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Abstract 

We consider atoms traversing a cavity filled with an optical field. When the atoms are well 
detuned from the optical resonance the output momentum distribution of the atoms is found 
to be a sensitive probe of the photon statistics of the light field. Near resonance spontaneous 
emission smears the diffractive peaks. We obtain a good fit to the experimental data of Gould 
et at. (1991). As the atoms pass through the optical field they impart a position-dependent 
phase shift to the field. By making a quadrature phase measurement on the optical field a 
position measurement of the atom is achieved. We show that it is possible to prepare the atom 
in a 'contractive state' which beats the standard quantum limit for position measurements. 

1. Introduction 

Recent advances in the cooling and trapping of atoms have led to a number 
of possible quantum measurements involving the interaction of atoms with the 
electromagnetic field. We shall consider the scattering of atoms from a standing 
wave light field. As an atom passes through the field, momentum exchanges occur 
between the light field and the atom in multiples of the photon momentum. If 
the atoms are sufficiently detuned so that spontaneous emission is negligible, the 
situation is analogous to the lossless diffraction grating in optics. The momentum 
distribution in the far field consists of several sharply defined diffractive peaks. 
For smaller atomic detunings, spontaneous emission becomes ·important and the 
diffractive peaks become smeared out. In a recent paper by Gould et al. (1991), 
the transition from t.he diffractive to the diffusive regime has been observed. 
We present the results of an analysis (Tan and Walls 1991) which provide an 
accurate fit to the results of Gould et al. (1991). 

In the far from resonance situation, when spontaneous emission can be neglected, 
the momentum distribution of the atoms in the far field depends on the photon 
statistics of the light from which they are scattered. We show that the atomic 
deflection may be used to give a quantum non-demolition (QND) measurement 
of the photon number of the field (Holland et al. 1991). An alternative scheme 
has been proposed whereby the photon number is determined via the phase shift 
imparted to the atom by the interaction with the light field (Brune et al. 1990). 
Using atoms as a probe to determine the statistical properties of a light field is 
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a new direction in the rapidly developing field of the mechanical effects of light 
on atoms. 

Recently several experiments demonstrating atomic interferometry have been 
reported (Carnal and Mlynek 1991; Keith et al. 1991; Kasevich and Chu 1991). 
A question of current interest is how to best localise the position of an atom. 
If the position of an atom is determined by observing light scattered from the 
atom (the Heisenberg microscope) the position cannot be localised to better than 
a wavelength. Several methods to make atomic position measurements using an 
optical field have been proposed. These include channelling in an off-resonant 
optical standing wave (Salomon et al. 1991) and using spatially varying level 
shifts which enable one to correlate the position of the atom with its resonant 
frequency (Thomas 1990). Micron resolution in experiments using the latter 
method have been reported (Stokes et al. 1991). 

We wish to propose a new scheme to localise the atom's position using an 
optical field. In a similar arrangement to the QND measurement of photon 
number the two level atom is passed through an off-resonant standing wave light 
field. The interaction with the atom imparts a phase shift to the light field which 
depends on the atom's position in the field. This phase shift may be measured 
by making a homo dyne measurement of the quadrature phase of the light field. 

It has been demonstrated by Yuen (1983) and Ozawa (1988) that the standard 
quantum limit (SQL) on position measurements of a free mass may be surpassed 
if the free mass is initially prepared in a contractive state. We shall show that for 
certain measurements of the quadrature phase of the field, the atom is prepared 
in a contractive state. We show that it is possible to localise the position of the 
atom very precisely within a wavelength of the light in the cavity. Depending on 
the initial position distribution of the atom, a field measurement may localise the 
atom into one or more virtual slits. We present situations exhibiting diffraction 
from a single virtual slit and interference from two such slits. 

2. Quantum Non-demolition Measurement of Photon Number 

QND measurements are designed to evade the back action noise inherent in a 
quantum measurement (Braginsky et al. 1977; Unruh 1978; Caves et al. 1980). 
The goal of a QND measurement is to determine the value of an observable 
of a system without in any way disturbing it. That is, we require that the 
act of measurement itself does not degrade the predictability of subsequent 
measurements. This requirement is satisfied if, for an observable AI( t) (in the 
interaction picture), 

(1) 

This condition ensures that if the system is in an eigenstate of AI(tO) it remains 
in this eigenstate for all subsequent times although the eigenvalues may change. 
Such observables are called QND observables. For example, for a free particle 
the position is not a QND observable, but the momentum is. 

In order to measure the observable of a system it is necessary to couple the 
system to a meter or probe. It is essential that the coupling to the meter does 
not feed back fluctuations into the QND variable of the detector. In order to 
avoid this it is sufficient if the QND variable A commutes with the Hamiltonian 
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coupling the system and the meter, H sm, that is 

[A, Hsml = o. (2) 

This is known as the back action evasion criterion. 
A number of QND schemes to measure the photon number of a signal beam 

have involved a four-wave interaction with a probe beam (Milburn and Walls 
1983; Imoto et al. 1985; Levenson et al. 1986; Imoto et al. 1987). In the case of 
a Kerr medium this interaction may be written in the form 

(3) 

where a (b) is the annihilation operator for the signal (probe) mode. Clearly the 
photon number in the signal mode at a is a QND observable. The coupling with 
the probe also satisfies the back action evasion criterion. The photon number in 
the signal mode is determined by making a measurement on a quadrature phase 
X 0 = be- iO +b t eiO of the probe. 

We wish to discuss a new type of QND coupling generated by the interaction of 
atoms with a standing wave light field. We consider a standing wave electromagnetic 
field containing a small number of photons in a high quality cavity. The measurement 
probe is a beam of two-level atoms crossing perpendicularly through the cavity. 
The radiation field is detuned far from the atomic resonance so that the photon 
number is not changed due to absorption or emission. The photon number of 
the field is therefore a QND observable. Using the atoms as a probe the photon 
number of the field may be obtained in two ways. In one proposal for Rydberg 
atoms, the phase shift of the atomic wavefunction due to the interaction with 
the field is measured by the Ramsey separated oscillatory fields technique (Brune 
et al. 1990). This phase shift is directly proportional to the field intensity. 
The other method makes use of the exchange of momentum between atoms and 
photons. The transverse momentum transfer of the atom-photon interaction is 
such that in the far field the position of the atom carries a significant amount of 
information about the intensity of the field. The atomic deflection profile carries 
information on the photon statistics of the light field. 

We shall present an analysis which can describe both the above methods. 
We assume that a two-level atom interacts with a single cavity field mode. 
The interaction is assumed to be sufficiently non-resonant that we may neglect 
spontaneous emission. The cavity lifetime is assumed to be long compared with 
the interval between atom arrivals, so that a measure of the photon number of 
the field may be obtained before it decays. 

We denote the boson annihilation operator for the field by a and the atomic 
inversion and atomic coherences by the Pauli spin operators 0" z, 0"+ and 0"_. 

The operators 7r and x describe the momentum and position of the centre of 
mass of the atom. The Hamiltonian for the confined atom and radiation field 
system in the rotating wave approximation is 

H= 
p2 

nWa ata + nwo o"z + -
2m 

+ n(gO"_ at + g*O"+ a) cos(kx + ¢), (4) 
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where m is the atomic mass, 9 is the single-photon Rabi frequency and k is the 
wave number of the cavity mode. We consider the Raman-Nath regime in which 
the transverse kinetic energy absorbed by the atom during the interaction can 
be neglected. In the large detuning limit 

gJn/~ «: 1, (5) 

where ~ = Wo-Wa , the effective interaction Hamiltonian is 

(6) 

It is immediately apparent that the photon number at a satisfies the back action 
evasion criterion. We may consider this interaction as describing an atomic 
phase shift proportional to the field intensity, in which case the photon number 
is determined by measuring the atomic coherence cr +. Alternatively we can 
measure the momentum distribution of the scattered atoms. We shall give a 
more complete analysis of the latter scheme. 

Let the initial state of the system be represented by E. The probability of the 
atom exiting with momentum p after interaction time t is given by 

P(p, t) = (P! Tr{U(t) ! E) (E ! ut (t))! p) , (7) 

where the trace is taken over the field and atomic internal variables, and U is 
the time evolution operator. Since the possible momentum shifts are discrete 
multiples of 2hk, the final output momentum probability is composed of a comb of 
images of the initial momentum distribution. In order to resolve these peaks it is 
necessary that the initial momentum spread is ~p < 2hk. When the momentum 
peaks are distinguishable the output momentum distribution is given by 

P(p, t) = P(p, 0) -{;{ L Qr(t) 8(p - 2rhk) , 
r 

(8) 

where -{;{ denotes momentum convolution, 8 and J are the Dirac delta and Bessel 
functions respectively, and P(n) describes the photon statistics of the cavity. 
The amplitudes Qr represent the probability that a momentum of 2rhk will be 
transferred to the atom in the cavity. The probability amplitudes are strongly 
dependent on n so that fields with different photon statistics exhibit very different 
output momentum distributions. 

In Fig. 1 a we plot the output momentum distribution for an atom traversing 
a cavity composed of a number state field containing 50 photons. In Fig. 1 b we 
consider a thermal field where the maximum P( n) corresponds to no photons in 
the cavity, so the most likely momentum shift is zero. In Fig. 1 c we consider a 
coherent field where the photon statistics are Poissonian. In this case the cavity 
is well described as an atomic beam splitter in which the greatest probability 
lies in regions of nonzero atomic deflection (Meystre et al. 1989). 
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Fig. 1. Output momentum distribution for an atom traversing a cavity composed of (a) a 
number state field with 50 photons; (b) a thermal field with mean photon number 50; and 
( c) a coherent field with mean photon number 50. 
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Fig. 2. Output momentum distribution for atomic scattering from a standing light wave. 
The experimental data (solid curve) are compared with the simulation results (dashed curve) 
for the detunings: (a) Ow = 0; (b) Ow = 47; and (c) ow = 8,. 
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IT one tunes closer to the atomic resonance, spontaneous eIDlSSlon becomes 
important. The recoil imparted to an atom by a spontaneously emitted photon 
occurs in a random direction so that its momentum component in the direction 
of the standing wave can range from -nk to +nk. This spontaneous emission 
causes the diffractive peaks to be smeared out. In Fig. 2 we show some 
experimental momentum distributions obtained by Gould et al. (1991), compared 
with theoretical fits by Tan and Walls (1991). Fig. 2a is on-resonance (ow = 0), 
where the spontaneous emission completely smears out the diffractive structure. 
Figs 2b (ow = 47) and 2c (ow = 87) show how the diffraction peaks appear as 
the spontaneous emission is reduced. 

We now return to the case well off-resonance where we can neglect spontaneous 
emission. We shall show that by measuring the deflection of a sequence of atoms 
through the cavity, the cavity field will be reduced to a near number state. We 
simulate the effect of repeated atomic position measurements and calculate the 
resulting field statistics. 

3.0 1.0 

0.8 

Fig. 3. Simulation of the collapse of the field density of states 
to a single photon number. The nonrelaxing cavity was initially 
described by a coherent state (Poissonian photostatistics with 
mean 10). Projected onto the back wall is the entropy of the 
field state with scale denoted by the entropy vertical axis on 
the left. 

Based on an initial choice of field statistics, a particular output momentum 
Po for an atom exiting the cavity is chosen. The diagonal elements of the field 
density matrix Pen) are then altered by the back action of the measurement 

Pen Ipo) = MP(po I n)P(n) , (9) 

where M is a normalisation constant. The next momentum PI is then selected 
with this probability weighting for the statistics of the field, and the process is 
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repeated. Fig. 3 illustrates a simulation of five probe atoms with a field initially 
described by a coherent state with a mean of ten photons. Each such simulation 
collapses the field to a single photon number. The proportion of times that each 
number is selected is completely determined by the initial photon statistics. The 
entropy of the field ~nP n lnP( n) can be used as an indicator of the quality of 
the measurement. 

3. Measurement of Atomic Position with Optical Fields 

The measurement of the position of an atom runs into the difficulty that 
the position x is not a QND observable for a free particle. Uncertainty in the 
atom's momentum created by a position measurement feeds back into subsequent 
measurements of position. The standard quantum limit (SQL) for the measurement 
of the position of a free mass relates to the uncertainty Ax(r) in a measurement 
of the position at time r, given that a measurement ·had been initially made 
with uncertainty Ax(O). The SQL is given by 

( lir) ! 
Ax(r) 2: m ' (10) 

which is obtained by the following argument. After the first measurement with 
accuracy Ax(O), the uncertainty in momentum Ap(O) leads to an uncertainty in 
position at time r given by 

Ax2(O) + AP2(~)r2 
m 

r lir 
2: 2Ax(O) Ap(O) - 2: 

m m 

where .we have used the Heisenberg uncertainty relation 

Ax(O) Ap(O) 2: li/2. 

(11) 

(12) 

This argument has the following flaw as pointed out by Yuen (1983). Since the 
evolution of a free mass is given by 

r 
x(r) = x(O) + p(O) -, 

m 
(13) 

the variance of x at time r is given by 

In the standard argument the correlation term is assumed to be positive. However, 
if the initial measurement leaves the free mass in a state with negative correlation, 
then Ax2(r) < lir/m. 

Squeezed states may exhibit this property. These may be defined, following 
Yuen (1976), as the eigenstates of the operator j.£a+vat : 

iJ,a + vat I j.£, v, a} = (j.£, v, a) , (15) 
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where 

The wavefunction (x 1 p, v, a), where x 1 x) = x 1 x), is given by 

(x 1 p, v, a) = ( rnw 2) i 
1l"1i 1 p - vi 

x exp - - (x - xo) + -(x - xo) , ( mw 1 + 2ie 2 ipo ) 
21i 1 p - V 12 1i 

where 

e = Im(p*v) , 

a = (~:) \0 + (21i~W)1/2 Po . 
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(16) 

(17) 

When e = 0 the wavefunction (16) is the usual minimum uncertainty state. The 
first two moments of 1 p, v, a) are 

(x) = xo, 

~x2 = 1i 1 p - V 12 , 
2mw 

(P) = Po, 

~p2 = 1imw Ip + vl2 
, 

2 

(~x ~P + ~p~x) = -21ie· (18) 

When e> 0 the x-dependent phase in (16) leads to a narrowing of ~x(t) from 
~x(O) during free evolution. 

The position fluctuation for a free mass starting in an arbitrary squeezed state 
is 

(19) 

where 

;- = 1 p - V 12 1 p + V 12 
., 4' ry= 4 ' 

(ry = (1 + 4e)/16. 

The minimum fluctuation is 1/I6wry. This occurs at tm = e/2ryw and is 1/2(2e)1/2 
times the SQL. Thus the minimum fluctuation ~X(T) is related only to the 
momentum uncertainty as follows: 

1i 
~X(T) = ( ) 

2~p 0 

~x(O) 
(20) 

This shows that ~X(T) can be made arbitrarily small with sufficiently large (. 
Note that the minimum uncertainty product is realised between the momentum 
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uncertainty at t = 0 and the position uncertainty at t = r, since the momentum 
is a constant of the motion. 

Thus the SQL can be surpassed if there is a measurement which places the 
free mass in a contractive state. Ozawa (1988) has proposed a scheme where the 
system is coupled to a probe which is initially prepared in a contractive state. 
In the following we shall describe a measurement of an atom's position which 
puts it in a contractive state, without requiring special prepatation of the probe 
(Storey et al. 1992). 

When a two-level atom is passed through a standing wave mode in an optical 
cavity the interaction with the field depends on the position of the atom. By 
making a quadrature phase measurement on the field, it is possible to localise 
the position of the atom very precisely within a wavelength of the light in the 
cavity. Certain of these measurements may prepare the atom in a contractive 
state. 

The experimental arrangement for this measurement is the same as for the 
QND measurement of photon number described in Section 2. A two-level atom is 
passed through a standing light wave in an optical cavity. The interaction of the 
atom with the light field imparts a phase shift to the field which is dependent on 
the atomic position. This phase shift is determined by measuring the quadrature 
phase of the light by a homodyne detection scheme. The Hamiltonian is given 
by (4). 

The cavity mode is assumed to be initially in a coherent state 10:). The atom 
is assumed to be initially in the ground state with a transverse spread in position 
given by ¢(x). This implies phase coherence across the width of the distribution, 
so the atom must be cooled before entering the cavity. We can write the initial 
state of the system as 

1'IjI(O)) = J dx¢(x)lo:, x, g), (21) 

where the state is labelled by the field amplitude, atomic position and internal 
atomic state respectively. After an interaction time t in the field, the state of 
the system is 

I 'IjI(O)) J dx ¢(x) exp ( -i(V; + :/}.uz)t) I 0:, X, g) 

= ei J),.t/2 J dx ¢(x) I 0: exp CI ~2t cos2 (kx + ¢)), x, g). (22) 

That is, the interaction has changed the phase of the coherent state. This field 
phase shift depends on the vacuum light shift of the atomic state. [Vacuum 
field-induced level shifts of barium atoms have been measured recently by Heinzen 
and Feld (1987).) B~ause the phase shift depends on the position of the atom, 
a measurement of the quadrature phase X 8 of the field will localise the atom. 

We define 

(23) 



Quantum Measurements in Atomic Optics 71 

To find the atomic state after the field measurement we project the field state 
onto an eigenstate I Xu) of the quadrature phase: 

I 7/J(t))atom = N J dx¢(x)(Xul aexpCI ~2t cos2 (kx + ¢)}I x, g) 

= N J dx¢(x) 4~ exp [ - (a1 - ~e y -ia2(al - Xu)] I x, g), (24) 

where 

In order to observe the correlation between the atomic position and the value 
of the quadrature phase, the transit time of each atom through the cavity must 
be much shorter than the lifetime of the cavity, which in turn must be shorter 
than the interval between the times that successive atoms enter the cavity. 

The best localisation is obtained with I 9 12t/.6. = 7r and a high field intensity. 
However, if the scheme is implemented at optical wavelengths the Raman-Nath 
condition imposes a severe restriction on the interaction time and the field 
strength. The additional requirement of a low transition probability between 
internal atomic states leads to the following condition on the atom-field coupling 
constant: 

(25) 

where 'TJ is a proportionality factor characterising the momentuIIi uncertainty of 
the atom after the interaction, and is independent of the cavity frequency and 
approximately independent of the field strength. Assuming I 9 12t/.6. = 7r, we can 
obtain significant localisation if the mean number of photons in the field is greater 
than about 8. For optical transitions the required value for I 9 I is extremely 
high (of the order of 108 Hz). Such high values have recently been obtained by 
Rempe et al. (1991) using a very short cavity of high finesse. 

Fig. 4a shows the initial position distribution of the atom (iii) and the near-field 
distributions resulting from the field measurement Xo = 0 (i) and X 7r/2 = 2a 
(ii). In this graph, and in all subsequent graphs, we have used I 9 12t/.6. = 7r with 
a = V8. By varying the phase of the field quadrature measured, we have varied 
the degree of localisation and effectively created an atomic slit of adjustable 
width. Fig. 4b shows the far-field distribution of the atom after the measurement 
of X 0 (i) and after the measurement of X 7r/2 (ii). It is clear that the wide virtual 
slit has produced a narrower diffraction pattern than the narrow virtual slit. 
This is exactly what we would expect if the atom passed through a real physical 
slit. In fact, as the width of the virtual slit is reduced, by varying the phase of 
the field quadrature from 7r /2 to 0, the width of the diffraction pattern increases 
smoothly. The product .6.x.6.p is close to the uncertainty limit, but there is 
some excess noise due to a small degree of nonlinearity in the phase change 
across the atomic wavefront. A linear component in the phase change across the 
virtual slit produces a deflection of the atomic beam, which is responsible for 
the asymmetry of the far-field distribution. 
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Fig. 4. ( a) Near-field position distribution of the atom before the field 
measurement (iii), after a field measurement yielding the value Xo = 0 
(i), and after a field measurement yielding the value X 7r/ 2 = 2a (ii). 
The position distribution of the atom before it enters the cavity is 
taken to be gaussian with a standard deviation u = 0 ·1>../21r centred 
midway between a node and an antinode of the field (cfJ = -1r/4). 
(b) Far-field position distribution for the same parameters after the 
measurement of Xo (i) and after the measurement of X 7r/ 2 (ii). 

Of course this 'slit' is not a real physical slit which the atom passes through, 
but a virtual slit created by our knowledge from the field measurement of where 
the atom is. Whether diffraction can be observed from such a virtual slit was 
suggested by Popper (1982) as a crucial test of the Copenhagen interpretation of 
quantum mechanics. Popper proposed a scheme which he claimed would create 
such a virtual slit of adjustable width, and suggested that such a scheme would 
test whether knowledge alone is sufficient to create uncertainty (as is contended 
under the Copenhagen interpretation) or whether scattering of a particle depends 
on the physical presence of a slit. Popper's proposed experiment does not, 
however, provide such a test, due to other uncertainties inherent in the scheme 
which Popper had not included in his analysis. The experiment we propose 
should resolve Popper-'s question in favour of the Copenhagen interpretation. 

IT the measurement is such that the atom is localised at an antinode of 
the field, then the phase change across the atomic wavefront is approximately 
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parabolic, and the atom is focused. That a measurement can produce focusing 
is contrary to the intuitive notion that momentum uncertainty introduced by a 
position measurement should cause the position distribution to spread out with 
time. The requirement for focusing is that the measurement leave the system in 
a state with a negative correlation between its position and momentum. States 
whose position distribution contracts under free evolution (termed 'contractive 
states') have been described by Yuen (1983) and Ozawa (1988). Fig. 5 compares 
the focusing of a contractive state produced by our position localisation scheme 
with the theoretical maximum focusing, achieved by Yuen's 'twisted coherent 
state' or squeezed state. 

~ 0.08 
~ ..... 
o 0.06 
.~ 
c 
::> 

§. 0.04 
S 
~ 0.02 

0.005 0.015 
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Fig. 5. Position variance (i) as a function of time for the contractive state 
produced by' our position localisation scheme, compared with the ideal 
focusing achieved by a 'twisted coherent state' with the same momentum 
variance and initial position variance (ii). Our contractive state (i) is 
produced by making a field measurement Xo = -20 after the atom has 
crossed the cavity. The position distribution of the atom before it enters 
the cavity is taken to be gaussian with standard deviation (1' = 0·S>./27r 
centred at an antinode of the field (</> = 0). 

If the initial position distribution of the atom is wider than that used in 
Fig. 4 then a measurement of X 0 = 0 will localise the atom as indicated by 
curve (i) in Fig. 6a. The position distribution now has two smaller peaks located 
at x = >./4 and ->./4 on either side of the central peale The initial gaussian 
distribution of the atom is indicated by curve (iii), and the phase of the atomic 
wavefront after the field measurement by curve (ii). The phase shift across each 
of the three peaks is approximately linear. However, the phase change across the 
central peak is positive and that across each of the two side peaks is negative. 
Hence the central atomic beam is deflected to the right and the two side beams 
are deflected to the left. Here the term 'atomic beam' is used loosely because 
the three 'beams' constitute the wavepacket of a single atom. Fig. 6b shows the 
far-field position distribution of the atom. The left half of the distribution shows 
complete interference between the atomic beams from the side peaks. The right 
half of the distribution is the diffraction pattern of the central peak. The partial 
interference in the right half of the distribution is due to the presence of very 
small peaks located at x = >./2 and ->./2 in curve (i) of Fig. 6a. 
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Fig. 6. (a) Near-field position distribution of the atom with a broader 
initial distribution, before the field measurement (iii), and after the value 
Xo = 0 has been measured for the field (i). Curve (ii) shows the phase 
(in radians) of the atomic wavefront after the measurement. The position 
distribution of the atom before it enters the cavity is assumed to be gaussian 
with standard deviation u = O· 9A/27r, centred midway between a node and 
antinode of the- field (</> = -7r/4). (b) Far-field position distribution for 
the same parameters after the field measurement. 

If the initial position distribution of the atom is centred at an antinode of the 
field and the value X 0 = 0 is measured after the interaction, then the near-field 
position distribution of the atom will exhibit two slits, with opposite phase 
change across each slit. The two atomic beams converge, and interference can 
be observed in the near field where they cross. Alternatively, a second cavity in 
antiphase with the first can be placed immediately after the first cavity to act 
as an atomic lens. If the value X O(second cavity) = -X O(first cavity) is measured, the 
phase change across the atomic wavefront is eliminated and interference from the 
two adjacent slits can be observed in the far field. 

We have shown that a quadrature phase measurement on the field can localise 
the position of the atom very precisely within a wavelength of the cavity field. 
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However, a single field measurement cannot determine 'which wave' the atom went 
through, so if the initial position distribution is spread over many wavelengths 
the distribution after a field measurement will contain correspondingly many 
peaks. But if the atom then passes through a second cavity tuned to a slightly 
different frequency immediately after exiting the first cavity, one or more of these 
peaks can be selected out by a quadrature phase measurement of the field in the 
second cavity. 
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