Aust. J. Phys., 1992, 45, 127-30

Boson Bound States near a
Kerr-Newman Naked Singularity

Li Yuanjie

Department of Physics,
Huazhong University of Science & Technology,
430074 Wuhan, P.R. China.

Abstract

We discuss boson bound states near a Kerr-Newman (KN) naked singularity by means of
spectroscopic eigenvalue analysis. The results show that in the background of a KN naked
singularity, the self-conjugate extension operator of a boson Hamiltonian has and only has
discrete eigenvalues. The discrete eigenvalues exist in the interval (—u, ). Thus, we find that
the boson bound states may appear only for u # 0. Here y is the boson mass.

1. Introduction

Investigations of particle bound states about a black hole have been a significant
area of work in black hole physics. Much research has been done in this field; some
have discussed the problem of boson bound states by solving the Klein—-Gordon
equation (de Felic 1979; Adler and Pearson 1978; Zang and Shu 1982); others
have discussed fermion bound states using the same method (Brill and Cohen
1966; Soffel 1977; Xu and Xie 1980). We have also studied a similar problem
(Li and Zhang 1986). However, all these works do not touch upon the massive
boson bound states in the field of a naked singularity. In this paper we discuss
this case by means of spectroscopic eigenvalue analysis.

2. Hamiltonian Form
In the background of a KN black hole, the Klein-Gordon equation of a single

boson is (Liu 1987)
(ar A8, = S[(r® + %), + ady +1eQr]? — u2r? + — 8,(sin08p)
A sin @
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+ sin @

(8p + asind 8;)? — u2a® cos? O)q) =0. 1)

Separating variables in (1), we deduce the radial equation

d*w(r)

aZ {AW*r? + K) — [w(r® + a®) — am — eQr|?}0(r), ()

where Q and m are the charge and mass of the black hole, a is the angular
momentum per mass, while A =72 —2mr + a2+ Q? and du = dr/A. Equation
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(2) can be rewritten as a matrix equation in the canonical Hamiltonian form

HF = EF, 3)

H. H
F=<f1>, H=( 11 12>,
f2 \H21 Ha

where the matrix elements H;; are given by

with

Atd? )
Hy = — o + A*(am + eQr)

A* 2 2,.2 H
- ﬂ[(amﬁ—eQr) — A(pr* + K)] + 3

A4d2
Hipg = — o du? - A2(am+eQr)

- éj[(am +eQr)? — A(ur? + K)] - e ,
20 2

A*d? 2
Hy = W + A (am+eQr)

A 2 2,2 fd
+ 5-l(am +eQr)” — A + K)| + 7,

2u 2
——— — A% (am +eQr)

+ ?—:[(am +eQr)? — A(u*r? + K)] - g— .

Here A% =1/(a? +r?). For more details, we refer to the Appendix.
From (3) we get

24" _ 2F?
(-— M+E3u+p1(7‘)>f1—mf1, (4)
and
4
2
A+ K) - 2B am eQr)) . (5)

We make the transformation

dr'  a®+r?
- A (6)




Boson Bound States 129

when 7 —0, r’ =0 and r — 00, ' — 00, and let

2(r? + a?)?
e VAL 7
Po Wt E ()
Using equations (5)—(7), we can rewrite (4) as
L() = [0 (o 00) +pilfy = o f @
1) = T/ \P0 Ur’ D1 I—IJ«"‘E 1-

Now we introduce a theorem of self-conjugate differential operators (Naemark
1954).

Theorem: Let L(y) be a self-conjugate differential operator in the interval
(a,b), then

n

L) = 3 ()" ey, ©)

=0

if (1) L(y) is canonical at the end point a, (2) lim, ., P,(z) = B, and (3) for
any z approaching close to b, P;(z) > 0.

Thus, the spectrum of the self-conjugate extension of the operator L(z) is
definitely discrete in (—oo, B). According to this theorem, we can get spectroscopic
eigenvalues of the operator (8)

2E2

A=

which has to be discrete in the interval [—oo, 2u%/(u+ E)], or

2E? 2u?
-0 < < . 10
pv+E u+E (10)
Thus, we have
—-u<E<up (11)

where E can only take some discrete value.

3. Conclusions

The condition (11) shows that in the field of a naked singularity we can find
massive boson bound states, but we cannot find massless boson bound states.
This conclusion is different to de Felic’s (1979) result. The energy of the bound
states E has to satisfy the condition (11). It is found that the method of
spectroscopic eigenvalue analysis is more effective and simpler than solving the
equation. Specially, this method avoids some errors that arise from approximate
methods.
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Appendix
Let £ =7 and in=18;&, and then equation (2) becomes

d* _ 4 —2 ,
T AT*0:n+ 247 %(am + eQr)in

- [(am + eQr)? — A(u?r? + K)JE. (A1)
Taking the following transformation

fitfo _Bkh-F

= 2 "TTi e
then from (Al) we obtain
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