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Abstract 

The general dispersion relation for electromagnetic surface waves on a plasma-vacuum interface, 
recently derived by Rowe (1991), is applied to the case of a cold magnetised plasma bounded 
by a vacuum. It is illustrated how the dispersion relation and the surface wave fields may 
be determined in practice,and some general results are given. It is remarked that a plasma 
of this type satisfies the consistency conditions which were derived for the general theory by 
Rowe. These general results are then used to reproduce the dispersion relation of Cramer and 
Donnelly (1983) for low frequency surface waves in an electron-ion plasma. This example 
illustrates the general principles of the theory. A major difference between the derivation in 
their paper and the calculation of this paper is that in the former the plasma was assumed to 
be infinitely conducting whereas here the plasma is strictly assumed to have finite conductivity. 
The transition to infinite conductivity, which involves a slight extension of the general theory 
to include surface currents, is thus also discussed. 

1. Introduction 

It is well known that a bounded homogeneous plasma can support two distinct 
types of electromagnetic wave mode. One type of wave mode is characterised by 
a wavevector k which is real. These waves can propagate throughout the plasma, 
that is, they are not localised in space, and are thus commonly referred to as 
bulk (or body) waves. The second type of wave mode supported is characterised 
by a wavevector of the form k = knit + ks, where ks is real but kn is imaginary. 
Here, it is a unit vector normal to the bounding surface and ks is the component 
of the wavevector parallel to the surface. These wave modes are localised at 
the surface, that is, they propagate along the bounding interface and decay 
exponentially in amplitude into both the plasma and the bounding medium. As 
such, they are referred to as surface waves. ' 

A standard method for treating bulk waves in plasmas, based on Fourier 
transform theory, has existed for over thirty years (e.g. Stix 1962). This approach 
is useful as it allows one to describe the properties of bulk waves in a general 
way, that is, in a way which does not restrict the dielectric properties of the 
plasma. The properties of specific bulk wave modes, propagating in specific 
plasmas of interest, can then be obtained from within the framework of this more 
general theory by making the relevant approximations to the dielectric tensor 
which describes the plasma. The derivation of a corresponding theory for surface 
waves is more complicated due to the requirement that the wave fields satisfy 
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the relevant electromagnetic boundary conditions at the interface. Any theory of 
electromagnetic surface waves is necessarily limited by the approximations made 
to simplify these boundary conditions. Nevertheless, a general theory of surface 
waves is desirable, and a result can be derived which is subject only to the 
suitability of the chosen boundary conditions. 

A general dispersion relation for surface waves in an isotropic plasma bounded 
by a vacuum was derived by Barr and Boyd (1972), using an image plasma 
approach which is closely analogous to the method of images used extensively in 
electrostatic theory (e.g. Cheng 1983). This work is a generalisation of that of 
Guernsey (1969) and Fuse and Ichimaru (1975) in the sense that it is not restricted 
to waves which are electrostatic (potential) in character. Although it is applicable 
to both cold and thermal plasmas, the assumption of an isotropic plasma restricts 
its use to unmagnetised plasmas. This theory has only recently been extended to 
magnetised plasmas by Rowe (1991), who derived a general dispersion relation for 
electromagnetic surface waves propagating on a sharp plasma-vacuum interface. 
This new theory enables both unmagnetised and magnetised plasmas to be treated 
in the same formal way. Previously, surface waves in magnetised plasmas were 
treated in a less formal way (e.g. Wallis 1982; Cramer and Donnelly 1983), in the 
sense that the results were not derived from a more general theory. Additional 
features of the new theory are that it is a natural extension of the plasma 
response theory used to describe bulk waves in a homogeneous plasma, it is a 
dynamic (electromagnetic) analogue of the method of images used extensively to 
solve electrostatic problems, and the general dispersion relation is written in a 
more compact form than other less general results (e.g. Wallis 1982). 

In view of the important contribution of this theory to the literature on surface 
waves in plasmas and electromagnetic theory in general, as well as the fact that it 
is entirely new in the context of magnetised plasmas, it is important to consider 
how this general theory may be applied to surface waves in a magnetised plasma 
in practice. In this paper we address this issue by applying the theory to a cold 
magnetised plasma, and by illustrating how the theory can be used to rederive an 
established result. In particular we show how the dispersion relation of Cramer 
and Donnelly (1983) is reproduced in the low frequency (w «: 0e, wpe ) limit of an 
electron-ion plasma. This is an important example as these low frequency waves 
(sometimes known as Alfven surface waves) are likely to occur in laboratory and 
astrophysical plasmas of interest, and have been invoked in theories attempting 
to explain phenomena such as the heating of the solar corona (e.g. Gordon and 
Hollweg 1983; Assis and Busnardo-Neto 1987). 

A significant difference between the calculation of Cramer and Donnelly (1983) 
and that presented herein (apart from the different theories used) is that they 
have made the assumption that the plasma is infinitely conducting (an idealised 
situation), whereas here the plasma is strictly assumed to have finite conductivity. 
These different assumptions lead to different interpretations of the wave fields 
associated with the surface waves. In comparing the two calculations it is thus 
also important to consider how the transition to infinite conductivity may be 
achieved in the context of this general theory. 

This paper is structured as follows. In Section 2 the relevant bulk wave theory 
of plasmas is briefly discussed and we review the general theory of Rowe (1991) 
for surface waves, summarising the important results. In Section 3 the formalism 
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of the surface wave theory is further developed. In particular, the method of 
evaluation of the dispersion relation is considered in general, as is the formal 
approach to calculating the wave fields associated with surface waves. These 
extensions were not dealt with by Rowe (1991). In Section 4 the general theory 
is applied to a cold magnetised plasma and some general results which have not 
previously been presented in the literature are given. These results are used 
in Section 5 when we treat the low frequency limit and derive the dispersion 
relation of Cramer and Donnelly (1983). Section 6 considers the transition to 
infinite conductivity. 

2. Review of the General Theory 

It is convenient to summarise the main results of the surface wave theory 
developed by Rowe (1991). To do this it is also useful to briefly discuss some 
relevant results of the .standard bulk wave theory, for which we shall follow closely 
the notation of Melrose (1986). The definitions presented herein are required 
throughout this paper. 

(aJ Bulk Wave Theory 

The wave equation for bulk waves in a homogeneous plasma can be written 
in the general form 

[n2(~~ - 6) + 6]E(w,k) = -iC.t:2
)J(w,k), (1) 

where E(w, k) is the Fourier transformed electric field of the wave with frequency 
wand wavevector k, n = ck/w is the refractive index, ~ = k/k is the unit 
vector in the direction of propagation and 6 is the unit matrix. In the absence 
of extraneous source terms the Fourier transformed current density J(w, k) is 
identified as the induced current density 

Jind(W, k) = u(w, k)E(w, k), (2) 

where the conductivity tensor u (w, k) completely describes the linear electromagnetic 
response of the plasma. In this case the wave equation is known as the homogeneous 
wave equation (no source terms), and can be written as 

A(w, k)E(w, k) = 0, (3) 

where the response tensor A(w, k) is given by 

A(w, k) = n2(~~ - 6) + K(w, k) , (4) 

and the equivalent dielectric tensor K(w, k) is related to u(w, k) through 

i 
K(w, k) = 6 + -u(w, k) . 

w£o 
(5) 
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The homogeneous wave equation determines the solutions for E(w, k) which 
describe the normal bulk modes of the medium. The condition for non-trivial 
solutions is that the determinant of A(w, k) vanish, which we write as 

A(w,k) = o. (6) 

The zeros of (6) give the dispersion relations w = wM(k) of the bulk wave modes 
(labelled by M) in the plasma. 

(b) Surface Wave Theory 

For surface waves the situation is rather more complex. Consider a physical 
system consisting of a semi-infinite homogeneous plasma (x < 0) bounded by a 
vacuum (x> 0) with an infinitesimal (sharp) interface defined by the yz plane. A 
general dispersion relation for surface waves in such a system can be derived by 
appealing to the image plasma approach. This approach involves writing down a 
wave equation which describes a second system consisting of the physical plasma 
(x < 0) and an image plasma (x> 0). This system is known as the real-image 
plasma system. The wave equation for this system is 

A(w,k)E(w,k) = -i (f.£:2) Ms(w, k s) , (7) 

where the source term Ms(w,ks) represents a surface current at the interface 
between the physical and image plasmas and ks = (ky, kz) is the surface wavevector. 
At this point we stress that the image system surface current density Ms(w,ks), 
which is related to the discontinuity in the tangential components of the real 
and image plasma magnetic fields across the real-image system interface, is 
quite distinct from the real system surface current Js(w, k s) which is related to 
the discontinuity in the tangential components of the real plasma and vacuum 
magnetic fields across the physical system interface. This difference is emphasised 
by the fact that for surface waves Ms(w, k s) =I 0, even though Js(w, k s) = 0 in 
many cases of interest. Compare, for instance, equations (91) and (18). 

Note that equation (7) is the same as the homogeneous wave equation (3) 
except that it has a source term and the electric field E(w, k) now describes both 
the real and image plasma fields. The source term Ms(w, k s) is an essential feature 
of the image theory as applied to surface waves and is determined by imposing 
the relevant electromagnetic boundary conditions at the physical plasma-vacuum 
interface (see equation 18). In this way the problem of satisfying the boundary 
conditions of the physical system is replaced by the equivalent problem of solving 
an equation for Ms(w, ks), which in turn determines the nature of the image 
plasma fields and charges. Thus, as was pointed out in Section 1 and in Rowe 
(1991), the image approach is closely analogous to the method of images used in 
electrostatic theory. When Ms(w, k s) = 0 equation (7) is equivalent to (3) and 
describes only bulk wave modes which are decoupled from the surface. 

Equation (7) may be decomposed into two equations, using the fact that the 
x component of Ms(w, k s) is zero (as it is a surface vector). The first equation 
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determines the x component of the electric field in the real-image plasma system 
in terms of the surface component Es(w, k) 

Ex(w, k) = _ [Xn . A(w, k)ls 
Axx(w, k) . Es(w, k) , 

and the second determines Es(w,k) in terms of the source Ms(w,ks) 

rs(w,k)Es(w,k) = _i(Jt~2)Ms(w,ks), 

(8) 

(9) 

where the 2x2 matrix rs(w,k) is related to the response of the bulk plasma 
through 

r s(w, k) = As(w, k) _ [A(w, k) . Xnls[xn . A(w, k)ls 
Axx(w,k) 

(10) 

In the above equations, the subscript 8 refers to the 2 dimensional yz subspace 
of the surface, and Xn is the unit vector normal to the surface and pointing in 
the positive x direction. Hence, 

As(w,k) = (~yy Ayz) , 
zy Azz 

(11) 

and 

[A(w,k). xnls = (Ayx) , 
Azx 

[Xn . A(w, k)ls = (Axy, Axz) . (12) 

The surface component of the plasma electric field is written down from (9) in 
the convenient form 

Es(w,k) = -i(Jt~2)Qs(w,k)Ms(w,ks), 

where we introduce the surface field propagator 

Qs(w,k) = "YAw,k) 
rs(w,k) , 

(13) 

(14) 

with "Ys(w,k) and rs(w,k) the matrix of cofactors and the determinant ofrs(w,k) 
respectively. 

The x dependence of the surface electric field (which is required for the application 
of the boundary conditions) is found by inverting the Fourier transform in (13) 
over kx • We have 

Es(w, x, k s) = -iJtocnsQs(w, x, ks)Ms(w, k s ) , (15) 

where (:= denotes a definition) 

Qs(w, x, k s ) := :s f ~; eik"'XQs(w, k) (16) 
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is defined to be dimensionless and ns := cks/w is the surface refractive index 
with ks := Iksl. 

The integral in (16) can generally be evaluated using contour integration. For 
the physical plasma fields (x < 0) the contour must be closed in the lower half 
of the complex kx plane, while for the image fields (x > 0) the contour must 
be closed in the upper half plane. This ensures that the contribution from the 
semi-circle of the contour vanishes in each case, and that the integral can be 
written as a sum of residues of the poles in the integrand. Noting that 

A(w,k) 
rs(w,k) = Axx(w,k) , (17) 

the poles of the surface field propagator Qs(w, k) are immediately identified 
with the zeros of equation (6), except in this context solutions of the form 
kx = kxM(W, k s ) are sought. In this sense the total electric field of the surface 
wave is said to be determined by the sum of contributions from each of the bulk 
wave modes of the plasma. 

Only the poles in the lower half of the complex plane generally contribute to 
the physical plasma fields (while poles in the upper half plane contribute to the 
image plasma fields) because of the way in which the contour of integration is 
closed. As a result, the wave fields spatially decay into the physical (and image) 
plasma, which is consistent with the definition of a surface wave. It is stressed 
that (15) applies only to the real plasma fields (x < 0) or the image plasma 
fields (x> 0). The vacuum fields of the physical system take the standard form 
as in Rowe (1991), and we will not reproduce them here. 

Applying the boundary conditions (in the physical plasma-vacuum system) of 
continuity of the surface electric and magnetic fields at x = 0 yields an equation 
for Ms(w, ks ) of the form 

Zs(w, ks)Ms(w, k s ) = 0, (18) 

where the 2x2 matrix Zs(w, k s ) may be regarded as the response tensor of the 
plasma-vacuum system. The response tensor is given explicitly by 

Zs(w,ks) = J 2~~/w,k)Qs(w,k), (19) 

where 

--:= 1m --e '" J dr x 1· J dr x ik x 
27r x->o- 27r 

(20) 

and rx := kx/ks. The kernel matrix As(w, k) is related to the bulk plasma 
response through 

A ( k) V( V )A V [xn · A(w,k)]s 
s w, =rsrs+rx rx-rx u-rxrs Axx(w,k) , (21) 

where rs := ks/ks and r~ := k~/ks are the dimensionless surface wavevector and 
vacuum wavenumber respectively. The vacuum wavenumber is given in terms of 
the surface refractive index ns by 

v Jl- n; rx= --2-' 
ns 

(22) 
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where the sign of the square root is chosen so that 1m r~ > 0 and the wave fields 
decay into the vacuum (x> 0). 

Thivial solutions to (18) correspond to bulk wave modes which are not coupled 
to the surface while the non-trivial solutions correspond to surface waves. The 
condition for non-trivial solutions is in analogy to (6) 

Zs(W, k s) = 0, (23) 

where Zs(w,ks) is the determinant of Zs(w,ks), and the zeros of this equation 
yield the surface mode dispersion relations w = ws(ks). 

3. Extension of Formalism 

It is useful to further develop the formalism of the general theory of surface 
waves given by Rowe (1991) and reviewed in Section 2. These extensions are 
needed for Sections 5 and 6. 

(a) Evaluation of the Dispersion Relation 

In order to determine the dispersion retation for specific surface wave modes 
one needs to evaluate the response tensor of the plasma-vacuum system. In 
general, as was the case for the integral in (16), the response tensor Zs(w,ks) can 
be evaluated via contour integration. The result may thus be written as a sum 

Zs(w, k s ) = L ZsM(W, k s) , 
M 

(24) 

over all contributions (labelled with M) corresponding to the poles rx = rM (or 
kx = kM) of the integrand (note that we now drop the subscript x from rxM and 
kxM for brevity). The poles are identified as those of the surface field propagator 
Qs(w, k), which we discussed in the previous section [the kernel matrix 4s(w, k) 
generally has no poles of its own], and the contributions ZsM(W, ks ) regarded as 
contributions due to the bulk modes of the plasma. As was the case when we 
considered the x dependence of the physical plasma electric fields, the contour 
of integration must be closed in the lower half of the complex plane and only 
modes which spatially decay into the physical plasma (poles with 1m rM < 0) 
contribute to the response of the system. 

In identifying the contributions it is useful to adopt the convention 

ZsM(w,ks) := 4 sM(W, ks)QsM(W, k s ) 

with 
4 sM(W, ks ) := 4s(w, kM, ks ) , 

QsM(W, k s ) := -i lim [(rx - rM )Qs(w, k)]. 
r3l'~rM 

(25) 

(26) 

(27) 

The dimensionless matrices QsM(W, ks ) are then related to the inverse Fourier 
transform of Qs(w, k) which appeared in (16) by 

Qs(w, x, k s ) = L eikMXQsM(W, k s ) , 

M 

(28) 
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which indicates that the definition of (27) is a natural one. 
For a magnetised plasma (and anisotropic media in general) the matrices 

QsM (W, k s) have the useful property 

QsM(W, k s ) == 0, (29) 

that is, their determinants vanish identically. This is related to the fact that the 
bulk wave modes are distinct (non-degenerate), that is, r M i= r N for M i= N, 
and is proven formally in the Appendix. An immediate consequence of (29) is 
that the determinants ZsM(W, k s) == 0, and the dispersion relation (23) may be 
written in the simplified form (Tr[] denotes trace) 

Zs(W, k s) = L Tr[ZsM(W, ks)CsN(W, k s)] = 0, (30) 
M<N 

where M, N = 1,2,3, ... label the contributing bulk modes and (sN(W, k s) is the 
matrix of cofactors of ZsN(W, k s). This is derived from the more general result 

Det[ ~Ai] = ~Det[Ai] + ~Tr[Aiaj], 
• • '<3 

(31) 

where Ai is a 2x2 matrix and ai is its matrix of cofactors. 
It is noted here that (29) is not satisfied for an isotropic plasma due to the 

degeneracy of the transverse bulk wave mode. In this case a different simplification 
to (30) applies as discussed by Rowe (1991). 

(b) Determination of the Wave Fields 

In determining the field properties of the surface waves we assume that we can 
ignore the antihermitian part of the response tensor Zs(w, k s ). This corresponds 
to the assumption that A(w, k) is hermitian in bulk wave theory. Implicit in 
this approach is that the surface waves are weakly damped (-y« ws , where 'Y is 
the damping rate of the waves) as it is the antihermitian part which determines 
the dissipative part of the response of the system. 

Consider equation (18). Formally, one can write down a solution for Ms(w,ks) 
in the form 

Ms(w, k s ) := Ms (ks)ms (ks)2'm5(w - ws(ks)), (32) 

where Ms(ks) is the amplitude of the field and ms(ks) is a unimodular vector 
(* denotes complex conjugation) 

ms(ks) . m:(ks) = 1. (33) 

Negative frequency solutions are included in the definition (32) through the 
convention ws( -ks) = -ws(ks) which, together with the conditions M:(ks) = 
Ms( -ks) and m:(ks) = ms( -ks), ensures that the reality condition on the 
Fourier transform is satisfied. The vector ms (ks ) can be constructed by noting 
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that it must be proportional to both columns of Cs(ws(ks), ks), the matrix of 
cofactors of Zs(ws(ks), ks). This is expressed in a formal sense by the equation 

Cs(ws(ks), ks) = Tr[Cs(ws(ks), ks)]ms(ks)m:(ks) . (34) 

The surface electric field of the wave in the physical plasma (x < 0) can be 
written down from (15) with (28) in the form 

where 

Es(w, x, ks) = L eikMXEsM(W, ks) , 
M 

EsM(W, ks) = -iJLoCnsQsM(w, ks)Ms(w, ks) 

(35) 

(36) 

is the electric field of mode M in the plasma at the surface (x = 0-). Using 
(32) we define 

EsM(w, ks) := EsM(ks)esM(ks)27r8(w - ws(ks)), (37) 

with 
EsM(ks)esM(ks) = -iJLocnsMs(ks)QsM (ws (ks), ks)ms(ks) , (38) 

and where for each mode EsM(ks) is the amplitude of the field (at x = 0-) and 
esM(ks) is the unimodular surface-polarisation vector. The conditions for reality 
are analogous to those for Ms(w, ks) except that from (35) we see that we also 
require the condition kM(ws(ks), ks) = -kM(Ws( -ks), -ks). 

In principle, equation (38) can be used to determine esM(ks) given ms(ks). 
We can calculate esM(ks) in an alternative and more direct way by noting that 
(29) implies that it must be proportional to both columns of QsM(ws(ks), ks). 
In analogy to (34) this may be written as 

QsM(ws(ks), ks) = Tr[QsM (ws (ks), ks)]esM(ks)e:M(ks) . (39) 

We may then identify from (38) the field amplitude 

EsM(ks) = -iJLocnsMs(ks)Tr[QsM (ws (ks), ks)]e:M(ks) . ms(ks)· (40) 

This expression may be used to calculate the ratio of the amplitudes of any two 
given modes M and N 

EsM(ks) _ Tr[QsM(ws(ks), ks)]e:M(ks) . ms(ks) 
EsN(ks) - Tr[QsN(ws(ks), ks)]e:N(ks) . ms(ks) . 

(41) 

In this theory, the x component of the electric field is treated as a subsidiary 
field as is the magnetic field. It is, however, relevant to note the following results. 
The x component for a particular mode is (from equation 8) 

EXM(ks) = -EsM(ks) [xn . AM(Ws(ks), ks)]s 
AxxM(Ws(ks), ks) . esM(ks) , (42) 



64 G. W. Rowe 

where AM(W, k s ) and AxxM(W, k s ) are defined in analogy with (26). The magnetic 
field of each mode can then be determined from Faraday's law 

B(w, k) = k x E(w, k) 
w 

(43) 

and in particular the surface component may be written in analogy with (35), 
with 

BsM(W,ks) := BsM(ks)bs M(ks)2'7rC5(w - ws(ks)) , (44) 

and with amplitude BsM(ks) (at x = 0-) and unimodular vector bsM(ks). These 
results will be used in sections 5 and 6. 

Finally we note that the surface components of the vacuum electric and 
magnetic fields can be calculated directly from the above results using the fact 
that the surface components of the electric and magnetic fields were assumed 
to be continuous at the boundary. The x components are then obtained from 
k V • BV = 0 and the usual vacuum relation k V • EV = 0, where the superscript v 
indicates the vacuum fields and wavenumbers. 

4. Cold Magnetised Plasma 

We now consider some general results for a cold magnetised plasma. These 
results have not previously appeared in the literature and will be used in Section 5. 

Assuming that the ambient magnetic field Bo is directed along the z-axis (and 
is thus parallel to the surface) we have the well known dielectric tensor (Stix 
1962; Melrose 1986) 

where 

( 
Sew) 

K(w) = iD~W) 

-iD(w) 

Sew) 

o 

o ) o , 
pew) 

Sew) = 1-l: w~ (w2 ';;:';h, 

D(w) " €W~n 
~ ,? 

2 

pew) 1-"wp L...J 2' W 

-,,-, , 

(45) 

(46) 

and the sums are over all species of particle with plasma and cyclotron frequencies 

/n1 
wp=V~' 

n = IqlBo 
m 

(47) 

Here, € = q/lql is the sign of charge q of a given species of mass m and number 
density n. 

The elements of the surface field propagator Qs(w, k) corresponding to this 



General Dispersion Relation 65 

dielectric tensor may be written down from (14) in the form (cf. notation of 11) 

Qyy(w,k) 

Qyz(w,k) = 

Qzy(w,k) = 

(8 - n2)(p - n2r2) - n2r2(8 _ n2r2) s sy sx sy 
A(w,k) 

{[(8 - n~) - n~r;]ry - iDrx}n~rz 
A(w,k) 

{[(8 - n~) - n~r;]ry + iDrx}n~rz 
A(w,k) 

Qzz(w,k) (8 - n~r~)[(8 - n~) - n~r;] D2 
A(w,k) 

(48) 

where all quantities are as defined previously. The corresponding elements of the 
kernel matrix .ds(w,k) are from (21) 

~yy(w,k) 
(1 - n~r~)(8 - n~) - rxr~n~(8 - n~r~) + iDr~ryn~ 

= n~(8 - n~) 

~yz(w,k) 
[(8 - n~) - n~rxr~]ryrz 

- (8 - n~) 

_ [(8 - n~) - n~rxr~]ryrZ + iDr~rz 
- (8 - n~) 

~zy(w,k) 

~zz(w,k) = (1- n~r~)(8 - n~) - rxr~n~(8 - n~r~) 
n~(8 - n~) 

(49) 

According to Sections 2b and 3a we need to identify the poles of Qs(w, k), 
which we have already noted involves solving equation (6) for solutions of the 
form rx = rXM(w,ks). With this in mind, we write the determinant A(w,k) as 

A(w, k) = A(w, ks)ri - B(w, ks)ri + C(w, k s) , 

where rl = r; + r~, and the coefficients 

A(w, k s ) = 8n!, 

B(w,ks) = n~[(P + 8)(8 - n~r~) - D2], 

C(w, k s ) = P[(8 - n~r~? - D2] , 

are independent of kx • It is then convenient to write 

A(w, k) = A(w, ks)(r; - r~)(r; - r:) , 

where the zeros r± (corresponding to M = ±) are given by 

2 B± VB2 -4AC 2 
r± = 2A -ry . 

(50) 

(51) 

(52) 

(53) 
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Equation (6) with (52) has four solutions for r:&, namely ±r+ and ±r_, where 
we may arbitrarily define r± so that 1m r± < o. Thus, in a cold magnetised plasma 
with Bo parallel to the surface there are at most two bulk modes which may 
contribute to the surface wave fields and hence the response of the system. The 
other two poles are always in the upper half of the complex plane and so may only 
contribute to the image plasma fields. It is relevant to note that on the basis of this 
observation it is possible to show that the consistency conditions derived by Rowe 
(1991), and which apply to the image approach, are always satisfied for surface 
waves in a plasma with the dielectric tensor as given in (45). This vindicates 
the use of the general theory of surface waves for cold magnetised plasmas. 

Finally we note that the general expressions for the matrix elements and 
the poles presented here are too complicated to enable us to derive a specific 
dispersion relation without first applying some approximation. In the following 
section we treat such a specific case. 

5. Low Frequency Waves 

(a) Approximate Dielectric Tensor 

The general results of the previous section may be simplified considerably 
by considering low frequency waves in an electron-ion plasma. Specifically, we 
consider frequencies well below the electron cyclotron and plasma frequencies 
(w ~ fle, wpe). We also make the reasonable assumption that the mass density 
of electrons is much smaller than that of the ions (neme ~ nimi), which may 
be written in the convenient form 

f.l:= fldfle ~ 1 (54) 

using charge neutrality (nelqel = nilqil), and we assume that the Alfven refractive 
index nA := clvA (where VA is the Alfven velocity) satisfies 

nA ~ 1. (55) 

Both of these assumptions have wide ranging validity, with f.l < 10-3 and nA > 100 
typical of most plasmas of interest (such as the solar corona). 

The dielectric tensor elements of the previous section (equation 45) then 
simplify to 

2 
nA 

S ~ (1- f2)' 

2 
D ~ _ nAf 

(1 - f2)' 

2 
p~_ nA 

f.lf2 ' 
(56) 

where f := W Ifli is the normalised frequency and we have retained only dominant 
terms in both f.l and nA. The bulk wave modes which propagate in a plasma with 
this dielectric tensor are well known. They are the fast magneto-sound (FMS) 
and Alfven (A) modes, also known as the compressional and shear Alfven modes 
respectively. Note also that from the form of P we can deduce that (54) amounts 
to the assumption that the plasma is highly conducting. This may be seen from 
the fact that f.l ~ 1 implies that IFI is very large, which in turn implies that 
the zz element of the conductivity tensor u(w, k) is large in magnitude. This is 
distinct from the infinite conductivity case f.l == 0, which we consider in Section 6. 
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(b) Simplification of Poles 

Before we can approximate the general forms of Qs(w, k) and As(w, k) obtained 
in Section 4 we must first consider the approximate forms of the poles defined 
by (53). Retaining only dominant terms in It (noting that P ~ 8, D for f ¢ 1) 
we may identify 

2 P(S - n;r;) 
r+ :::::: 2 

8ns 

( 8-n2 ) D2 r:":::::: n; s - ') , ~ ? ,), , (57) 

assuming (8 - n~r;) ¢ 0, i.e. that the frequency of the wave is far from the 
generalised Alfven resonance frequency (Cramer and Donnelly 1992) 

w2 = v~k;/(l + v~k;/n;). (58) 

Note that these approximations are in fact still valid for f:::::: 1 even though 8 
and D may then be comparable in size with P. 

The two modes here labelled simply + and - have been given the generic 
names short wavelength or quasi-electrostatic (QEW) and magnetohydrodynamic 
(MHD) modes respectively by Cramer and Donnelly (1992). In the very low 
frequency limit (f « 1) the latter may be identified more specifically as the FMS 
mode as then D:::::: 0 and from (57) 

r:..::::::(s-n;) 
n2 ' s 

(59) 

which corresponds to w2(k) = v~k2 (where k2 = k~ + k:"), i.e. the dispersion 
relation for FMS bulk waves. The + mode is more tightly bound to the surface 
of the plasma than is the - mode as indicated by the fact that Ir + I ~ Ir _I· 
The smaller skin depth as seen by the + mode is a consequence of the high 
conductivity of the plasma. In the infinite conductivity case, considered latter, 
this leads to the presence of a surface current. 

(c) Response Tensor 

Having simplified the poles of the surface field propagator we now evaluate 
the response tensor of the plasma-vacuum system according to Section 3a. Note 
that in general the contributions (as defined by equation 25) may be expanded in 
powers of ..fii and that the approximations of (56) and (57) are valid to O(..fii). 
In this paper, however, only the zeroth order terms 0(1) will be retained. This 
corresponds to calculating the zeroth order dispersion relation [the first order 
correction may be subsequently obtained by retaining the O(..fii) terms). In the 
following it proves useful to introduce the notation F = ItP and r + = ..fiir + so 
that all It dependence is explicit. 

For the - mode we have the surface field propagator (from equations 27 and 
28) 

iF(S - ns + 0(1t) 2) (1 0) 
Qs-(w,ks) = ~nn;r_r~ 0 0 (60) 
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and the kernel matrix (from equations 26 and 49) 

(
D..yy_ 

As-(w, k s ) = D..zy- D..yZ-) + O(f-t), 
D..zz-

(61) 

where in view of the form of Qs-(w,ks) we need only identify the elements 

(1 - n;r;)(8 - n;) - r _r~n;(8 - n;r;) + iDr~ryn; 
n;(8 - n;) 

D..yy_ 

D.. [(8 - n;) - n;r _r~]ryrZ + iDr~rz 
zy- (8 - n;) 

in writing down the result 

iF(8-n;) (D.. yy_ 0) +O(f-t). 
Zs- (w, k s) = 28n!r _ f~ D..zy- 0 

For the + mode the corresponding expansions are best written in the form 

Qs+(w,ks) 

ffi 

( 
4 2 2 iF nsryrz 

2 4-3 2 2 2 28 nsr + -ns(8 - nsrz)ryrz 

-n;(8-n;r;)ryrz ) +O(ffi), 
2 2)2 (8 - nsrz 

ffiAs+(w, k s) ~ _ f +r~ ((8 -n;r;) 
In 2) ns 2 nSryrz 

2 
nSryrz ) 

(8 _ n;r;) + O( ffi) , 

and give 

~ x 'Frv ( 0 
Zs+(W, k s) = 28n!f~ n;ryrz -(8 ~ n;r;)) + O(ffi)· 

(62) 

(63) 

(64) 

(65) 

(66) 

We note that both modes give a finite contribution of 0(1) to the total response 
tensor of the system, and that the determinants Qs±(w, k s) [and therefore 
Zs±(w, k s )] are identically zero to lowest order as they must be to be consistent 
with (29). 

(d) Dispersion Relation 

The determinant of the response tensor is, according to (30) and using (57) 
to eliminate f + , 

(8 - ns rx D.._ 2) v ] 

Zs(w, k s) [4n!(8 _ n;r;)r _ yy (67) 

rV 
4n6 (8 _ xn2r2 )r [(8 - n;)(1 - n;r;) - r~r _n;(8 - n;r;) + iDn2rvr 1 

s sz- sxY' 
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and the dispersion relation Zs(w,ks) = 0 becomes 

(S - n~)(1 - n~r;) - r~r _n~(S - n~r;) + iDn~r~ry = O. (68) 

Up to this point displacement current effects have been retained through the use 
of the exact expression for the vacuum wavenumber r~ as in (22). Noting that a 
solution of (68) will satisfy ns rv nA (»1 by equation 55) we may ignore these 
effects in the first instance by taking r~ = +i (and n~r~ » 1) in (68). Then the 
dispersion relation reduces to 

(S - n~)r; + Dry + ir_(S - n~r;) = 0, (69) 

which can be solved for analytic solutions to n~. After further manipulation one 
obtains the positive frequency solutions 

f = alrzl[(a2r~r; + 2 - r;)1/2 + arylrzl] , (70) 

where we have defined the dimensionless parameter a := vAks /0+ Equation (70) 
is the solution of Cramer and Donnelly (1983), apart from notational differences, 
and is discussed in detail therein. 

(e) Wave Fields 

The electric fields of the two modes in the plasma may be determined according 
to Section 3b. As was pointed out, the surface-polarisation vectors may be 
identified directly from the columns of Qs±(w, k s) as given in (60) and (64). 
Thus, we have to 0(1) 

es_(ks) = (1,0) = y, 

es+(ks) 
(-n~ryrZ' (S - n~r;)) 

J(S - n2r2)2 + n4r2r2 ' s z s y z 

(71) 

where y is the. unit vector in the positive y direction and it is understood that 
these expressions are evaluated at w = ws(ks). The ratio of the amplitudes of the 
two modes may then be determined from (41), which involves writing down a 
solution for the vector Ms(w, k s), or alternatively may be determined by writing 

As+(w, ks)Es+(w, k s) + As-(w,ks)Es-(w,ks) = 0, (72) 

using (18) with (24), (25) and (36). Using (37) we write this in the form 

Es+(ks)As+(ws(ks), ks)es+(ks) + Es-(ks)As-(ws(ks), ks)es_(ks) = 0, (73) 

and noting that the y component of this equation is identically zero [to 0(1)], 
we take the z component to obtain the ratio of the amplitudes 

Es-(ks) = _ [~. As+(ws(ks), k s) . es+(ks)] , 
Es+(ks) z· As-(ws(ks),ks)' es_(ks) 

(74) 



70 G. W. Rowe 

where z is the unit vector in the positive z direction. Evaluating this expression 
using the results of (61), (65) and (71) we find 

Es-(ks) . 
Es+(ks) 

r+r~S 

D..zy- V (S - n~r~)2 + n!r~r~ , 
(75) 

where we again note that the right side is to be evaluated at w = ws(ks ) and 
where D..zy- as given by (62) may be simplified to D..zy- = r~(r _ - r~)rz/ry. 

The corresponding results for the magnetic fields of the two modes are to 0(1) 

bs-(ks) = (-n;ryrz + iDrz/r _, (S - n;r;) - iDry/r _) 

V (Sry - iD /r _)2 + (S - n~)2r~ 

bs+(ks) (1,0) = y, (76) 

with the ratio of the magnetic field amplitudes given by 

Bs-(ks ) 

Bs+(ks) 

r _ryV(Sry - iD/r _)2 + (S - n~)2r~ 
(r~ - r _)(S - n;)rz 

(77) 

Equation (75) indicates that in the high conductivity limit (54) the surface 
component of the electric field of the - mode dominates that of the + mode 
[as Ir +1 rv 0(1/ JIL)]' and the surface electric field is thus predominantly in the 
y direction. In the case of the magnetic fields, however, (77) indicates that both 
modes are of comparable amplitude, and it is this which ensures the continuity of the 
surface magnetic field across the interface, as was assumed in the derivation of (18). 

It is important to note that as the zeroth order dispersion relation (68) is 
independent of J.L it may also be derived by replacing the inequality of (54) 
with the equality J.L == O. This corresponds to assuming that the plasma is 
infinitely conducting (rather than just highly conducting), as then IFI == 00 in 
(56), and is equivalent to the assumption used by Cramer and Donnelly (1983) 
that the electron mass can be neglected (me == 0). We stress that this is only an 
idealisation which works for the 0(1) results but which is not valid when one is 
interested in the higher order terms. 

In the J.L == 0 case only the - mode fields contribute to the plasma fields while the 
+ mode fields are effectively expelled from the plasma. This may be seen from the 
fact that when J.L == 0, r +, k+ == -ioo and the exponential factor eik+x associated 
with the + mode wave fields vanishes for all x :::; 0-. In physical terms, the 
penetration depth of the plasma as seen by the + mode becomes vanishingly small. 

The removal of the + Illode electric field from the plasma means that in the 
infinite conductivity case the z component of the electric field vanishes (see equation 
71). The removal of the + mode magnetic field from the plasma gives rise to a 
discontinuity in the y component of the magnetic field across the surface layer, as can 
be seen from the fact that b s+ (ks ) for the high conductivity case was directed in the 
y direction. This discontinuity is associated with the excitation of a surface current 
along the z axis. These observations have been made by Cramer and Donnelly 
(1983) in their discussion of the plasma fields in the infinite conductivity case. 
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The theory developed by Rowe (1991) and summarised in Section 2 of this 
paper is inappropriate in the idealised infinite conductivity case as the surface 
magnetic field was assumed to be continuous from the outset. This condition 
may, however, be relaxed and it is of some formal interest to consider how the 
transition to infinite conductivity may be effected in this general theory. For 
completeness, this is considered in the following section. 

6. Transition to Infinite Conductivity 

We begin this discussion by considering the ongm of the surface current 
which appears in the infinite conductivity case. Consider the induced current in 
the plasma which is given by (2). Using (8) to eliminate Ex(w, k) the surface 
component may be written in the form 

where 

Jsind(W,k) = r~(w,k)Es(w,k), 

r~(w,k) = O"s(w,k) _ [O"(w,k) ·xnls[xn .A(w,k)ls 
Axx(w,k) 

(78) 

(79) 

is a 2x2 matrix in analogy with rs(w,k) of Section 2. Inverting the Fourier 
transform of (78) over kx as in (15) and (28) we have (for x < 0) 

Jsind(W,x,ks) = ~:::>ikMXr~M(W,ks)EsM(W,ks), (80) 
M 

where r~M(W, k s) is defined in analogy with (26) and EsM(w, k s) is to be 
interpreted as in (37). We will only be interested in the + mode contribution 
to the current, which may be written as (using equation 37) 

Jsind+(W, x, k s) = Jsind+(x, ks)2m5(w - ws(ks)) , 

where 
Jsind+(x,ks) = Es+(ks)eik+xr~+(ws(ks),ks)es+(ks). 

For the conductivity tensor corresponding to K(w) of Section 4 we have 

r~(w, k) = iwt:o ((1 -S) + iD(n~rxry - iD) (S - n~) 
o 

iDn;rxrz ) 
(S - n~) , 

-P 

so that in the high conductivity limit (retaining dominant terms in f.L only) 

·D 2 

( 

't nsr+ry 
r~+(w,ks) ~ iwt:o (S ~ n~) 

iDn~r+rz ) 
(S-n;) . 

1-P 

Using (71) to identify es+(ks) we obtain 

Jsind+(x,ks) = , 
iwt:oEs+(ks)eik+x (iDn~r +rz ) 

V(S - n;r~)2 + n~r~r~ -P(S - n;r;) 

(81) 

(82) 

(83) 

(84) 

(85) 
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which can be written in terms of the - mode amplitude Es-(ks) using (57) and 
(75) 

Jsind+(x,ks) = _(cocn;~zy- ) Es_(ks)ik+eik+x (o(~)) . (86) 

As Ik+1 ",O(I/.jJi), the induced current associated with the + mode is large 
and is confined to the edge of the plasma. Specifically, the skin depth of 
the plasma as seen by the + mode is ds+ = 1/lk+1 '" O(.jJi). In the infinite 
conductivity case f.L == 0, k+ == -ioo as noted in the previous section and we 
reinterpret ik+eik+x as 8(x), noting x::; O. The current then becomes 

J ( ) ( cocns.t..zy-) A 

sind+ x, ks = - r~ Es_(ks)8(x)z, (87) 

and we can reinterpret (81) as 

Jsind+(W,x,ks) = J sext (w,ks)8(x) , (88) 

where 
Jsext(W, ks) = Jsext(ks)z21r8(w - ws(ks)) (89) 

and 

(k ) ( cocns.t..ZY-) ( 
Jsext s = - r~ Es- k s). (90) 

The physical interpretation of (88) is that the induced bulk current due to the 
+ mode electric field has now become an extraneous surface current density 
Jsext(w, ks), corresponding to a vanishing skin depth ds+ == O. 

Let us now consider the necessary generalisation of (18) to treat the infinite 
conductivity case. In the presence of the surface current Jsext(w, ks) we must 
replace our wave equation (18) with 

(irV) 
Zs(w, ks)Ms(w, ks) = - n~ Jsext(w, k s ), (91) 

that is, we add the extraneous surface current as a source term. This comes 
from applying the boundary condition on the surface components of the physical 
system magnetic fields, allowing for the existence of a surface current. 

In the infinite conductivity case the pole r + == -ioo formally lies outside our 
contour of integration (as the semi-circle can never be large enough to enclose 
the pole) and only the - mode contributes to the response of the system, in line 
with the discussion at the end of Section 5e. We can thus write (91) explicitly 
in terms of the electric field Es- (w, k s ) in the plasma: 

as_(w,ks)Es-(w,ks) = -(f.L::~)Jsext(w,ks). (92) 
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Considering the expressions for the electric field surface polarisation vector of 
the - mode and the surface current from the + mode (equations 71 and 89) we 
obtain 

Es-(ks)4s-(ws(ks),ks) . Y = - (JL:~)Jsext(ks)Z. (93) 

The y component of this equation gives .6.yy_(ws (ks ), ks ) = 0 and the z component 
gives 

Es-(ks) = _ (JLocr~) Jsext(ks) 
ns .6.zy- (ws(ks), k s) , 

(94) 

which we note are entirely consistent with the surface wave dispersion relation 
(68) and the surface current given by (90) respectively, as they must be. We 
have now seen how the infinite conductivity case may be obtained in the context 
of the general surface wave theory. 

7. Concluding Remarks 

The main aim of this paper has been to show how the general dispersion 
relation of Rowe (1991) for surface waves at a sharp plasma-vacuum interface 
may be applied to magnetised plasmas in practice. As pointed out in Section 1, 
the dispersion relation of Cramer and Donnelly (1983) was chosen for this purpose 
primarily because low frequency surface waves of this type are of importance 
in applications to both space and laboratory plasmas. It is straightforward to 
generalise the calculation presented herein to a thermal plasma and to calculate 
the Cherenkov (Landau and Transit Time Magnetic) damping of these waves. 
This has application to theories which deal with the heating of the solar corona. 
In the same way, the cyclotron damping (which becomes important near the 
ion-cyclotron frequency 0i) may also be calculated, and may be of importance to 
theories of heating of laboratory plasmas. Both of these calculations are currently 
under investigation. 
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Appendix 

According to the definitions (27) and (14) the surface field propagator evaluated 
for a particular bulk mode M of the plasma is 

QsM(w,ks) = -i lim [(rx _ rM)"Ys(W,k)] 
r., ..... rM rs(w,k) 

= -i lim [(rx_rM)Axx(w,khs(w,k)] 
r., ..... rM A(w, k) , (AI) 

where we have also made use of (17). Near non-degenerate poles we have by 
Taylor expansion 

8A(w,k) I (rx - rM) 
A(w, k) ~ 8rx r.,=rM 

(A2) 

so that (AI) becomes 

.Axx(w,khs(w, k) I . 
QsM(w,ks) = -~ 8A(w,k)/8rx r.,=rM 

(A3) 

The determinant of QsM(W, k s) is then 

Axx(w,k) ')'s(W,kM,ks) , ]
2 

QsM(w,ks) = - [8A(w,k)/8rx r.,=rM 
(A4) 

where ')'s(W,kM,ks) = det[')'s(w,kM,ks)). By definition, the matrix of cofactors 
"Ys(w,k) is related to rs(w,k) through 

rs(w,khs(w,k) = rs(w,k)c5 

which, taking the determinant of both sides, yields 

')'s(w,k) = rs(w,k) = A(w,k) 
Axx(w,k) . 

(A5) 

(A6) 

As a result, ')'s(w, kM, k s ) == 0 [as A(w, kM, k s) == 0 by definition of kM) and (29) 
immediately follows from (A4). 
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