This reflects the fact that the particle motion is 
dominated by low harmonics (obviously the largest component in the particle 
motion must be the one with the same period as the wave). Orthogonality of 
the cos(p1j;) yields 

C - ±_2 -111" ho - ro cos 1j; ( ol')dol' 
P - 1 cos P'I' '1', 

rnrKo 0 {(ho - rocos1j;)2 -1}2 
(51) 

_1_ = ±.!. r ho - ro cos1j; 1 d1j;. 
I3DO 7fJo {(ho-rocos1j;)2-1}2 

(52) 

In principle all of the constants Cp can be calculated analytically and the first 
of these is 

2 2 1 
C1 =± J(, h {(2+~_+~o)(2ro+~_+~o)}2{K(ko)-E(ko)}, (53) 7f oro 0 

where the complete elliptic integral of the second kind, E(k), is introduced. The 
integral form (52) of the drift velocity, which is given analytically in Section 4a, 
shows that l/f3Do is l/v averaged over wave phase. The coefficients Cp decrease 
monotonically from infinity at ho = 1 + ro, to zero as ho approaches becomes 
arbitrarily large. A Lorentz transform (see Appendix 1) applied to (49) yields 
the result in an arbitrary frame 

t = - f "(</>Cp sin(p1j;) - VI fL1j; _ 0'. \ - "(~C[ - v</>z), (54) 
p=l 

where f3D is the 'drift velocity' in the new frame and t and z are new arbitrary 
constants. The expansion outlined above goes beyond any given previously 
(Melrose 1978; Krishan and Sivaram 1983) and in particular it includes the 
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electric field to all orders at each harmonic and as such it is indispensable in 
calculating the single particle current. 

As discussed in Section 4a two opposite limits to consider are the particle 
trapping limit (ho = 1 + ro), and the weak field limit (ho » 1 + ro). In the first 
limit (51) and (52) gain non-integrable singularities at costf; = 1 and thus all of 
the constants 1/f3Do and Cp tend to infinity. While it is not possible to obtain 
an expansion for these constants in the trapping limit, we can determine the 
nature of the singularity at ho = 1 + roo The singularity in the integrand occurs 
at tf; = 0 (Le. where the particle velocity is zero) if ho = 1 + ro, so we may 
write the integral in (51) and (52) as a sum of a divergent integral and a finite 
integral so that 

CP=±P7r~O {lo6 F(tf;) cos (ptP)dtf; + l1r F(tf;)COS(ptP)dtf;} , (55) 

where F(tf;) is the integrand in (52). As we approach trapping, the second 
integral approaches a finite limit and can be neglected. If 8 is chosen such that 
(P8)2 «2 then cos(ptP) ~ 1 and it is obvious then that the behaviour of Cp in 
this limit is determined solely by the limiting behaviour of the integral in (52). 
Thus we have f3DOCp ~ 2/pKo (these quantities are of most interest in evaluating 
the particle current, though we do not do this here). Defining x = 1- (1 +ro)/ho, 
we can determine the behaviour of Cp and 1/f3DO for small x from (53). In the 
limit x -7 0, 6.0 -72(1 + ro)(2rox)!, ko -71- (1 + ro)(2x/ro)t, K(ko) -7 00 and 
E(ko) -7 1. Using the result (Byrd and Friedman, p. 11) 

k~~l [K(ko) -In {(1-4k5 )t }] = 0, (56) 

one obtains 

1 [ { 32ro } ] C1 ~ ±--t In ( )2 - 4 - In x , 
7rKoro 1 +ro 

(57) 

InX 
Cp ~ T 1 , 

p7rKorJ 
(58) 

1 lnx 
-~T--

f3DO 27rrJ ' 
(59) 

where only the lowest order term in Cp and 1/ f3DO and the two lowest order 
terms in C1 are retained. 

In the second limit, the integrand of (52) approaches the constant l/uo so 
that f3DO -7 Uo as expected, and Cp -7 0 for all values of p. In this weak field 
limit we expand (54) .in powers of ro/ho (Rowe 1990). The result converges for 
ira/hoi < 1 which is the condition that in the rest frame the wave energy is less 
than the particle energy (this holds for all untrapped particles). To third order 
in ro/ho, one has in the general frame 
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'Y", TO 3 5 - Uo TO . 3 TO . ( ) [{ 2 ( ) 2} ( ) t = Koh~u3 ho 1 + 8" ~ ho sm'¢ + 8u~ ho sm2'¢ 

2 ()2 ] 5 - Uo TO. '¢ 
+ --4- -h sm 3'¢ - K(f.? ) + const, 

24uo 0 fJD - V", 
(60) 

1 1 3 TO { ( )2} 
fiDO = Uo 1 + 4h6U6 ho ' 

(61) 

with Uo = ±(1 - l/h~)!. The nth harmonic in the orbit expansion is of order 
(To/ho)n with corrections of order (To/ho)n+2m for all natural numbers m. The 
first order contribution to the orbit is the electric field multiplied by a factor 
which varies as (houO)-3, where houo is the zero order particle momentum. The 
modification of the drift velocity by the electric field is a second order effect. It 
is not possible to find directly an expansion of Cp for large p due to the way 
in which p appears in the integrand in (51). The dependence of the integrand 
on p can, however, be neglected in the trapping limit in which case Cp ~ p-l. 
In the weak field limit the dependence of the integrand on p becomes important 
and Cp decreases more rapidly with p. It is shown in Appendix 2, where a full 
weak field expansion is given, that in this limit (Cp ~ const)-p. 

(b) Trapped Particles in Sub luminal Waves 

We give only the harmonic expansion for the case of particles trapped in the 
wave and use the wave rest frame. The distance travelled by a particle is a more 
suitable variable than '¢ to use in an expansion of the trapped orbit since it 
increases in time whereas '¢ oscillates. 

Let K' be the wave number for a half bounce (the part of the motion between 
successive values of zero velocity) and let DB denote the bounce frequency, that 
is 27r /TB where TB is the full period of the motion. The definition of K' implies 
that K'D..z = 27r where D..z is the distance travelled by a particle between points 
of zero velocity. In the rest frame '¢ = -Koz and from (20) we have then 

2 
D..z= Ko(7r-'¢r) , 

where '¢r is defined by (43), and hence 

K' = 7rKo 
7r - '¢r 

The orbit expansion can now be written in the form 

= K'( -
t( () = :LTp sin (pK' () + 2DB + t , 

p=l 

(62) 

(63) 

(64) 

where ( represents the distance travelled by the particle. The expansion can be 
understood as follows: a particle starts with zero velocity at ( = Zl say, then as 
it is moving positively, ( is increasing monotonically with the displacement of 
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the particle. At the point where ( = 2rr / K' + Zl, the particle has zero velocity 
and has undergone half a period. For the second half of the period ( increases 
in the sante fashion and hence t( () continues to increase as for the first half 
bounce. For some calculations, such as the particle current, it is necessary to 
have 'I/J(() explicitly. One has 

{ 
4Nrr (4Nrr 4Nrr 2rr) 

( + Zl - K' ( E K" K' + K' 

'I/J = -Ko 4Nrr 2rr (4Nrr 2rr 4(N + l)rr) 
-( + Z2 + K' + K' (E K' + K" K' , 

(65) 

for integer values of N with Zl = 'l/JT/Ko and Z2 = (2rr - 'l/JT)/Ko. 

VB 

ro = 8 

2 
Fig. 5. Bounce speed of a trapped particle 
in a subluminal wave as a function of the 
total particle energy per unit mass ho, for 
four electric field strengths. 

--'---_o--L_~-'--L..lJ._.J-_o--L_..__L ho 
-5 -2.5 2.5 5 7.5 

It is now straightforward to derive the coefficients Tp and OB, corresponding 
to Cp and f3 DO in the untrapped case. One has 

To = ~ r ho-rocos{(l-'l/JT/rr)¢+'I/J~}. 1 cos(p¢)d¢, (66) 
p prrK Jo ([ho-rocos{(l-'l/JT/rr)¢+'l/JT}] -1)2 

K' =! r ho - ro cos{(l - 'l/JT/rr)¢ + 'I/J~} 1 d¢, (67) 
20B rr Jo ([ho - ro cos{(l - 'l/JT/rr)¢ + 'l/Jr}] - 1)2" 

where 'l/JT is the wave phase at which the particle 'bounces'. It is not possible 
in general to obtain Tp analytically in terms of known functions due to the 
appearance of two cosines with different periods, however we have OB from 
Section 4b. The construction of the orbit expansion implies that Tl is the largest 
of the coefficients (as in the untrapped case the dominant term must be the one 
with the same period as the particle motion). It is clear that (66) and (67) 
reduce to (51) and (52) in the case K' = K. The quantity 20B/ K' which we 
call the bounce speed VB appears naturally as the counterpart to f3DO in the 
untrapped case and is shown in Fig. 5. The figure illustrates how the energy 
range and the maximum bounce velocity of the trapped particles increases with 
ro, and that the bounce velocity is relatively constant for much of the allowed 
energy range for high values of roo 

In the trapped case there are also two limits, the first of which represents a 
particle coming to rest in the trough of the wave (ho -+ 1- ro) and the second of 
which corresponds to a particle on the verge of becoming untrapped (ho -+ 1 + ro). 
The behaviour of Tp can be determined in both of these limits, in the sante way 
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as for the limiting behaviour of Cpo In the first limit 'l/JT ---- 7r and the integrand in 
(67) becomes infinitely large over the entire range of integration. The singularity 
is not isolated in this case but it is obvious that the integral in (66) must be 
less than that in (67) due to the presence of the cos(p<p) factor and the fact that 
the remaining factor is always positive. It is also apparent that Tp > 0 since 
the first factor is monotonically decreasing with <p. One has OB ---- KOTO! and 
hence Tp ~ l/pKoTo!. In the second limit the integrands in (66) and (67) are 
singular only at <P = 0 (where the particle velocity is zero) and this singularity is 
non-integrable if ho = 1 + TO. This is obvious from the plots of the bounce speed 
in Fig. 5. The singular contribution to the integrals is independent of p and 
hence Tp and OB have similar limiting behaviour which we deduce from (49): 

1 In y 
-~---1 , 

OB 7rKOT02 
(68) 

In y 
Tp~- l' 

p7rK oTo2 
(69) 

where y = 1 - ho/(l + TO). This is the same limiting behaviour as for 2/Kof3Do 
and Cpo In the trapped particle case, Tp ~ p-l in both limits. 

6. Discussion 

In this paper the motion of charged particles in the field of a subluminal 
longitudinal plasma wave is explored. We treat both trapped and untrapped 
particles and give exact orbits in both closed and expanded forms. In particular 
we treat the electric field exactly and include relativistic effects. These results are 
important in the theory of emission by particles accelerated by a strong plasma 
wave, which is to be developed in a later paper. 

The wave strength parameter TO was introduced in Section 3. In SI units 
TO = e<po/mc2 for an electron or positron where <Po is the electric potential in the 
wave rest frame. Thus one has TO = 1·95 x 1O-6<po/(lV). An electric potential of 
<Po = 106 V in the wave rest frame corresponds to TO ~ 2, however in the case of pulsars 
potentials across the polar caps may be of the order of 1012 V (Ruderman and Suther
land 1975) and thus TO could be of order 106 • Melrose (1978, 1986) invoked equiparti
tion of energy between particles and the electric field and suggested that the potential 
across the polar caps would be unlikely to be neutralised by a plasma discharge to a po
tentialless than <Po ~ 'Ymc2 / e, where 'Y is the Lorentz factor of the particle distribution 
producing the wave so that TO ~ 'Y. The first estimate is an upper bound for TO and the 
second can be taken as a lower bound. The actual value for TO depends on the model for 
wave production in the pulsar magnetosphere. It is, however, not our aim to develop 
such a model here. In the case of pulsars then, a longitudinal wave is capable of accel
erating electrons and positrons from rest to relativistic energies in less than half a wave 
period. Particle trapping is also more likely to be important for strong electric fields. 

It was shown in Section 3 that a subluminallongitudinal wave can accelerate 
trapped particles more effectively than untrapped particles (in the sense that 
the energy gain is larger). Trapped particles have lower kinetic energy than the 
electric energy of the wave (ho -1 < TO) and so are strongly accelerated, whereas 
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untrapped particles have greater kinetic energy than the electric energy of the 
wave (ho - 1 > TO) and are less readily perturbed. The greater the wave phase 
speed, the greater the advantage of trapped particles over untrapped particles. 
The results also show that a larger range of total particle energy ho leads to 
appreciable acceleration in the trapped case compared with the untrapped case. 
In the untrapped case, particles must have energies very close to the trapping 
energy (ho = 1 + TO) in order to be accelerated as much as possible by the wave. 
The results summarised above suggest that if TO is large (~ 10 say) then emission 
from trapped particleS dominates emission from untrapped particles. This needs 
to be clarified in the treatment of the emission. 
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Appendix 1: Lorentz Transformations 

In this paper, Lorentz transforms are used to transform results from a reference 
frame in which an electrostatic wave is at rest to another reference frame. The 
relations between quantities in the rest frame and those in a general frame are 
summarised below. 

Quantities defined in the rest frame have subscript O. The main quantities 
are Eo, K o, Vo, '1/;0, 'Yo, TO and f3DO where Eo is an electric field, Ko is a wave 
vector, Vo and f3DO are velocities, '1/;0 is a phase, 'Yo is an energy and TO is a 
dimensionless parameter defined in Section 3. The wavevector and frequency of 
the wave in an arbitrary frame are 

K = 'YR(Ko - VRnO) , n = 'YR(nO - VRKO) , 

where VR and 'YR are the relative velocity between the general frame and the 
wave rest frame and the corresponding 'Y-factor. The Lorentz transform is taken 
to be in the direction of the particle and wave motion. The frequency no is zero 
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by definition so that VR = -v"" where v", = 0/ K is the wave phase speed in the 
new frame. We adopt the notation "I", for "IR = 1/(1 - v~)'. 

Using the inverse transform one finds the wave frame quantities in terms of 
those in the observer's frame 

Eo = E, 

'1/10 = '1/1, 
K 

Ko = "I",(K - v",O) = - , 
"I", 

v-v", 
Vo = , 

I-v",v 
(3D - v", 

(3DO = 1 (3' -v", D 

"10 = "1","1(1 - v",v) , 

ro = "I",r. 

Appendix 2: Complete Weak Field Expansion 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

The complete weak field expansion for Cp is obtained as follows. Defining 

(1- y)ho 
F(y) = {(I _ y)2h~ _ I}t ' (AS) 

one has on expanding F(y) for small y, 

C = ± 1 . (ro)P 00 p+2nCn FCP+2n)(0) (ro)2n 
P ,. .. -1 rr h L 22n (p+2n)! h ' o n=O 0 

(A9) 

where F(n)(o) denotes the nth derivative of F(y) evaluated at y = 0 and p+2nCn 
is a binomial expansion coefficient. The derivatives of F(y) are given by 

F(I)(O) = (_)I(l + I)! ~ G 2(I-n) 
- 21 21+1 ~ l,nUo , 

U o n=[1/2] 
(AIO) 

where [l/2] denotes the integer part of l/2 and 

(-)n(2n-I)! {I n=O 
~n= X , (n - I)!(l - n)!(2n - 1 + I)! 2 n> O. 

(All) 

The summation in (AlO) is a polynomial in u~ with a factor (1- u~) for 1 > O. 
The complete weak field expansion for 1/(3 DO is 

_1_ = 00 21Cl F(21) (0) (ro )21 
(3DO t; 221 (2l)! ho 

(AI2) 
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In the weak field limit, the p dependence of the Cp is obtained by retaining 
only the highest order term in the expansion 

c ~ (- )P(p + 1) (ro)P ~ 2(I-n) 
P ~ 22p-1 K P 2p+l h L.J GI,nUo 

o Uo 0 n=[1/2] 

~ const-P (A13) 

where const> 1. This dependence is stronger than the p-l dependence in the 
strong field limit. 
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