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We review some of the difficulties associated with understanding star formation, and discuss 
some numerical approaches. In particular we describe a method which seems to hold promise 
for future studies. 

1. Introduction 

Although stars can be approximated very satisfactorily by spherical models, it 
is clear from observations of star forming regions that the break-up of molecular 
gas to form proto-stars is a highly complex process that cannot be approximated 
simply. As a consequence, the theoretical picture of fragmentation, which is 
based on assuming fragmentation occurs in uniform, static, isothermal clouds, 
is too crude to provide a guide to the star formation process. The alternative 
is to simulate the fragmentation process numerically with the ultimate aim of 
evolving the gas to proto-stars. The difficulties involved with this procedure are 
discussed in this paper. We also discuss our proposed solution to this problem, 
together with a very preliminary calculation. 

2. Theory and Simulation 

The classical picture of fragmentation and star formation is su~marised by 
Fowler and Hoyle (1963). Fragmentation is supposed to begin in a uniform 
spherical cloud when the radius is larger than the Jeans length. For an infinite 
medium with plane-wave density perturbations of the form eiwtcos(kx) the 
resulting dispersion relation is 

w2 = "',/c2 k2 - 41rGp, (1) 

where c is the isothermal sound speed and 'Y is the adiabatic index. The same 
dispersion relation is obtained for a spherically symmetric disturbance of the 
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form r-1sin(kr) (Larson 1985). Clearly there is a critical wavenumber 
wavelength Ac = 271"/ kc which separates real and complex w: 

_ (7I""fc2 ) 1/2 
A - -

c Gp 

kc and 

(2) 

Taking the critical mass Me to be that interior to the first zero of r-1sin(kr) 
we obtain: 

Me = 8.53("fC2)3/2 
Gp p. (3) 

During isothermal collapse both Ac and Me decrease, allowing perturbations to 
grow independently. This may be expected to produce a cascade of less massive 
clouds, ceasing when the opacity of the gas prevents radiation escaping (Hoyle 
1953). Estimates of the cloud mass at this final stage are roughly comparable to 
a solar mass. Direct numerical simulations, however, show that this picture is 
naive. In particular, if a spherical cloud is followed as it collapses isothermally, 
or even with cooling, it produces a dense core with no sign of fragments forming. 
The reason for this disagreement with the theoretical prediction is that the Jeans 
model is concerned with perturbations growing in a static background. In a 
collapsing cloud the background is never static and the perturbations do not 
have time to grow. To find the wavenumber with the fastest growth rate we 
take dw/dk = 0, i.e. 

dw _ "fC2 k = 0 =} k = 0 . 
dk w 

(4) 

But k = 0 means that A -7 00. This means that the entire cloud (i.e. the largest 
length-scale in the problem) collapses on a time-scale which is shorter than that 
required for the fragments to separate out of the background. It appears that 
to get fragments the cloud of gas needs to be supported against overall collapse 
(a counter example to this may be the case of thermal instability, as studied by 
Murray and Lin 1989). 

If the initial cloud has some angular momentum it can form a disk, and there 
is then ample time for the fragments to form within this rotating disc. Hence it 
is appropriate to look at the stability of discs, even in the non-rotating limit. 
For an infinite non-rotating, self-gravitating disc with density perturbations of 
the form cos( kx) the dispersion relation shows that the maximum growth rate 
occurs for wavenumber 

k 7I"GCT 
max == --

c2 

where CT is the surface density of the disk. Thus there is a preferred length-scale 
for the fragmentation (e.g. Larson 1985). 

Toomre (1964) showed that the stability of a rotating disc is determined 
primarily by 

liC 

Q = 7I"GCT' 
(5) 
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where K, is the epicyclic frequency: 

[ ( dO )] 1/2 
K, = 20 W dW + 20 

Here wand 0 are the radial coordinate in the disc and the angular frequency, 
respectively. For Q < Qc ~ 0·55 we expect fragmentation. Numerical calculations 
of Maclaurin discs were performed by Monaghan and Lattanzio (1991; hereafter 
ML). For a Maclaurin disc, where 

and 

we find 

where 

(T = ~ [1 _ (!..-) 2] 1/2 
27rR2 R 

0= (3G7rM)1/2 
4R3 ' 

Q~ 
2(1/2 

[1 - (r / R)2F/2 ' 

R.TR 
(= GMJ..L· 

We chose T=70K, M=104 M 8 and R=12·6pc, so that (=0·073 and 
Q ~ 0·54 [1-( r / R)2j1/2. We thus expect fragmentation near the centre of an 
isothermal disc where Q < Q c ~ 0·55. On the other hand, if the disc is allowed 
to cool then ( decreases linearly with temperature, and the entire disc should 
fragment. These predictions are verified, rather dramatically, in Fig. 1. But these 
initial states are not realistic: they are near-equilibrium discs, with constant o. 
Although we seem to understand their behaviour, their relation to star formation 
is dubious. 

The evolution of clouds which are initially spherical and have constant density 
and rotation has been studied by Miyama et al. (1984) and others. The results 
here depend on the product of the two parameters: 

a = Ethermai , f3 = Erot . 

\ E grav \ \ E grav \ 

For af3 ~ 0·20 the cloud becomes an oblate spheroid, in approximate hydrostatic 
equilibrium (details depend on the interaction with the external medium). For 
0·13 ;:; af3 ;:; 0·20 the result is a flattened disc, which fragments if af3 ;:; 0 ·12. 
Although the details of these calculations have been questioned (e.g. Lattanzio 
and Henriksen 1988), there is general agreement with the overall picture (see 
also Stahler 1983; Hachisu and Eriguchi 1985; ML). 

A major restriction in these studies was the use of an isothermal equation 
of state. To study the effects of removing this, we have added cooling due to 
various molecules, as given by Hollenbach and McKee (1979). This algorithm, 
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Fig. 1. Particle positions for the evolution of an isothermal Maclaurin disc (above) and a 
cooling Maclaurin disc (opposite page). 

described in ML, allows for cooling by CO, CH, H20, HCI and H2 . Because of 
the disparate time-scales, the energy equation was solved implicitly (see ML for 
details). 

A case was run with Ot{3 = 0 ·141, both with an isothermal equation of state 
and with molecular cooling. In the former no fragmentation was seen, as expected 
(see ML). But in the latter a ring-mode instability developed, as shown in Fig. 2, 
which we associate with the instability of Goldreich and Lynden-Bell (1965). 
Although the calculations were terminated at this stage, we would expect the 
ring to fragment. Thus we see clearly that cooling can substantially alter the 
evolution of the cloud. 

But all of these models began with highly idealised states: spheres of constant 
density with solid-body rotation. Observations indicate that the interstellar 
medium is a highly disordered place, and we should not expect reality to be 
constrained by our simple models. 

A possible exception to this may be W49A, which exhibits a rotating ring 
of HII regions. This object is thus unusual (indeed, it is presently unique) in 
that it does display a high degree of symmetry. It is interesting to note that 
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Fig. 1. (Continued) 
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Fig. 2. Projected particle positions for the evolution of a smooth initial cloud (see ML for 
details). 
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Fig. 3. Projected particle positions for the evolution of a perturbed initial cloud (see ML for 
details). 
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relatively symmetric initial conditions can indeed produce such a system. ML 
showed that an initially spherical cloud, rotating with constant n and a field 
of random density perturbations (of standard deviation 14%) resulted in the 
configuration shown in Fig. 3. This does indeed look much like W 49A, and was 
considered in further detail in Keto et al. (1991). But this object appears to be 
unique, and cannot be taken as evidence for the universal applicability of such 
simple initial conditions. Indeed, the current challenge is to determine reliable 
(and accurate) initial states for studies of star formation. 

3. Initial States 

A substantial problem to be overcome is the specification of the original 
velocity field. Most previous studies have assumed solid-body rotation. Hunter 
(1970a, 1970b) has considered the restricted case where the velocity field is a 
linear function of the coordinates. (Solid-body rotation is only one example of 
this.) He found that the ratio of vorticity to angular momentum is of crucial 
importance. These quantities may appear in any ratio, although this is perhaps 
not obvious at first sight. The tendency has been, wherever possible, to interpret 
(projected) velocity fields as rotation, and this can give a false impression of the 
actual velocity field. The problem of inverting observations to a 3D velocity field 
is very difficult. To the extent that it is possible, it requires a full mathematical 
solution (e.g. Keto and Lattanzio 1989; Keto et al. 1991), and not an 'eyeball' 
plausibility argument. 

In view of these facts, we are forced to accept that the 'initial' velocity field 
is a crucial and largely unknown factor in any simulation. For this reason we 
have adopted the following approach. 

4. Simulating a GMC 

The only reliable way to study star formation is to look at the evolution of 
an 'entire' giant molecular cloud (GMC). Thus we may expect agglomeration 
and fragmentation to occur, and if the calculation is accurate, we should see 
the resulting star formation through whichever mechanism(s) nature chooses. We 
expect to see discs, and these should follow naturally from the simulation. 

We have the numerical tools to handle 3D hydrodynamics, self-gravity, heating 
and cooling. Magnetic fields are expected to play an important role, and we are 
currently working on an accurate way of including these in the simulation, but 
feel sure that much can be learnt even in their absence. 

A preliminary study of this kind was performed by Monaghan and Varnas 
(1988). They took an ensemble of ~ 50 spherical clouds, with different velocity 
dispersions. These calculations resulted in both fragmentaion and agglomeration, 
with entities of preferred masses being seen. However, the simulation did not 
include enough clouds to be reliable, and the cooling used was not appropriate for 
molecular clouds. In unpublished calculations, Monaghan then chose interesting 
mass concentrations from these simulations and removed them from the calculation. 
Preserving their density and velocity fields, their evolution was continued at 
higher resolution. This resulted in some fragmentation, the formation of some 
discs, and dispersal of some of the matter into an intercloud medium. This 
process was repeated, with another clump extracted for further study at even 
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higher resolution. In this way different 'generations' can be followed over many 
different length- and time-scales. 

Our aim is to improve this approach. We begin by giving our computational 
domain approximately periodic boundary conditions. Perfect periodicity is not 
required, but we do require that our box of gas knows that it is part of a larger 
structure-a GMC-and therefore does not immediately collapse to the centre. 
By imposing known amounts of vorticity and angular momentum we can study 
their effects on the resulting structures, and hence the subsequent star formation. 
Again, interesting clumps can be extracted for studies at higher resolution. 

A very preliminary simulation has been run, with a simple Kolmogorov velocity 
spectrum. The initial temperature was 70 K, arid we included molecular cooling 
but no heating. Fig. 4 shows 2D projections of the region near the centre of 
our box, where one interesting clump forms. We also see the development of a 
dense knot, which collides with the clump. This object is a prime candidate for 
further study at higher resolution. 

5. Conclusion 

Appropriate initial conditions are the most crucial unknown in numerical studies 
of star formation. Yet we have all the tools necessary for a direct simulation 
of star-forming environments. By varying the velocity field in such a region we 
hope to see the development of the overall structure of a GMC. By extracting 
distinct self-gravitating regions we can follow their evolution at higher resolution 
and on time-scales smaller than that of the entire GMC. Hence we can deduce 
the resulting initial mass function. Our expectation is that this will be largely 
independent of the initial velocity field, provided that the latter is consistent 
with the orbit of the GMC in the galactic potential. Time will tell. 
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