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Abstract 

The connected Hamiltonian moments (Hn)c of the one-dimensional s = ~ Heisenberg model 
with respect to the Neel state are calculated up to n = 17. Subsequent calculation of the 
Hamiltonian moments (Hn) allows the first nine iterations of the Lanczos diagonalisation to 
be determined analytically for arbitrary lattice size. 

1. Introduction 

Given the recent renewed interest in the Hamiltonian formalism of field theories, 
in particular the light-cone Hamiltonian approach (Pauli and Brodsky 1985a, 
1985b), it is timely to review and study methods of calculating energy eigenvalues 
for large systems. Traditionally the Lanczos method for tri-diagonalisation of 
matrices has been used extensively in the numerical diagonalisation of Hamiltonian 
systems with a large number of degrees of freedom (Lanczos 1950). The particular 
suitability of the Lanczos method for such problems is due to the fast convergence 
to the first few eigenvalues and only linear computer memory requirements. 
Typically, the lowest eigenvalues can be obtained precisely for basis sizes of the 
order 106 or more, depending on the character of the matrix being studied. 

In these numerical applications of the Lanczos method, the limitation of the 
size of the basis which can be handled is the storage of at least two vectors 
at each iteration. Once the storage requirement has been met any number of 
Lanczos iterations can in principle be carried out, thereby giving precise values 
for the desired eigenvalues. In some instances it might be desirable to sacrifice 
the accuracy of the eigenvalues one obtains from the Lanczos method for a gain 
in the number of degrees of freedom of the system under consideration. 

One can limit the number of Lanczos iterations (Le. the accuracy of the 
eigenvalues) and work in an arbitrarily large basis by applying the Lanczos 
method directly to the operator form of the Hamiltonian, thereby avoiding the 
Hamiltonian matrix representation altogether. This method has been used in 
both solid state (Mancinia and Mattis 1983, 1984, 1985) and field theory (Duncan 
and Roskies 1985; Duncan 1985; Choe et al. 1988) contexts. 

The Lanczos tri-diagonal matrix representation is constructed from the 
Hamiltonian by calculation of Hamiltonian moments, (Hn), with respect to 
some suitably chosen trial state. The major advantage of this approach is that 
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expressions for a sufficient number of moments may be calculated, thereby giving 
the first few Lanczos iterations analytically for arbitrary basis size. Also, it 
is quite possible that some insight may be gained by the analytic form of the 
truncated Lanczos tri-diagonal matrix. 

As a clear illustration of the method we present the application of the Lanczos 
approach in operator form to the one-dimensional s = ~ Heisenberg model for 
which exact results have been obtained for lattices with up to N = 28 sites 
(Medeiros and Cabrera 1991) and the infinite lattice energy density is known 
analytically. The bulk of the work involves the calculation of the connected 
Hamiltonian moments (Hn}c for this model; we have computed (Hn}c up to 
n = 17. These quantities may at some stage also prove useful when using the 
Heisenberg model as a test of similar analytical techniques. Expressions for 
(Hn), n::; 17, can be derived recursively from the connected moments which 
subsequently give the first nine Lanczos iterations with respect to the Neel state 
for arbitrarily large lattices. 

This paper is organised as follows. In Section 2 the analytic application of the 
Lanczos method is outlined. The Heisenberg model is introduced in Section 3 
together with the calculation of the Hamiltonian moments, (Hn), and the results 
obtained for the corresponding Lanczos iterations on various lattices are given 
in Section 4. 

2. The Lanczos Method 

To find the first few states of a Hamiltonian, H, using the Lanczos procedure 
one starts with a normalised state I V1), which is arbitrary up to the condition 
that it has a nonzero overlap with the true ground state. The Hamiltonian is 
cast into tri-diagonal form by the following construction: 

Hl v1} 

Hl v2} 

a1 I V1} +,61 I V2} , 

,611 V1} + a21 V2} + ,621 V3} , 

HI V3} = ,621 V2} + a31 V3} + ,631 V4} , etc., 

where the I Vi} are orthonormal and the ai and ,6i are thus given by 

ai = (Vi IHlvi), ,6i = (Vi+! I H I Vi) . 

In the basis {I Vi}}, H is tri-diagonal due to hermiticity; i.e. 

a1 ,61 

,61 a2 ,62 

H-tH 
,62 a3 ,63 

(1) 

(2) 

(3) 
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The remarkable feature of the Lanczos construction is that the eigenvalues of 
the upper left pxp submatrix of H rapidly converge to those of H-the lowest 
eigenvalues converging first. Hence, in order to find the lowest eigenvalues one 
need not complete the full construction of the tri-diagonal basis {I Vi)}' instead 
one can terminate the construction at a point where convergence in the required 
eigenvalues has been reached. 

In the application of the Lanczos procedure to matrix diagonalisations one 
usually stores the vectors I Vi) and I Vi-I) at the ith iteration and computes the 
corresponding values of ai and (3i-I. However, rather than realise the basis 
{I Vi)} one can compute the ai and (3i directly from Hamiltonian moments with 
respect to the state I VI). For example, the 2x2 submatrix of H (the second 
iteration) is given in terms of Hamiltonian moments as 

aI = (H), 

(31 

a2 

[(H2) _ (H)2j1/2, 

(H3) _ 2(H) (H2) + (H)3 
(H2) _ (H)2 

(4) 

where (Hn) == (vII Hn I VI). Therefore, in casting the Hamiltonian into tri-diagonal 
form, the limits on basis size associated with the construction of the basis {I Vi)} 
can be avoided by computing moments with respect to some trial state I VI). For 
well behaved Hamiltonians of finite systems the moments are given by analytic 
functions of the number of degrees of freedom. One can obtain expressions for 
the elements of the tri-diagonal representation of H which can then be computed 
for any number of degrees of freedom. Thus, calculating Hamiltonian moments 
up to a certain order on a small system yields the corresponding information for 
larger systems. 

In practice, since Hamiltonian moments are in general difficult to calculate 
beyond the lowest orders, one selects I VI) so that convergence is optimised. To 
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Fig.!. Convergence of the ground and first excited states for N = 16 with the Neel state as 
the trial state. The exact values of the ground and first excited states are shown as dashed 
lines. Hamiltonian moments were computed numerically. 
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obtain the lth Lanczos iteration one requires (Hn) up to n = 2l-1. Convergence 
can be further improved by combining the Lanczos method with a variational 
approach by choosing a trial state with adjustable parameters (Dagotto and 
Moreo 1985). 

In this paper we study the convergence properties of this method by applying 
it to the case of the one-dimensional Heisenberg antiferromagnetic spin chain for 
s =~. We sacrifice the accuracy of the spectrum of this model by restricting 
the size of the Lanczos submatrix to 9 x 9 and find upper bounds on the ground 
state and first excited state of systems whose matrix representation is too large 
to handle by conventional means. 
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Fig. 2. Convergence of the ground-state energy (N = 16) for various trial states used in the 
Lanczos procedure. The curves correspond to the trial states 1 <PI) = 1 i! i ! i ! i ! i ! i ! i ! i ! ) 
(Neel state), 1 <P2) = 1 iii i ! ! ! ! i 111 ! ! ! ! ) and 1 <P3) = 111111111 ! ! ! ! ! ! ! ! ). 
Hamiltonian moments were computed numerically. 

3. The Heisenberg Model 

The Hamiltonian for the Heisenberg model is defined on a chain of N spins as 

N 

H = L S (i)· S (i + 1) , (5) 
i=l 

where S (i) is the spin operator at the lattice site i and we assume periodic 
boundary conditions. In the infinite lattice limit the ground-state energy density 
Eo/ N is determined from the Bethe ansatz to be 

. Eo 1 hm - = -ln2 + - ~ -0·443147. 
N-+oo N 4 

(6) 

A suitable choice for the trial state with respect to which we compute Hamiltonian 
moments is the Neel state 

I ¢N{~el) == I 1 i 1 i 1 i ... ). (7) 



Hamiltonian Moments 721 

On a relatively small lattice one can generate large orders of (Hn) on a computer. 
As an illustration we have performed the computations to large order for N = 16 
and in Fig. 1 we present the results, using the Neel state as the trial state. Of 
course for N = 16 the actual Hamiltonian matrix can be diagonalised exactly 
since the basis size is only 65536. The importance of the choice of trial state is 
shown in Fig. 2 where various trial states have been used. 

For small orders (n;::; 4) expressions for (Hn) with respect to the Necl state 
can be derived by hand. One finds in general that (Hn) is simply a polynomial 
in the number of lattice sites. To evaluate the moments for larger orders we 
compute (Hn) for the Neel state directly on specific lattices (N > n). Rather 
than calculate the polynomial for (Hn) it is considerably easier to calculate the 
connected Hamiltonian moments (Hn)c which are related to the (Hn) by (Horn 
and Weinstein 1984) 

n-2 ( 1) (Hn)c = (Hn) _ L n - (HP+l)c(Hn-1-P) . 
p=o P 

(8) 

The connected moments are proportional to the volume 

(Hn)c == enN, (9) 

and so on a given lattice one is able to calculate all en up to n = N-1 (eN will 
suffer from boundary effects). 

Table 1. Connected moments of the Heisenberg model, (Hn)c == en N, up to n = 17 

n en n en n en 

1 1 7 105 13 13808933 -4 """8 --8--

2 1 8 1583 14 86136239 
4 16 --16--

3 1 9 85 15 1946437647 
4 2" - -----w 

4 1 10 -3313 16 48648668001 -8 ----a2 

5 3 11 75049 17 4956065233 -2 --4- --2 

6 21 12 1238205 -"8 -1-6-

We have in this manner calculated the connected Hamiltonian moments for 
the Heisenberg model up to n = 17; the values of en are given in Table 1. The 
corresponding expressions for the first few Hamiltonian moments with respect to 
the Neel state are 

(H) 

(H2) 

(H3) 

(H4) 

(H5 ) 

-iN, 

= (i)2(N2 + 4N) , 

- (i)3(N3 + 12N3 - 16N) , 

(i)4(N4 + 24N3 - 16N2 - 32N) , 

- (i)5(N5 + 40N4 + 80N3 - 800N2 + 1536N), 
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Fig. 3. Ground and first excited states from nine Lanczos iterations with respect to the 
Neel state using the (Hn) polynomials up to n = 17, for N = 32, N = 64 and N = 128. The 
dashed line in each case corresponds to the infinite lattice result for the ground-state energy. 
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(H6) = Cl)6(N) + 60N5 + 400N4 - 3360N3 + 9856N2 - 10752N} , 

(H7) = - (:If (N7 + 84N6 + 1120N5 - 7840N4 + 9856N3 + 71680N2 

- 215040N) , 

(HB) = (:l)B(NB + 112N7 + 2464N6 -11200N5 - 84224N4 + 1053696N3 

723 

- 4264960N2 + 6483968N) , (10) 

leading to the following analytic expressions for Q:i and f3i: 

Q:l(N) 

Q:2(N) 

Q:3(N) 

Q:4(N) 

f31(N) 

f32(N) 

f33(N) 

4. Results 

N 
4' 

N 
-4+ 1 , 

N 2 -l1N +32 

4(N - 3) 

3N5 - 81N4 + 871N3 - 4443N2 + 10498N - 9064 

4(3N3 - 36N2 + 151N - 226)(N - 3) 

~VN, 

= ~V2(N-3), 

1 V3N3 - 36N2 + 151N - 226 
= 2 N-3 

... etc. (11) 

Expressions for (Hn) up to n = 17 enable us to compute the first nine Lanczos 
iterations, with respect to the Neel state, for any lattice size N > 18. Of course, 
as N gets large the convergence properties become increasingly worse. However, 
one can still achieve reasonable accuracy for large lattices which are beyond 
any direct matrix diagonalisation (the number of basis states is 2N ). In Fig. 3 
we have plotted the convergence of the lowest two states for N = 32, N = 64 
and N = 128. For N ~ 32 the ground-state energy of the Heisenberg model is 
known to be very close to the infinite lattice result and hence one can use this 
fact as a guide to how close the ninth order Lanczos iteration is to the true 
result. For the lattices N = 32, 64 and 128 the ninth order Lanczos iteration is 
within about 2%, 6% and 11% respectively of the infinite lattice result. One 
would hope that this level of accuracy would persist for other physically relevant 
Hamiltonians cast into this form. 
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