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Abstract 

The influence of a magnetic field on superconductivity is usually described either phenomeno
logically, using Ginzburg-Landau theory, or semiclassically, using Gor'kov theory. In this 
article we discuss the influence of magnetic fields on the mean-field theory of the supercon
ducting instability from a completely quantum-mechanical point of view. The suppression 
of superconductivity by an external magnetic field is seen in this more physically accurate 
picture to be due to the impossibility, in quantum mechanics, of precisely specifying both the 
centre-of-mass state of a pair and the individual electron kinetic energies. We also discuss 
the possibility of novel aspects of superconductivity at extremely strong magnetic fields, 
where recent work has shown that the transition temperature may be enhanced rather than 
suppressed by a magnetic field and where a quantum treatment is essential. 

1. Introduction 

The relationship between superconductivity and magnetic fields is both of 
practical importance in the design of super conducting devices and of fundamental 
importance to the superconductivity phenomenon. In the absence of an external 
magnetic field, superconductivity is associated with the pairing of time-reversed 
electron states. As we discuss in detail below, magnetic fields break time
reversal-invariance symmetry and frustrate this pairing. For sufficiently weak 
external magnetic fields, superconductors prefer to completely expel any external 
magnetic flux (the Meissner effect) in order to avoid this frustration. At stronger 
magnetic fields type-II superconductors, which are used in the construction of 
super conducting magnets, can form a mixed state in which superconductivity 
coexists with magnetic flux. Superconductivity in the mixed state is usually 
described in terms of Ginzburg-Landau theory (see e.g. de Gennes 1966; Tinkham 
1975) which predicts a decrease in the temperature to which superconductivity 
can survive (Tc) proportional to the external magnetic field strength. For 
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sufficiently weak external fields and temperatures close to Te Ginzburg-Landau 
theory has been derived microscopically by Gor'kov (1958). This theory has 
a wider range of validity than Ginzburg-Landau theory and predicts (see e.g. 
Gor'kov 1959; Helfand and Werthamer 1966; Werthamer et al. 1966) that Te 
decreases monotonically with increasing magnetic field and is eventually driven 
to zero. (Non-monotonic behaviour is possible in special circumstances when 
the electron g-factor is different from zero.) However, Gor'kov's theory treats 
the magnetic field in a semiclassical approximation which is not valid when the 
temperature is sufficiently low and the disorder is sufficiently weak that the 
Landau quantisation of motion in planes perpendicular to the field direction 
becomes important. In the past few years, following seminal work by Rasolt, 
Tesanovic and collaborators, it has been realised (see e.g. Rasolt 1987; Tesanovic 
and Rasolt 1989; Tesanovic et al. 1989, 1991; Norman 1990; Rieck et al. 1990; 
Rasolt and Tesanovic 1992) that, at least within the standard mean-field theory 
known to be accurate at weak magnetic fields, superconductivity can survive to 
arbitrarily strong magnetic fields once Landau quantisation is accounted for. In 
this article we discuss the superconducting instability in a magnetic field from 
a completely quantum-mechanical point of view. We explain how the results of 
Ginzburg-Landau theory and Gor'kov theory can be understood in terms of the 
microscopic quantum mechanics of charged particles in a magnetic field, and why 
Gor'kov theory can fail at sufficiently strong fields. 

2. Tc at Zero Magnetic Field 

It is useful to begin by discussing the familiar implicit equation for Te in the 
absence of a magnetic field (see e.g. Schrieffer 1964, 1969): 

(1) 

(Energies are measured from the chemical potential fl, and [2 is the volume of 
three-dimensional systems or the area of two-dimensional systems. The Fermi 
energy, EF = m V'; /2, is the zero-temperature limit of fl.) This equation is for 
the usual BCS model with attractive interactions of constant strength V. All the 
discussion in this article will be in terms of this simple model (our discussion 
is readily adapted to the case of strong-coupling superconductors). The prime 
on the sum over wavevectors denotes the usual separable high-energy cutoff that 
requires both electron energies to be within E+ of the Fermi level. The numerator 
of the factor in square brackets in (1) expresses through the Fermi occupation 
numbers the requirement that the pairing comes either from electrons outside the 
Fermi sea, as in the Cooper problem, or from holes inside the Fermi sea. Note 
that this factor vanishes at finite temperature, and even at T = 0 for P "I 0, 
when Ek + Ek' is near zero. In a superconductor a bound state occurs for the 
relative motion of electrons in a Cooper pair and the temperature at which the 
bound state first occurs, Te , depends on the centre-of-mass (COM) momentum 
of the pair, P, as we discuss in the following paragraph. 
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Defining an effective pairing density of states by 

the Tc equation can be rewritten in the form 

1 = V [: VP(E: P,T)/E. (3) 

At P = 0 and T = 0, VP(E) = (}(2E+ - IED(E/IEDv(2E)/2 where V(E) is the 
single-electron density of states per spin. At finite P and T, vP(c : P, T) is 
reduced toward zero for 1e1;S E- == sup(kBT, VFP) because of the combination 
of Fermi factors appearing in (2), but otherwise is nearly constant. [Here VF is 
the Fermi velocity. Low-energy pairs tend to be composed of states on opposite 
sides of the Fermi energy for P =1= 0 (see Fig. 1). The pairing densities of states 
for two dimensions (2D) and three dimensions (3D) are reduced as a consequence 
when I(c - 2EF )/VFPI < 1.] For T = 0 the reduction in vP is illustrated in Fig. 2. 
For I(E - 2EF)/VFPI < 1, 

(4) 

for 3D, and 

(5) 

for 2D. For weak coupling (E- ~ E+) the Tc equation reduces to E- r-.; 

E+ exp( -1/,\) which will have no solution once VFP exceeds r-.;kBTc(P = 0). 
[,\ == Vv(O). It is assumed that V(E) is nearly constant over the energy range 
E+.] Later we will relate this result for the dependence of Tc on the COM 
momentum of the Cooper pair directly to the dependence of Tc on an external 
magnetic field. 

3. Pair States in a Magnetic Field 

Note that the Tc equation (3) depends both on the COM state of the pair and, 
through the Pauli exclusion principle requirements expressed by Fermi factors, 
on the states of the individual electrons making up the pair. The states of a 
pair of electrons may be described either in terms of COM and relative motion 
states, or in terms of the individual electron states. In the absence of a magnetic 
field this connection is trivial. To describe superconductivity in a magnetic field 
quantum-mechanically, we must start by discussing the relationship between these 
two descriptions in a magnetic field. The Hamiltonian (note that motion parallel 
to the field direction is unaffected by a magnetic field so we restrict our attention 
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Fig. 1. Pauli blocking of low-energy pair states at finite COM momentum, P, 
of the pair. In terms of the relative momentum of the pair the Fermi surfaces 
for the two electrons composing the pair are displaced by P. The pair must 
be composed of unoccupied electron states or hole states. At zero temperature 
the allowed values of relative momentum are either inside both Fermi surfaces or 
outside both Fermi surfaces. The shaded regions where the energies are close to 
the Fermi energy are forbidden. 

to planes perpendicular to the field direction) for two non-interacting electrons, 
h, is 

h = ~ (- ili'll + ~A(rl))2 + _1_ (- ili'l2 + ~A(r2))2 (6) 
2m c 2m c 

or 

h = _.- - ili'lR + '-:'A(R) + - - ili'lr + -A(r) 1 ( 2)2 1 ( e)2 
2M c 2p, 2c 

(7) 

Here we have assumed a gauge where the vector potential is linear in the 
coordinates, M = 2m , p, = m/2, R = (rl + r2)/2 and r = rl - r2. Notice that 
the charge appearing in the COM term is 2e while the charge appearing in the 
relative motion term is e/2, so that both the relative and COM kinetic energies 
(KEs) are quantised in the same units as for individual electrons, nwc = eB fmc. 
[The individual electron eigenvalues measured from the chemical potential are 
eN = liwc(N + 1/2) - p, == liwc(N - NF), where NF is the Landau level index at 
the Fermi level.] In the Landau gauge the eigenfunctions for individual electrons 
are well known: 

(8) 

where Ly is the length of the system in the y direction, £ == (lic/eB)~ is the 
magnetic length, and 1> N (x) is a one-dimensional harmonic oscillator eigenstate for 
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Fig. 2. Pairing density of states at finite COM momentum for three dimensions (solid line) 
and two dimensions (broken curve). 

mass m* and frequency We' The expressions for the COM and relative eigenstates, 
'l/JR and 'l/JT, are identical except that the characteristic lengths are scaled to 
account for the changes of charge and mass. (The effective magnetic lengths are 
fR = f/ v'2 and fT = v'2f for the COM and relative eigenstates respectively.) 

In the lowest Landau level ¢N=O(X) rv exp( _x2 /4f2 ) so that 

(9) 

The relationship is easily generalised to higher Landau levels by writing the 
Hamiltonian in terms of ladder operators, 

and noting that aR = (al + a2)/v'2 and aT = (al - a2)/v'2. Here aj = 
(f/v'2Ti)(7I'xj - i7l'yj) and 7t'j = -iTi'Vj + (e/c)A j . It follows that 

N+M 
'l/JN,X+Y/2(rl) 'l/JM,X-Y/2(r2) = L B]',M 'l/Jfx(R) 'l/JIHM-j,y(r) , (11) 

j=O 
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where 
1 . 

B N,M _ J. J. . . ( ) . - . 12 ( 
'l(N + M _ ')lNlMl) 2 J (_)M-m 

J 2N +M ].;0 (j - m)!(N + m - j)!(M - m)!m! 

Note that both left- and right-hand sides of (11) are manifestly eigenstates of h 
with eigenvalue nwc (N + M + 1). The coefficients BJ',M give the amplitude for 
having KE nWc(j + 1/2) in the COM motion [and nwc (N + M - j + 1/2) in the 
relative motion] when the individual particles have definite KEs nwc (N + 1/2) 
and nwc (M + 1/2). 

The coefficients appearing in the unitary transformation between the two sets 
of two-particle eigenstates, {BJ',M} , will playa central role in the discussion 
below. Note that the transformation is block-diagonal, with no mixing between 
eigenstates of different total kinetic energy. The completeness of either set of 
eigenstates implies the following identities: 

K 

'" BN,K-N BN,K-N _ (). _ 
~ j' j - )',) , (13) 
N=O 

K 
"'BN',K-N' BN,K-N _ () 
~ j j - N',N· (14) 
j=O 

Since the COM kinetic energy does not commute with the individual particle 
kinetic energies, the COM kinetic energy is necessarily uncertain if the individual 
particle states are known precisely. Conversely, for given COM and relative state 
kinetic energies, the individual particle kinetic energies are necessarily uncertain. 
Given j and the relative motion eigenstate, or equivalently j and the total kinetic 
energy index K, IBJ',K-N I2 gives the normalised probability distribution for the 
individual electron states with the same total kinetic energy. Explicit expressions 
for small j are easily obtained from (12): 

(15) 

(16) 

(17) 

For K» Ikl (k == N - M) it can be shown (MacDonald 1992, unpublished) that 

BjK+k)/,,(K -k)/2 _ (; rr ) 1 C:j!) ! H j (klV2K) exp( -k' 14K) , (18) 

where H j is a Hermite polynomial. 
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4. Tc in a Magnetic Field 

The implicit Tc equation in a magnetic field* is completely analogous (MacDonald 
et al. 1992) to the B = 0 equation (1) cited at the beginning of this article: 

(19) 

As in the B = 0 case Tc depends on the Cooper pair state. As we discussed 
previously, the superconducting Tc decreases with IPI for B = O. For B #- 0, Tc is 
independent of the guiding centre quantum number X for the Cooper pair. The 
fact that instabilities occur simultaneously in a macroscopic number of channels 
is responsible for the dimensional reduction (Bergmann 1969; Lee and Shenoy 
1972; Thouless 1975; Brezin et al. 1985, 1990) which causes superconducting 
fluctuations to be qualitatively altered by a magnetic field. The superconducting 
instability still depends, however, on the Landau level index of the Cooper pair. 
We first examine the weak field limit where knT» nwc. In this limit the sums 
over Landau levels may be replaced by integrals and (19) becomes 

1 = A rK
+ dK N roo dk [1 - f(C(K+k)/2) 

J2N F K - 2 F Jo 
f( )]IB(K+k)/2,(K-k)/212 

- C(K-k)/2 j . (20) 

[Here we have noted that v(O) = 1/ (21l'C2nwc) and K+ is the maximum kinetic energy 
index allowed by the high-energy cutoff.] To understand why superconductivity 
is suppressed by weak magnetic fields it is sufficient to consider the T = 0 limit. 
The Landau levels with indices (K + k)/2 and (K - k)/2 are on the same side 
of the Fermi level and can contribute to the pairing only if Ikl < IK - 2NFI (see 
Fig. 3). For a given COM index j of the Cooper pair and a given total kinetic 
energy, the probability of finding both members of a Cooper pair on the same 
side of the Fermi energy [cF == J.L(T = 0)] is necessarily less than unity. In Fig. 4 
we plot 

Pj(K) == L [1 - ()(2NF - K - k) 
k 

- ()(2NF - K + k)]IBt+k)/2,(K-k)/2 12 (21) 

for j = 0 and NF = 12·5 against K. From (18) we see that most of the contribution 
to Pj(K) comes from Ikl <rv J(j + 1/2)K. The logarithmic divergence of the 

* This is the mean-field Tc equation for two spatial dimensions. In three dimensions (3D) it 
is necessary to integrate over momenta along the field direction in addition to summing over 
Landau level indices. For notational simplicity we restrict our attention here to the 2D case. 
In 3D Tc depends on the Cooper pair momentum along the field direction as well as on the 
Landau level of the Cooper pair. 
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Fig. 3. Probability of having individual electron kinetic energies nWc(I< + k + 1)/2 and 
nWc(K - k + 1)/2, given COM kinetic energies nWc(j + 1/2) and total kinetic energies 
nWc(K + 1/2). The probabilities are represented by the vertical lines at even integer values 
of k (k must be even when K is even and odd when K is odd). The results shown here are 
for K = 30 and j = O. For NF = 12·5, i.e. for the first 12 Landau levels occupied, the two 
single-particle states are both occupied or both empty only for k = 0, k = ±2 and k = ±4. 
Larger values of k, for which the probability is indicated by a dashed line, are Pauli blocked 
and cannot contribute to pairing in a j = 0 COM state. For this case the probability that the 
two single-particle states will be on the same side of the Fermi energy is Po(K=30) = O· 6384. 
The solid curve which envelopes the probabilities is the large K expression (18). 

integral over K in (20) which guarantees a solution is therefore cut off, since 
Pj(K) will fall to zero for IK - 2NFI <'" J(2j + l)NF. It follows that solutions 
at T = 0 exist only if 

(22) 

The super conducting instability is suppressed most weakly for Cooper pairs with 
j = 0, i.e. for COM in the lowest Landau level, in agreement with Ginzburg-Landau 
theory. 
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Fig. 4. Plot of Pj versus K for j = 0 and NF = 12·5, i.e. for the first twelve Landau levels 
occupied. For the case K = 30, Pj is given by the sum of the probabilities indicated by the 
solid lines in Fig. 3. 

At zero magnetic field the superconducting instability occurs first for COM 
momentum P = 0; the pairing of time-reversed single-particle states guarantees 
that all pairs are allowed by the Pauli exclusion principle at T = 0 even if their 
energies are very close to the Fermi energy. In a magnetic field, time-reversal 
symmetry is broken so that time-reversed pairs of single-particle states no longer 
exist. The kinetic energy eigenstates in a magnetic field are usefully thought 
of as having a definite magnitude of momentum corresponding to the quantised 
kinetic energy, but a completely uncertain direction of momentum since they 
are executing circular orbits. For definite COM and relative kinetic energies CR 

and Cr, the mean squared difference between the kinetic energies of individual 
electrons is 

(23) 

The average here is over the angle () between the COM and relative momenta, 
which is completely uncertain in a magnetic field. This classical root-mean
squared energy difference agrees with the energy width of the quantum-mechanical 
distribution function discussed above. When the mean energy of the pair is within 
rv2cRcr of the Fermi energy, contributions to pair formation are suppressed by 
the Pauli exclusion principle. For CR = nWc(j + 1/2) « Cr rv 2cF, the resulting 
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low-energy cutoff is 

(24) 

In (24) tiP} /4m = Tiwc (j + 1/2) so that Pj is the 'quantised' magnitude of the 
COM momentum. We see from this discussion that pairing in COM Landau 
level j in a magnetic field is very similar to pairing at COM momentum Pj in 
the absence of a magnetic field. 

The above discussion explains from a quantum-mechanical point of view the 
familiar suppression of superconductivity by a magnetic field in the weak field 
regime where the discretisation of allowed kinetic energies transverse to the 
magnetic field is washed out by either temperature or disorder. In clean 2D 
systems the Landau level structure becomes important in the thermally averaged 
density of states for Tiwc ;G kBT; in 3D systems the free motion along the magnetic 
field partly obscures the Landau level structure and the strong-field regime is 
reached only for Tiwc;G VN;kBT. In the strong-fieid regime the density of states 
has strong peaks and the chemical potential tends to be pinned to these peaks. 
It is these peaks in the density of states that can reverse the decrease of Te 
with field and lead to a peculiar regime where Tc increases with field. As the 
strong-field limit is approached the Landau level at the Fermi energy contributes 
more strongly to the sum in (19). One immediate effect apparent even at 
comparatively weak fields (MacDonald et ai. 1992) is the decrease in Te for 
odd j. (For COM j odd the probability of pairs occupying the same Landau 
level is zero.) Magneto-oscillations (Rajagopal and Vasudevan 1966; Gruenberg 
and Gunther 1968; Rasolt 1987; Tesanovic and Rasolt 1989; Tesanovic et ai. 
1991; Norman 1990; Rieck et ai. 1990; MacDonald et ai. 1992) in Te, and in all 
properties of the mixed state (Norman et ai. 1992) of the superconductor occur 
as Landau levels pass through the Fermi level. These oscillations have been 
observed experimentally (Graebner and Robbins 1976; Kido et ai. 1991; Smith 
et ai. 1991) and are not yet understood in complete detail. 

At extremely strong fields a regime can be reached where only electrons in 
the Landau level at the Fermi energy contribute importantly to the pairing .. In 
this limit (for 2D systems) Tc reaches a maximum when the Landau level is half 
full (Akera et ai. 1991) and (19) reduces to 

T. . - nwcA IBNF,NF 12 
CJ - 8 j • (25) 

Note that Tej is proportional to the magnetic field strength. In the extreme 
quantum limit all electrons are in the lowest Landau level and NF = O. Since 
the maximum value of j is 2NF it happens that superconductivity occurs in 
the j = 0 channel just as in the weak magnetic field limit. This similarity in 
the nature of the superconducting order in the weak and infinitely strong field 
regimes suggests that no novel behaviour can occur at intermediate fields. This 
suggestion is misleading as we can see by looking at the case where NF =f. O. The 
maximum COM kinetic energy channel for the Cooper pair is 2NF and pairing 
can occur in any even-j channel. From the expression for BfF,NF we find that 
in this case Tc tends to be larger for j close to either its minimum or maximum 
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values and is always the same for j = 0 and j = 2NF (see Table 1). This result 
can be understood by calculating the probability that two electrons of the same 
energy CF but with completely uncertain relative orientations of momentum will 
have a given COM kinetic energy, cR. Averaging over angles it is easy to show 
that 

(26) 

which is peaked near the minimum and maximum possible values for CR. Thus in 
the extremely strong field regime there is the possibility of unusual superconducting 
states in which Cooper pairs are in states with elevated kinetic energies. In 
mean-field theory the vortex-lattice state is found (Akera et ai. 1991) to have 
j > 0 and to have associated unusual properties including the possibility of having 
several vortices per period of the lattice. 

j=O 

1 
1/2 
3/8 

15/48 

5. Concluding Remarks 

j=2 

o 
1/2 
1/4 

3/16 

j=4 

o 
o 

3/8 
3/16 

j=6 

o 
o 
o 

15/48 

In this article we have discussed how the suppression of superconductivity by 
a magnetic field can be understood completely microscopically in terms of the 
quantum mechanics of pairs of particles in a magnetic field. The results obtained 
in this way are equivalent to those obtained by Ginzburg-Landau theory and 
Gor'kov theory in their ranges of validity. The suppression is related to the 
quantum uncertainty in the kinetic energies of the individual electrons making 
up a Cooper pair of definite COM kinetic energy. We have also discussed how 
the suppression can be overcome by the enhancement of the density of states 
near the Fermi energy which occurs for sufficiently strong magnetic fields in 
clean samples, and we have explained why the Cooper pair wavefunction can be 
unusual in this regime. Ginzburg-Landau theory is not valid in the regime of 
strong-field superconductivity except for the case where pairing occurs entirely 
within the N = 0 Landau level. 

We have restricted our attention here to aspects which follow directly from the 
quantum mechanics of pairs of charged particles in a magnetic field and the reader 
should be aware that many other issues arise, some parasitically, especially when 
considering superconductivity in extremely strong magnetic fields. For example, 
in our discussion we have, for the sake of definiteness, taken the electron g-factor 
to be zero; a nonzero g-factor will affect results at strong fields (Rasolt 1987; 
Tesanovic and Rasolt 1989; Tesanovic et ai. 1989, 1991; Norman 1990; Rieck et 
ai. 1990). For the sake of our discussion here we have also assumed that the 
standard mean-field theory of superconductivity, which leads to the expressions 
for Tc we have employed and which is known to be reliable at weak fields, can 
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also be used in the strong-field regime. It is certain (Rasolt and Tesanovic 1992) 
that this is not entirely correct, especially in the 2D case (MacDonald et al., 
to be published), although we believe that the considerations discussed here are 
still essential for the physics in that regime. 
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