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Abstract 

We review the many-body exchange-correlation properties of electrons confined to the lowest 
sub-band of a quantum wire, including effects of impurity scattering. Without impurity 
scattering, the virtual excitations of arbitrarily low energy one-dimensional plasmons destroy 
the Fermi surface of the electrons, whereas the presence of impurity scattering damps out the 
low energy plasmons and restores the Fermi surface. The electron inelastic scattering rate 
r in the absence of scattering is zero below a critical wavevector kc corresponding to the 
plasmon emission threshold, above which r diverges as (k - kc )-1/2 for k -t kc. For typical 
wire widths and electron densities currently available, the calculated bandgap renormalisation 
is found to be on the order of 10-20 meV. We also calculate the finite-temperature inelastic 
scattering rates and mean free paths of electrons injected into a quantum wire containing 
a quasi-one-dimensional electron gas. We show that there is a very sharp increase in the 
electron scattering rate at the one-dimensional plasmon emission threshold. Based on these 
results, we suggest the possibility of a one-dimensional hot-electron device which possesses an 
I - V curve with a sharp onset of a large negative differential resistance. We also present a 
general method for obtaining expressions for the analytic continuation of finite-temperature 
self-energies which are suitable for use in numerical computations. In the case of the GW 
approximation for the self-energy, this method gives the finite-temperature generalisation 
of the zero-temperature 'line and pole' decomposition. This formalism is used to calculate 
the finite-temperature self-energy and bandgap renormalisation of electrons in the extreme 
quantum limit of a quantum wire. A brief review of the experimental and theoretical status 
of plasmons in quantum wire structures is given. 

1. Introduction 

In this article we review some of our recent theoretical work (Hu and Das Sarma 
1992a, 1992b, Hu 1993) on electronic properties of one-dimensional semiconductor 
quantum wire structures, with the emphasis on exchange-correlation and collective 
effects. The main issue addressed here is why the phenomenology of experiments 
on electronic properties of quantum wires is so well described by considering 
quantum wires as normal one-dimensional metals. The subject is of considerable 
fundamental interest because the theoretical consensus developed over the last 
forty years seems to indicate that one dimension is completely different from two 
and three dimensions in the sense that any interaction between the electrons 
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leads to the vanishing of the Fermi surface in one dimension and the concepts of 
quasiparticles and Landau-Fermi liquid theory, which are the central paradigms 
for higher-dimensional electron systems, do not apply. Thus, the reason why the 
current experimental situation in quantum wires is consistent with the picture 
of a normal one-dimensional Fermi liquid is a puzzle requiring understanding. 

The rest of this review is organised as follows. In Section 2 we discuss the 
basic theory of exchange-correlation effects in quantum wires, explaining how 
impurity disorder effects could, in principle, stabilise the one-dimensional Fermi 
surface. In Section 3 we describe a proposed nonlinear quantum wire device which 
utilises special properties of one-dimensional systems. In Section 4 we discuss the 
finite-temperature exchange-correlation effects, introducing a general many-body 
technique for calculating finite-temperature self-energies in interacting Fermi 
systems. We conclude in Section 5 by presenting some results for one-dimensional 
plasmon dispersion. 

2. Exchange-Correlation Effects 

There has been a great deal of recent interest (see e.g. Reed and Kirk 1989; 
Kirk and Reed 1992) in ultranarrow confined semiconductor systems, called 
quantum wire structures, where electron dynamics is essentially restricted to 
being one-dimensional. Such quantum wires, with active widths (along the plane 
of confinement) smaller than 300 A and of negligible (less than 100 A) thickness, 
have recently been fabricated (Plaut et al. 1991; Goiii et al. 1991), and continued 
improvement in growth and fabrication techniques should lead to even more 
confined and better defined wires in the near future. While there is much 
excitement about the potential applications of these semiconductor quantum wires 
as high-speed transistors and efficient photodetectors and lasers, these systems 
have also generated great fundamental physical interest as examples of real 
one-dimensional Fermi gases, where one-dimensional electron dynamics can be 
studied in a controlled and quantitative manner (just as semiconductor inversion 
layers, heterojunctions and quantum wells have been serving as useful physical 
models for two-dimensional Fermi systems for the last decade or so). Recent 
fabrication breakthroughs have allowed the attainment of the truly one-dimensional 
electric quantum limit, in the sense that only one quantum sub-band is populated 
by the electrons in the quantum wire, so that the one-dimensional interacting 
Fermi gas model is valid. Theory predicts very unusual properties for interacting 
one-dimensional Fermi systems, and the semiconductor quantum wires should be 
ideal for observing these properties experimentally. However, in all experiments 
reported thus far (e.g. Plaut et al. 1991; Goiii et al. 1991; Cingolani et al. 
1991; Calleja et al. 1991) the electronic properties of quantum wires seem to be 
explicable on the basis of a normal one-dimensional Fermi liquid model. 

We have recently investigated (Hu and Das Sarma 1992a), within a many-body 
perturbation theory, why the one-dimensional electrons confined in quantum wires 
seem to behave as normal Fermi liquids, despite convincing and well accepted 
theoretical claims that both disorder and interaction effects are singular in 
one dimension and should lead to ground states which are drastically different 
from normal Fermi liquids [such as strongly localised systems or Luttinger 
liquids (Tomonaga 1950; Luttinger 1963; Dzyaloshinskii and Larkin 1973)]. Our 
calculation is, to the best of our knowledge, the first complete realistic theory of 
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many-body exchange-correlation effects in one-dimensional quantum wire systems. 
Similar early calculations (Vinter 1975; Lee et al. 1975; Ando 1976; Das Sarma 
et al. 1989) in two-dimensional electron gas systems were useful and important 
in the development of that subject. 

We begin by mentioning three important ways in which an ideal one-dimensional 
electron gas is theoretically expected to be strikingly different from its higher
dimensional counterparts. In each case, a perturbation to the system, which in 
higher dimensions tends to leave the system in a Fermi liquid state, theoretically 
drastically changes the behaviour of the system in one dimension (i.e., the Fermi 
liquid behaviour is a highly unstable fixed point in one dimension). We then 
argue that actual semiconductor quantum wires may behave differently from the 
theoretical zero-temperature ideal because of the effects of finite-temperature, 
finite size and scattering, which may serve to stabilise Fermi liquid behaviour in 
the semiconductor quantum wires. 

First, the presence of any electron-phonon coupling (which is invariably present) 
in a one-dimensional system theoretically should result in a lattice Peierls (1955) 
distortion accompanied by a charge-density wave ground state at zero temperature. 
However, in actual semiconductor quantum wires, the electron-phonon interaction 
via the deformation potential coupling is so weak that even at the low temperatures 
at which experiments on these systems are performed, the Peierls distortion 
does not occur. The second important consideration for quantum wires is 
disorder-induced Anderson (1958) localisation: in one dimension (unlike higher 
dimensions) the presence of any disorder localises all non-interacting electronic 
states. The currently fabricated semiconductor quantum wires are obviously not 
disorder-free, and hence in the electric quantum limit all the quantum wire 
electronic states are exponentially Anderson-localised, and the concept of an 
electron gas strictly should not apply here. However, we argue that in the 
state-of-the-art high-quality semiconductor quantum wires, fabricated with the 
aid of modulation doping techniques, typical localisation lengths are very long 
(many microns) and therefore in these wires the electrons may be considered to 
be extended for all experimental purposes. It should, however, be mentioned that 
Anderson localisation is the property of a non-interacting disordered electron gas 
and, in the presence of electron-electron interaction, one-dimensional exponentially 
localised states may be delocalised. 

The third important way in which ideal one-dimensional Fermi gases differ from 
equivalent higher-dimensional systems is that the presence of particle-particle 
interactions theoretically makes the Fermi liquid model inapplicable to one
dimensional systems. Instead, the paradigm for interacting one-dimensional Fermi 
systems is the strongly correlated Luttinger (also called Tomonaga-Luttinger) 
liquid. Hence in the electric quantum limit semiconductor quantum wires should 
behave as Luttinger liquids. In experiments involving luminesence, inelastic light 
scattering, far infrared spectroscopy, capacitance studies, etc., on the other hand, 
quantum wires have shown no obvious sign of Luttinger liquid behaviour, seemingly 
behaving instead as normal one-dimensional Fermi liquids. For instance, an 
essential feature of a Luttinger liquid is that it has no Fermi surface (i.e. the 
momentum distribution function nk is continuous through the Fermi momentum 
kF) and yet luminesence experiments show large Fermi edge singularities (Calleja 
et al. 1991). In a recent paper we have suggested, based on the theoretical results 
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reviewed here, that in real quantum wires, impurity effects can suppress Luttinger 
liquid behaviour in semiconductor quantum wires, causing them to behave as 
normal one-dimensional Fermi liquids. Thus the effects of the strong correlations 
of the Luttinger liquid, like the Peierls instability and Anderson localisation, may 
be negligible in real quantum wires. The fact that quantum wire experimental 
results are routinely interpreted on the basis of a one-dimensional normal metal 
model indicates that these peculiarities must not be strongly present in real 
systems. 

We calculate the zero-temperature leading-order (in the dynamically screened 
interaction) self-energy I:(k, w) of electrons that are confined to the lowest energy 
sub-band of a quantum wire of width a and zero thickness with infinite potential 
barriers. We ignore contributions from higher energy sub-bands on the grounds 
that they should be irrelevant in the limit where the electron Fermi energy 
is much smaller than the sub-band energy separation. The calculation can 
be extended to include higher sub-bands. Knowledge of I:(k,w) allows one to 
calculate many experimentally observable one-electron properties of a system. We 
calculateI:(k,w) using the so-called GW approximation (Hedin 1965) which has 
been highly successful in describing properties of real two- and three-dimensional 
electron systems. I: ( k, w) is determined by the dynamical screening properties 
of the electron gas in the wire, which is quantified by the dielectric function 
E(q,W). We assume that E(q,W) is given by the random phase approximation 
(RPA) (Li and Das Sarma 1989, 1991) which has recently been shown (Li et al. 
1992) to exactly reproduce the plasmon dispersion of one-dimensional systems. 
We include the effects of impurity scattering on E( q, w) through the modification 
given by Mermin (1970) in which the scattering.is described by a single relaxation 
rate "(. 

A system is a Fermi liquid if it possesses a Fermi surface (i.e. a discontinuity in 
nk) whose presence is indicated by a 8-function in the spectral function A(k, w) at 
k = kF and w = o. The existence of a 8(w) in A(kF'W) depends crucially on the 
behaviour of Im[I:(kF'W)] as w -> o. If \ Im[I:(kF'W)] \ goes to zero faster than 
\w\, then A(kF'W) has a 8(w), indicating that the system is a Fermi liquid. The 
discontinuity in nk at kF is proportional to the weight of this 8-function and is 
called the renormalisation factor ZF (Mahan 1990). In contrast, if \ Im[I:(kF'W)] \ 
goes to zero slower than \w\, then there is no 8-function in A(kF'W), implying 
that the system is not a Fermi liquid. Two- and three-dimensional systems 
without disorder are in general Fermi liquids (Luttinger 1961; Chaplik 1971). 
Through a study of Im[I:ret(kF,w)] we show that in one dimension the system 
is (is not) a Fermi liquid in the the presence (absence) of impurity scattering. 

The imaginary part of I:( kF' w) is a measure of the virtual transition rate to 
all states of energy less than w away from the Fermi energy. At low energies in 
two and three dimensions, single-particle scattering is far more important than 
plasmon scattering because the single-particle excitation spectrum is gapless and 
the phase space available for single-particle scattering extends around the entire 
Fermi surface, whereas the plasmon dispersion either rises quickly or has a gap 
at q = o. Therefore, for small w, the major contribution to Im[I:(kF'W)] in two 
and three dimensions comes from virtual single-particle excitations. In contrast, 
in one dimension, the single-particle excitation spectrum has a gap except at 
\q\ = 0, 2kF , and the phase space available for single-particle scattering is severely 
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restricted, while the plasmon dispersion is gapless at q = o. Hence, in one 
dimension, Im[L:(kF'w)] at small w is dominated not by virtual single-particle 
excitations but by the virtual excitation of plasmons. This unique feature of 
one-dimensional systems gives rise to interesting consequences, which we describe 
next. 

In the case of a clean quantum wire (-y = 0), we find within the RPA 
that the dominance of the virtual low energy plasmon excitations results in 
I Im[L:(kF'w)] I rv Iwllln(lwl)I~, indicating, as noted earlier, that the Fermi 
surface does not exist (in agreement with Luttinger liquid theory). In other 
words, because of the ease with which particles at the Fermi surface can emit 
virtual low energy plasmons, the Fermi surface smears out to the extent that a 
sharp discontinuity in nk no longer exists. However, the inclusion of impurity 
scattering causes the electrons to diffuse at long wavelengths, which damps out 
the plasmons at small q. Hence the plasmon contribution to Im[L:(kF'w)] at small 
I wi is removed, resulting in I Im[L:(kF,w)ll rv w211n( Iwl) 13 as I wi ~ 0, which 
implies that the Fermi surface is restored. This result indicates that the Fermi 
surface is resurrected in dirty systems because the low energy virtual plasmon 
emission responsible for its destruction in clean systems has been suppressed by 
impurity scattering. 

In Fig. 1 we show our calculated Fermi distribution function nk = 
(21f)-1 f dw A(k, w) for various values of the impurity scattering rate 'Y. We 
emphasise that 'Y was included only in the dynamical screening function and 
not in the single-electron Green's function because we wanted to determine 
whether the suppression of the emission of low energy virtual plasmons produces 
a discontinuity in nk. Figure 1 clearly shows a discontinuity in nk at k = kF for 
'YIEF =I=- o. Note that if we had included effects of'Y (or finite temperature) in 
the single-electron Green's function, nk would have been broadened in the usual 
way and the result would look very similar to non-singular higher-dimensional 
broadened Fermi functions. In the inset to Fig. 1 we show the calculated ZF as 
a function of the impurity scattering rate. For 'Y = 0, ZF = 0, indicating that 
there is no Fermi surface, but as scattering is increased ZF also increases until 
it saturates at very large 'Y (where our results should not be trusted because 
our treatment ignores localisation). Note that ZF goes to zero slowly as 'Y ~ 0, 
implying that even a small amount of impurity scattering results in a fairly 
pronounced discontinuity in nk at kF . 

Figure 2 shows the inelastic scattering rates of quasiparticles in the conduction 
band r(k) = 21 Im[L:(k, w = ~k)ll, where ~k is the electron energy relative to the 
chemical potential, for parameters corresponding to a = 100 A and a density of 
n = 0·56 x 106 cm-1 in GaAs. For 'Y = 0, below a threshold wavevector kc, 
there is no electron-electron scattering (within the RPA) because in a strictly 
one-dimensional system, conservation of energy and momentum restricts electron
electron scattering to an exchange of particles, which is not a randomising process 
because electrons are indistinguishable. (Our treatment ignores multi particle 
excitations, which will give rise to a nonzero scattering rate for k < kc .) For 
k> kc, a new scattering channel opens in which electrons genuinely emit plasmons 
(as opposed to the virtual plasmon excitations at the Fermi surface). The 
inelastic scattering rate diverges as rv(k - kc )-1/2 as one approaches kc from 
above, due to the divergence in the density of states available for scattering 
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Fig. 1. Momentum distribution function nk of a quasi-one-dimensional electron gas around 
k/kF = 1, for various impurity scattering rates /. The parameters used are kFa = o·g 
and Ts = (2me e2/1rh2kFK,) = 0·7, which for GaAs correspond to a = 100A and density of 
0·56 x 106 cm- 1 , giving a Fermi energy EF = 4·4meV = 50K = (hx)6·7 x 1012 S-l and 
an average Coulomb potential energy between electrons of 2e2 kF /7rK, = 6·2 meV. The bold 
lines refer to k > kF, and the thin lines to k < kF. For / = 0, nk is continuous at k = kF, 
implying that the system is a non-Fermi liquid, but for / =I 0 a discontinuity occurs at k = kF' 
signalling the presence of a Fermi surface. The inset shows the Fermi surface renormalisation 
factor ZF, which gives the magnitude of the discontinuity in nkF' as a function of /. 

right at the plasmon emission threshold. For I =1= 0, the inelastic scattering rate 
remains finite because the plasmon line is broadened. Furthermore, the breaking 
of translational invariance relaxes momentum conservation, permitting inelastic 
scattering via single-particle excitations for k < kc . The inset in Fig. 2 shows 
the inelastic mean free path, 1= v(k)/r(k), where v is the electron velocity. 

In Fig. 3 we show the results of the calculation of the the bandgap renormalisation 
(the sum of Re[I;(k = O,W = ~k=O)J of conduction band electrons and valence 
band holes) due to the presence of the conduction electrons. These results should 
be useful in explaining photoluminescence experiments in quantum wires, even 
though we only have electrons in our calculation whereas the experiments contain 
both electrons and holes, because we expect the holes to have a negligible effect 
on the bandgap renormalisation due to their large mass (and hence their inability 
to screen effectively). 

Finally, we discuss differences between our model and the Luttinger model, on 
which the properties of the Luttinger liquid are based. We assume a finite density 
of electrons in a parabolic energy dispersion, whereas the Luttinger model assumes 
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Fig. 2. Inelastic scattering rates r(k), as a function of k, for various electron impurity 
scattering rates 1', for kFa = O·g and 'rs = 0·7. Within the RPA, for I' = 0, r(k) is 
identically zero below k = kc because energy and momentum conservation prohibits single 
particle excitations and plasmon emissions. Above kc the scattering rate is caused by plasmon 
emissions. For I' 1'= 0 the plasmon line broadens and momentum conservation is relaxed, 
resulting in a nonzero r for k < kc . The inset shows the corresponding mean free path 
l(k) = r(k)k/m. 

an infinite density of negative energy electrons in a completely linear dispersion. 
We use the actual Coulomb interaction (Das Sarma and Lai 1985) between 
electrons for a rectangular well [a reasonably realistic model for confinement (Laux 
et al. 1988)], whereas the Luttinger model assumes an unrealistic short-range 
potential. On the other hand, we carry out the self-energy calculation only to 
leading order in the dynamically screened interaction, whereas the solution of 
the Luttinger model includes all vertex corrections and is exact. Thus, ours is a 
leading-order calculation of a realistic model, whereas the Luttinger model is an 
exact result to an unrealistic model. 

3. Device Applications 

Based on the results reviewed in Section 2, we proposed (Hu and Das Sarma 
1992b) a novel device principle which directly uses the many-body properties of a 
one-dimensional quantum Fermi liquid. We show here that it may be possible to 
obtain a device with a large and sudden onset of negative differential resistance 
(NDR) (i.e. dI/dV < 0). This sudden onset of NDR could be exploited to 
produce a transistor, while the NDR itself suggests that this device might be 
used as an oscillator (e.g. in analogy with the Gunn oscillator or, more recently, 
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Fig. 3. Total bandgap renormalisation (Re[Ee + Ehl at k = 0, W = ek=O) as a function of 
electron density in the quantum wire, for various wire widths with parameters corresponding 
to GaAs. 

the resonant tunnelling diode). In the proposed device principle, the predicted 
NDR is associated with a sharp change in the inelastic mean free path of the 
injected electrons at a specific energy: in the ideal system at T = 0, the mean 
free path changes from being infinite below the threshold voltage to being zero 
above it. 

The device principle which we propose may be experimentally observed in the 
quasi-one-dimensional version of the tunnelling hot electron transistor amplifier 
(THETA), shown schematically in Fig. 4, which has been fabricated successfully 
in three and two dimensions (Levi et al. 1985; Heiblum et al. 1985; Sivan et 
al. 1989). We assume that the quasi-one-dimensional device is in the extreme 
quantum limit, i.e. that all the electrons are in the lowest energy sub-band in the 
device. Electrons are injected from an emitter at energies above the Fermi energy 
EF into a base region which contains (either through doping or electrostatic 
confinement) a one-dimensional electron gas, and the injected electrons that travel 
through the base region enter the collector on the opposite side of the base. The 
fraction of electrons that reach the collector depends on the mean free path (and 
hence the scattering rate) of the injected electrons, and the mean free path is in 
general a strong function of the momentum Tik (or equivalently, the energy) of 
the injected electrons and the electron density in the base region. 

In two and three dimensions, the main scattering mechanism for these electrons 
in the THETA devices is provided by the coupled plasmon-optic-phonon modes 
(Jalabert and Das Sarma 1989). However, in the semiconductor quantum wires 
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Fig. 4. A schematic of the band diagram of a one-dimensional tunnelling hot electron 
transistor, where electrons are injected from the emitter into the base (which contains a 
Fermi sea of electrons) with some fraction of the injected electrons reaching the collector. 
The solid (dashed) line indicates injection of the electrons into the base region below (above) 
the plasmon emission threshold (Le., the solid line is for k < ke and the dashed line is for 
k > ke). The inset shows the energy versus momentum-loss diagram for the injected electron. 
The intersections of the energy versus momentum-loss curve and the plasmon dispersion 
curve (bold line) indicates the wavevectors at which plasmons are emitted; if there is no 
intersection (as with the solid line), plasmon emissions are not allowed. As the energy of the 
injected electrons is raised above the plasmon emission threshold, the scattering rate increases 
dramatically (see Fig. 5), drastically reducing the fraction of injected electrons that reach the 
collector. 

in the extreme quantum limit that are currently being fabricated, the densities 
of the electrons in the base are low enough that all the energy scales associated 
with the electron gas and operation of the device (EF' plasmon energy and 
electron injection energy) are much smaller than the optic phonon energy, and 
therefore the optic phonons play a negligible role. Acoustic phonons can also be 
ignored because they couple very weakly to electrons in III-V semiconductors, 
and the associated scattering rates are on the order of 1010 S-l. We assume 
that impurity scattering in the wires is negligible, which is not unreasonable 
given the excellent and continually improving techniques for fabricating these 
mesoscopic systems. This last assumption is equivalent to assuming that the 
elastic mean free paths are much longer than the inelastic mean free path to 
be calculated in this paper-given that our calculated inelastic mean free paths 
are generally a few thousand A or less, and that in good quality quantum wires 
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elastic mean free paths are many microns, the neglect of impurity scattering is a 
good approximation for our purposes. Thus the main scattering mechanism for 
an injected electron is the interaction with the electron gas in the base. 

As emphasised in Section 2, in strictly one-dimensional systems with a 
parabolic band, the only pair electron-electron scattering (where the injected 
electron scatters with a single particle in the base) allowed by conservation of 
energy and momentum is an exchange of particles, which is not a randomising 
process because the electrons are indistinguishable. Multi-particle scattering 
(interactions of the injected electron involving two or more other electrons) is of 
higher order in the screened interaction, and therefore we ignore it because we 
expect its contribution to be small. The only scattering mechanism left that is 
responsible for preventing the injected electrons from reaching the collector is 
the interaction of the injected electrons with the plasmons (Le. collective density 
oscillations) of the electron gas in the base, which we review in the last section. 

Not all injected electrons can emit plasmons. Because the plasmon dispersion in 
quasi-one-dimensionalsystems goes as (Das SarmaandLai 1985) w(q) "" qlln(qa) It, 
where a is the width of the wire, only injected electrons with large enough 
kinetic energies can emit plasmons (see inset to Fig. 4). At T = 0, for a given 
density n, there is therefore a threshold wavevector ke(n) below which no plasmon 
emission can take place. Within the approximations we have used and at T = 0, 
as k is increased through ke, the scattering rate jumps from zero to infinity 
(equivalently, the mean free path falls from infinity to zero); this divergence in 
the scattering rate at k = ke is due to phase space features that are peculiar 
to one-dimensional systems. This result indicates that as the bias voltage is 
increased so that the k of the injected electrons rises above ke (or equivalently 
if n is decreased so that ke falls below k), the jump in the scattering rate should 
be spectacular, and the current passing from emitter to collector should fall 
dramatically. Thermal and impurity effects will broaden the divergence in the 
scattering rate, but, as we show below, this effect persists up to relatively high 
temperatures. 

Using the Born approximation, we calculate the finite-temperature momentum 
(or transport) scattering rate, Ft,k, which is the quantity that is relevant to the 
decay in current.* The momentum scattering rate at temperature T is given 
by the integral over wavevectors of the scattering probabilities, weighted by the 
change in momentum, Le. (see e.g. Pines and Nozieres 1966) 

x [1- feq(k + q)]. (1) 

Here Wk(q) = E(k + q) - E(k) [where E(k) = n?k2/2m is the electron kinetic 
energy], Vc(q) is the Coulomb matrix element for electrons in the lowest sub-band 

* The total finite-temperature Born approximation scattering rate is actually infinite due 
to the divergence in the factor [1 - exp(wk(q)/kBT)]-l at small q. However, these small-q 
scattering events have little effect on the degradation of the current, which is the quantity of 
interest here. Therefore, we calculate the more physically meaningful quantity rt,k. 
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Fig. 5. Momentum scattering rate rt,k of an electron in a doped one-dimensional quantum 
wire, as a function of electron momentum for various temperatures. The parameters used are 
kFa = 0·9 (kF is the Fermi wavevector) and r. = (2me e2 /1rli?kFK-) = 0·7. The insets show 
the corresponding mean free path, lk = Vk/ rt,k. 

of a square quantum well of width a with hard walls, f~q(k) is the Fermi-Dirac 
distribution at temperature T, and €(q,w) is the dielectric function of the 
one-dimensional electron gas, within the random phase approximation (RPA). 

In Fig. 5 we show the results of our calculation of rt,k, and the corresponding 
mean free path, lk = Vk/ rt,k (where Vk = Tik/m is the electron velocity). In the 
case of T = 0, the Born-approximation rt,k is exactly zero up to the plasmon 
emission threshold, and it diverges as (k - kc)-1/2 as k - k"t. As the temperature 
is increased, the divergence becomes a finite peak due to the broadening of the 
plasmon line through Landau damping, and the peak shifts to higher energies. 
The shift of the peak is due to an upward shift in energy of the plasmon dispersion 
curve with increasing temperature, which is a well known phenomenon in plasma 
physics. In one dimension, the plasmon dispersion for small q is 

2() nq2Vc,(q) (1 3m(V2)) w q ';::!, + , 
m nVc,(q) 

(2) 

where (v2 ) denotes the average of v2 over the distribution of the electron gas in 
the base. For a one-dimensional Fermi gas, to order T2, 

(3) 
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explicitly showing the upward shift in the plasmon dispersion with increasing 
temperature. The sharp drop in the mean free path persists to relatively high 
temperatures (here on the order of tens of degrees for the parameters chosen), 
and therefore should be experimentally observable. We believe that this sharp 
drop in the inelastic mean free path will produce a large NDR in quantum wires 
as the injected electrons pass through the threshold energy. 

We note that the RPA exactly reproduces the collective mode spectrum for 
the exactly soluble Luttinger model for one-dimensional systems (Li et al. 1992). 
Since our results are mainly based on this collective mode behaviour, the RPA 
should be a good approximation for our purposes. 

We have shown in this section that, due to the sudden onset of a very large rt,k 

caused by the emission of plasmons in a doped quasi-one-dimensional quantum 
wire, a one-dimensional THETA device could show an I - V curve with a sudden 
onset of large negative differential resistance. This characteristic could have 
applications in switching devices or oscillators. Note that in higher-dimensional 
electron systems there is a plasmon threshold as well where the onset of plasmon 
emISSIon occurs. The effect in higher dimensions, however, is not dramatic 
because the ideal mean free path does not change from being infinite below 
the threshold to zero above (as it does in the one-dimensional system), since 
single-particle scattering contributes in higher dimensions, in contrast to the 
situation in one dimension. Thus, our proposed NDR in quantum wires is a 
specific one-dimensional many-body property. 

4. Finite Temperature Results 

Powerful field-theoretic techniques, including Feynman diagram perturbation 
methods, were developed several decades ago as a tool for calculating physical 
properties of interacting quantum systems. First to be introduced was the 
zero-temperature formalism, which allowed the ground state properties of an 
interacting system to be calculated. Subsequently, Matsubara (1955) introduced a 
similar formalism for finite-temperature systems, which was formally identical to 
the zero-temperature formalism. The zero-temperature formalism has generally 
been used for many-body quasiparticle calculations for metals because the energy 
scales intrinsic to the problem (Fermi energy, plasmon energy, etc.) are usually 
much larger than the temperature T. However, in semiconductors, especially 
in artificial structures of reduced dimensionality, because of the low electron 
densities and large dielectric constants involved, the experimental temperature 
can be comparable to the intrinsic energy scales of. the electron gas. In these 
cases, the zero-temperature formalism may not provide an adequate description 
of the system, and therefore the finite-temperature formalism is needed. 

While the finite-temperature formalism is easier to handle than the zero
temperature formalism in some ways, using it involves an extra hurdle. With the 
finite-temperature formalism, one obtains an expression for the electron self-energy 
O"(ivn ) that is only valid at discrete points iVn == i(2n + l)1fT on the complex 
frequency plane, where n is an integer. (In this paper, we set 'Ii = kB = 1.) 
The O"(ivn ) must be analytically continued to the complex plane to obtain the 
self-energy I;(z) that is valid for all complex frequencies from which the retarded 
self-energy, the quantity relevant to experiments, can be obtained by setting 
z = w + iO+. (In this paper we use the convention that functions denoted by 
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upper case characters are analytic in the frequency variable while those denoted 
by lower case characters may be non-analytic.) 

In principle, one can obtain from O"(iZln) a formal expression for E(z) in terms 
of integrals over spectral representations, but the expressions for E(z) obtained 
in this manner involve integration over one or more frequency variables, which 
makes them inefficient for use in numerical computations. On previous occasions 
various approximations, such as the plasmon-pole approximation, were used to 
obtain the finite-temperature self-energy (Das Sarma et al. 1979; Das Sarma and 
Vinter 1982). In this paper we present a more direct method of analytically 
continuing the O"(iZln) to E(z), which yields an exact expression that is much 
more amenable to numerical calculation. 

In a nutshell, the method uses the properties which the analytic continuation 
of O"(iZln ) must satisfy to lead us to its analytic continuation, E(z). These 
properties are as follows: (i) E(z) is analytic on the entire complex frequency 
plane, with the exception of branch cuts on the real axis (henceforth, when we 
say a function is 'analytic' it is with the implicit understanding that it could 
have branch cuts on the real axis); (ii) E(z=iZln) = O"(iZln) for all iZln; and (iii) 
E(z) goes to a constant as Izl -+ 00. These properties ensure a unique analytic 
continuation (Baym and Mermin 1961). By systematically fulfilling each of the 
above conditions, we are led directly to the desired analytic continuation. 

We elucidate this method by examining a simple example, that of the self-energy 
within the GW approximation see Fig. 6a of a translationally invariant system. 
The self-energy can be written as a sum of a frequency-independent exchange 
and a frequency-dependent correlation part, O"(k, iZln) = O"ex(k) +O"cor(k, iZln). The 
exchange part, which is frequency-independent (and hence already analytic), is 
given by O"eAk) = _(27r)-d J dq Vc,(q) nF(ek+q), where Vc,(q) is the bare Coulomb 
interaction, nF(x) = [exp(x/T) + 1]-1 is the Fermi function, ek+q is the kinetic 
energy relative to the chemical potential and d is the dimension of the system. 
The O"cor(k, iZln) is given by 

where 

O"cor(k,iZln)=-j dq
d hk,q(iZln), 

(27r) 

h ( . ) - T" w(q,iZln) 
k,q ZZln - ~.. . 

. ZZln + ZWn - ek+q 
OWn 

(4) 

(5) 

Here the frequency summation is over the boson frequencie~ iWn = i27rnT (n 
are integers), and w(q,iZln) = Vc(q)[C 1(q,iZln) -1] is the difference between the 
screened and bare Coulomb interactions. The problem is to analytically continue 
O"cor(k, iZln) to Ecor(k, z). 

From (4), finding an analytic continuation Ecor (k, z) of 0" cor (k, iZln) is equivalent 
to finding the analytic continuation Hk,q(Z) of hk,q(iZln). Thus if we construct 
a function Hk,q(Z) such that (I) it is analytic (in the sense mentioned above), 
and (II) Hk,q(z=iZln) = hk,q(iZln), then 

J dq 
Ecor(k,z) = - (27r)dHk,q(z) (6) 
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Fig. 6. (a) The diagram for the GW approximation to the self-energy. The thick wavy line 
indicates the screened Coulomb interaction, while the straight solid line is the bare-electron 
Green function. (b) The contour of integration C for (7). The hatched real axis indicates a 
branch cut due to w(q,w) in the integrand of (7). The crosses mark the poles due to the 
integrand; the ones on the imaginary axis are due to nB(w), and the isolated pole is due to 
the denominator. The residues o! the poles on the imaginary axis give hk,q(Z), while the 
residue of the isolated pole gives hk,q(Z). 

automatically satisfies the conditions (i) and (ii) above. Note that the simple 
replacement iVn -+ Z in (5) gives a function hk,q(Z) that has poles at Z = ~k+q -iwn 

for all n and thus, because it violates condition (I), is not the desired analytic 
continuation Hk,q(z). 

The outline of the procedure for obtaining the function Hk,q(Z) which 
satisfies conditions (I) and (II) is as follows. First, we write down a function 
H:,q(z) = hk,q(Z) + hk,q(Z), where hk,q(Z) is chosen so that it cancels all the 
singularities in hk,q(Z) on the complex plane. Thus H:,q(z) is analytic, fulfilling 
condition (I). However, hk,q(Z) is in general nonzero at Z = ivn , and hence 
Hk,q(ivn ) =f:. hk,q(ivn ), violating condition (II). The second step is therefore to add 
an additional analytic term H'k,q(Z) which cancels hk,q(Z) at all Z = ivn . Since 
the function H:,q(z) + H'k,q(Z) is analytic and equals hk,q(Z) for all Z = ivn , 
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fulfilling both conditions (I) and (II), it is the desired analytic continuation 
Hk,q(Z). With this Hk,q(Z), ~cor(k, z) given by (6) satisfies conditions (i) and 
(ii) above. Condition (iii) can be checked at the end; in the case of the GW 
approximation (and in other cases we have studied) it is satisfied. 

In the case of the GW self-energy, H:,q(z) is given by 

HA (z) = 1 dw w(q,w)nn(W) 
k,q 2 . (:' C 7fZ Z + W - <,k+q 

(7) 

where nn(w) = [exp(w/T) -1]-1 is the Bose distribution function, and the contour 
of integration C is shown in Fig. 6b. The function H:,q(z) is clearly analytic 
(off the real axis) in the variable z. By the residue theorem, H:,q(z) is given 
by the sum of the residues of the poles from nn(w) and the denominator in the 
integrand of (7) [note that w( q, w) is analytic everywhere except for a branch 
cut on the real axis], yielding 

(8) 

where 
h (z) = T "'"' w( q, iwn ) k,q ~. (: , 

. Z + ZWn - <,k+q 
'W n 

(9) 

Despite being the sum of two nonanalytic functions, H:,q(z) is analytic because 
the poles that occur at Z = ~k+q - iWn for hk,q (z) are exactly cancelled by the 

- - A 
the poles in hk,q(Z).* However, because hk,q(ivn) =I=- 0, Hk,q(z) does not fulfil 
condition (II). In order to fulfil condition (II), we need to add an analytic function 
which cancels hk,q(Z) at Z = ivn . 

Since iVn = i(2n + l)7fT, for all integers n, nn(~k+q - ivn) == -nF(~k+q), and 
thus hk,q(i;yn) = -w(q'~k+q-iVn)nF(~k+q). Therefore the analytic term needed 
to cancel hk,q(ivn) is 

(10) 

Hence, Hk,q(Z) = H:,q(z) + H'k,q(Z) is given by (8), (9) and (10), and the 
correlation self-energy in the GW approximation is, from (6), 

~cor(k, z) = - J (!~d [H:,q(z) + H'k,q(Z)] 

= -J~T L w(q,iwn) 
(27f)d . Z + iWn - ~k+q 

'Wn 

* Recall that the Bose function can be written as nB (() = - -21 + T" . (( - iwn ) -1 . 
L..i'lWn 
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The retarded self-energy, ~ret (k, w), is obtained by setting Z -+ w + iQ+. The 
first and second terms on the right-hand side of (11) are, respectively, the 
finite-temperature generalisation of the so-called 'line' and 'pole' components of 
the GW approximation of the T = 0 correlation self-energy (Quinn and Ferrell 
1958). As in the zero-temperature case, the line contribution is completely real 
because w(q, -iwn ) and w(q, iwn ) are complex conjugates, and hence the total 
contribution to the imaginary part of ~ret (k, w) comes from the pole part. 

As in the T = 0 case, in the GW approximation the 'on-shell' imaginary part 
of the self-energy, 1 Im[~ret (k, W=~k) 11, is half the sum of the Born-approximation 
electron and hole scattering rates. Using the identity 

nB(~k+q - w) + nF(~k+q) = nB(~k+q - w)[l - nF(~k+q)l 

- nB(w - ~k+q)nF(~k+q), (12) 

we can write 2IIm[~ret(k, ~k)ll = I'e(k) + I'h(k), where 

I'e(k) = - J (2~~d 2Vc(q)Im[E-l(q'~k+q - ~k)lnB(~k+q - ~k)[l- nF(~k+q)l, 

I'h(k) = J (!~d 2 Vc,(q) Im[E-1(q, ~k+q - ~k)lnB(~k - ~k+q) nF(~k+q) (13) 

are the Born-approximation electron and hole scattering rates respectively. 
The method outlined above can also be used for higher-order diagrams. The 

procedure is analogous to the one carried out above, i.e. one first obtains an 
analytic function H~,q(z) = hk,q(z) + hk,q(z) by writing H~,q(z) in terms of 
integrals _of the form (7). One finds the analytic H'k,q(Z) necessary to cancel 
out the hk,q(z) at Z = ivn . The number of terms needed to obtain Hk,q(z) 
increases somewhat from the example given above [for the second-order term for 
the self-energy with two screened Coulomb interactions, six terms are needed 
in addition to hk,q(z)], but writing ~ret(k, z) in the manner prescribed above 
generally reduces integrals over spectral representations to sums over complex 
frequencies, which aids numerical computation. Note that this technique is 
independent of system dimensionality and can be used in higher dimensions as 
well. 

Because the energy scales of the electron gas in semiconductor quantum 
wire structures are small (e.g. Fermi energies of 5 me V rv 50 K), even small 
temperatures may affect their many-body properties significantly. We therefore 
apply (11) to the calculation of the self-energy and bandgap renormalisation of 
electrons in a one-dimensional quantum wire in the extreme quantum limit (i.e. 
assuming that the electrons only occupy the lowest energy sub-band). We use 
the RPA form for the dielectric function E(q, z), which we evaluate numerically 
using an expression given by Maldague (Maldague 1978; Das Sarma 1986). 

In Fig. 7 we show the real and imaginary parts of the retarded self-energy 
of a quantum wire (with a parabolic band in the unconfined direction) as a 
function of frequency for k = O. The discontinuities in Im[~ret(w)l at T = 0, 
which arise from virtual plasmon emission thresholds, broaden with increasing 
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Fig. 7. Real (a) and imaginary (b) parts of the k = 0 self-energy (in the GW approximation, 
where W is screened interaction given by the random phase approximation) as a function of 
frequency for a quasi-one-dimensional electron gas, at various temperatures. As in Fig. 5, 
parameters used here are kFa = o·g and rs = 0·7_ A logarithmic divergence develops at 
w = ek (the 'on-shell' frequency) in ImEret(k,w) for T =1= 0 because the Born approximation 
electron-electron scattering rate at T =1= 0 in a one-dimensional electron gas is infinite. 
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Fig. 8. Bandgap renormalisation due to conduction electrons as a function of temperature, 
for a wire width of 100 A in GaAs, for various electron densities: The thin line is for the 
electrons (Re[Eelectron(k=O,ek=O)]), the light bold line is for the holes (Re[Eho1e(k=0,ek=O)]), 
and the heavy bold line is for the sum of the two. The densities n = 0·01 x 106 cm-I, 
0·1 x 106 cm-1 and 1 x 106 cm-1 correspond to Fermi temperatures of EF = 1·6 X 10-2 K, 
1·6 K and 160 K, respectively. 

temperature because the plasmon peaks are broadened by Landau damping. The 
logarithmic divergence in the imaginary part of the self-energy which develops 
at w = ek when T is increased from zero is unique to one-dimensional systems: 
in d = 1 at w = ek, there is a non-integrable q-l singularity in the integrand in 
(11), corresponding to a divergence in the Born-approximation electron-electron 
scattering at small momentum transfer. (In higher dimensions this singularity is 
removed by the phase space factor qd-l.) Concomitant with the divergence in 
Im[~ret(k, ek)] is a discontinuity in Re[~ret(k, ek)], since the real and imaginary 
parts are related by the Kramers-Kronig relations. 

In Fig. 8 we show the electron and hole bandgap renormalisation due to the 
presence of conduction electrons. These results are relevant to photoluminescence 
experiments in GaAs, even though the calculation ignores the screening effects of 
holes, because the holes are ineffective at screening due to their heavy mass. Due to 
the discontinuity in Re[~ret(k, ek)], we take ~ Re[~ret(k, ek +0+) +~ret(k, ek - 0+)] 
at k = 0 to be the bandgap renormalisation. We find that for very low densities, 
where the Fermi temperature is low, the bandgap renormalisation can change 
by approximately an order of magnitude when the temperature increases from 
T = 0 to T = 300 K. 
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5. Plasmons 

In this section we provide a brief review of the RPA theory of one-dimensional 
plasmons, which have recently been observed (Goiii et al. 1991) via Raman 
scattering spectroscopy in GaAs quantum wires. It is worth while to note that 
the recent . experimental measurement of one-dimensional plasmon dispersion in 
GaAs quantum wires is in excellent quantitative agreement with the earlier simple 
RPA predictions of Das Sarma and Lai (1985) and Li and Das Sarma (1989, 
1991) showing the RPA to be a valid description of plasmons in one dimension, 
somewhat in contrast with one's intuitive expectation that it should be a poor 
approximation in lower dimensions. 

Within the RPA, the plasmon dispersion is given by (Pines and Nozieres 1966) 
the vanishing of the dielectric function c:(q,w) = 1- Vc,(q)JIo(q,w), where Vc,(q) 
is the Coulomb interaction and JIo is the non-interacting, dynamical irreducible 
polarisability. The long-wavelength plasmon frequency, wp , in d dimensions is 
easily obtained by noting that 

and 

nq2 
JIo(q,w) = --2 

mw 

{ 
ql-d, 

Vc,(q) rv 

I In(qa) I , 

if d = 2,3, 

ifd=l, 

(14) 

(15) 

which gives wp rv constant, q~ and q Iln(qa) I~ in d = 3,2,1 dimensions respectively. 
The length a, introduced essentially as an infrared cutoff in d = 1, is the width 
of the quantum wire. We mention that the plasmon is massless or ungapped 
in both d = 1 and d = 2 (i.e. wp ---+ 0 as q ---+ 0) due to the fact that in lower 
dimensions there is no long-range electrostatic restoring force for sinusoidal charge 
perturbations. Of course in d = 3, the plasmon mode has a finite long-wavelength 
frequency given by Wp = [4nne2 j(Km)l~, where K is the background dielectric 
constant, arising from the long range nature of the restoring forces in the 
three-dimensional Coulomb interaction. 

The full dispersion for one-dimensional plasmons is obtained by using the 
analytical result for JIo(q,w) (Li and Das Sarma 1989) 

m I w2 -w~(q) I JIo(q,w) = - In 2 2 () , 
nq w - w+ q 

(16) 

where w±(q) = qVF ±q2 j(2m). The RPA equation c:(q,wp) = 1-Vc,(q)JI(q, wp ) = 0 
is now easily solved to give the following one-dimensional plasmon dispersion 
relation 

w ( ) = A( ) [w!(q) - W~(q)] ~ 
pq q A(q)-l ' (17) 
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Fig. 9. Calculated one-dimensional plasmon dispersion in a GaAs quantum wire within the 
RPA for (a) T = 0 and various values of ",{, (b) "'{ = 0 and various temperatures, calculated 
by finding the zeros of €(q,w) on the complex frequency plane. The curves with w > 0 give 
the real part and those with w < 0 give the imaginary part. The curves include full Vc(q) for 
infinite square-well confinement. As in previous figures, the system parameters are kFa = 0·9 
and r s = 0·7, which, for GaAs, correspond to a Fermi wavevector of kF = 0·88 X 106 cm -1. In 
(b) we show both the long-wavelength result, w; = nq2Vc(q)/m, using Vc(q) = 2e2 Jln(qa)J/K 
(dash-triple-dot line), and the full Vc(q) (long-dashed lines). Experimental results of Gofii et 
al. (1991) compared with RPA theory Li et al. (1992) are shown as an inset in Fig. 9a. 
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where A(q) = exp[qn-jmVc(q)]. An expansion (Li et al. 1992) to second order in 
q/kF gives 

(18) 

which is exactly the same dispersion relation as that for the low-lying collective 
mode (see e.g. Mahan 1990) in the Tomonaga-Luttinger liquid. Thus the RPA and 
Tomonaga-Luttinger collective mode dispersions are the same in one dimension, 
explaining why the experimental results (Gofii et al. 1991) for one-dimensional 
plasmon dispersion agree so well with the RPA theory. 

It is easy to show (Das Sarma and Lai 1985) that, in one dimension, 
Vc(q-+O) '" Iln(qa) I for any reasonable confinement model and, therefore, 
wp '" Iqllln(qa) I! in d = 1 as discussed above. In Fig. 9 we show some 
numerical results for one-dimensional plasmon dispersion including quantum 
finite-size effects, finite-temperature effects, and finite-Ievel-broadening effects. 
The quantum finite-size effect is included in the theory by calculating Vc(q) for 
the lowest one-dimensional sub-band within the infinite square-well confinement 
model. Finite-temperature effects are included by calculating (Maldague 1978; 
Das Sarma 1986) IIo(q,w) at T -I- 0, whereas finite-level-broadening effects are 
included in the Mermin (1970) relaxation-time approximation essentially through 
the replacement w2 -+ w(w + h) in IIo. The plasmon dispersion is obtained by 
numerically solving E(q,Wp(q)) = 0 on the complex frequency plane. Note that 
the E( q, w) must be analytically continued from the upper half to the lower half 
of the complex plane. 

Impurity scattering causes electrons to diffuse. Since wp(q) goes to zero as 
q -+ 0 in d = 1, the diffusive nature of the electrons causes the plasmons to 
become overdamped at small q, as in d = 2 (Giuliani and Quinn 1984). Thus 
there is a critical wavevector below which plasmon modes cease to exist. At 
finite temperature, on the other hand, the plasmon modes at low q remain 
undamped, whereas Landau damping occurs at higher q. This is because Landau 
damping affects modes, phase velocities on the order of or less than the thermal 
or Fermi velocity (whichever is larger). At small q, the plasmon phase velocity 
wp/q'" Iln(qa) I -+ 00, and hence Landau damping is negligible. As q increases, 
the phase velocity of the plasmon decreases and hence Landau damping increases. 
More details on one-dimensional plasmons can be found in Hu and Das Sarma 
(1993). 
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