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Abstract 

This paper discusses a parametrisation method developed by the author as a technique for 
the determination of band structures for the 4d transition metals and their compounds. It is 
suggested that some of the earlier work that has been published may not have found all the 
roots. Re-examination of the earlier work of the author reveals systematic discrepancies from 
benchmark band structure calculations. It is suggested that these results are an example 
of the unreliability of the earlier parametric band structure calculations, in which iteration 
techniques were used to determine the roots. Examples presented exhibit well known repeller 
behaviour, and so provide an early example where variation of initial conditions could have 
led to the discovery of bifurcation behaviour associated with the onset of chaos. The paper 
concludes with an application of the method to the calculation of electron-phonon interaction 
elements in the nonrelativistic limit. 

1. Introduction 

This paper is dedicated to Geoff Fletcher, who with Rod Millar helped me to 
test a generalisation of John Hubbard's parametric approach for calculating the 
band structures of the 3d transition metals (Hubbard and Dalton 1968; Hubbard 
1969) to include relativistic effects, so that the 4d and 4f metals and their 
alloys could be studied. The theoretical derivation is to be found in Osborne 
(1970). Geoff was calculating the band structure of Au, using the augmented 
plane wave (APW) method, and the method of Osborne (1970) was applied to 
Au as a check of the method. Geoff was fortunate to have as his assistant 
Rod Millar, who programmed my method. The work was not published because 
we seemed to miss some of the eigenvalues. This paper addresses the probable 
reason for the discrepancies. Geoff has always been interested in interacting with 
the experimentalists in the Physics Department, and he performed a number 
of band structure calculations for them. Such interactions now are rare in the 
department. 

The calculation of the band structures of the 'transition metals and the rare 
earths goes back to the early 1940s. One of the more popular approaches is the 
APW method, first introduced by Slater (1937). Ziman (1965) discussed how 
this method could be expressed as a generalised pseudo-potential, and found that 
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by exploiting this scattering potential it was possible to partition the scattering 
matrix to show physically, for the transition metals, how the s and d electrons 
interact. Lloyd (1965) extended this work, showing dearly the physical basis for 
the orthogonal plane wave (OPW) , Kohn-Korringa-Rostaker (KKR) and APW 
methods. The method involves the folding of the KKR determinant into a 
structure which shows s-s, s-d and d-d electron interactions. 

In the relativistic limit [Le. the generalisation of Hubbard and Dalton (1968) 
and Hubbard (1969)] the folding yields the following determinant: 

(Kp + VP)(Ee) - EI hpl<l hpI<2 

hpl<l A (eI) - EI 
"'1"'1 

Ah) 
"'1l'i:.2 =0. (1) 

hpl<2 A*(ell 
~2Kl 

A(ed _ EI 
"'2"'2 

The conduction band terms are given by 

(47r)2 "'{C(ll' )C(ll' ") - -- L.. 'i,]'J.k - S,S 'i,]'J.k- s ,S 
r 1</1-

The part of the determinant K + V that refers to the s-p states is evaluated at the 
energy (K + V)o~ = Ee , which is a mean conduction-band energy. In (2), 9 refers 
to a lattice vector, t\, = l if t\, > 0 and t\, = -l - 1, if t\, < O. Further, J.k refers to 
the z component of the angular momentum of the electron, C(lj,J.k - s,s) is a 
Clebsch-Gordan coefficient, Ylm(g) a spherical Bessel function, P the relativistic 
momentum of the electron, r the volume of the lattice's atomic cell, and s is 
the spin of an individual electron. The hybridisation matrix elements are 

[hpl<:,.lg/1- = -47r(rl<n/r )! jln (Ig + klRln) C(lnhn' -J.k - s, s) 

x Yln,/1--s(g + k). (3) 

Here it has been assumed that there is a discrete set of t\, values which have a 
resonance in 'YI< at P values P51<n and that the resonances have widths rl<n' The 
parameters r and Po", are obtainable from the generalised phase shift, which is 
defined as 

(4) 



Band Structure Calculations 627 

Here £K.(Rs) is the ratio of the large and small component of the Dirac equation 
with a muffin-tin potential radius Rs. For the d and f states, the "IK. have the 
resonant contribution subtracted according to 

(5) 

The POK. denotes the momentum value for which the "IK. exhibits a resonance. 
The d-d (f-f) interaction matrix elements are: 

2 2 '" (4rr)2 ;;;-;;-
(AK.;K.JfLfLl (p ) = POK. n bfLfLl bK.iK.j - ~ -7- V rK.ir"'j 

sy 

x {jrJlg + klR1n) [(k + g)2 - p2J-l C(ln!jn,1L - s,s) 

x C(ln !jn, IL' - s, s) Yi:,fL-S (g + k) Yi,,,fL+S(g + k)} . (6) 

In the next section we discuss the performance of the formal equations for 3d 
and 4d transition metals. 

2. Results for Cu, Au and Pd, and Comments 

Rod Millar programmed the equations in the period 1972-3. While preparing 
for this talk, I found the old print-outs, in his unique handwriting. In the 
table below, I present some of the results. We chose six preferential vectors 
(000,111,111,020,111,111) and summed the angular momentum terms up to L = 6. 
This was done scientifically, of course, i.e. it gave us the closest results to the 
reported energy levels for metals. These included Burdick's (1963) Cu data, and 
Shaiwatna's (1960) and Christensen's (1970) Au results. Tables 1 to 3 show the 
agreement between the two methods for determining the energy levels. Table 1 
gives some results for some of the Cu levels: of the 36 levels calculated, the 
differences show an r.m.s. error of 0·0068 Ry, with three levels having an error 
>0·01 Ry, and one with error >0·015 Ry, the maximum error being 0·016 Ry. 
This compares favourably with the original Hubbard calculations. Tables 2 and 
3 show the results for Au, as calculated by Geoff's ex-student Shaiwatna and by 
Christiansen, and the calculations using the parametrisation method. Table 2 
presents the results of Shaiwatna. Of the 36 levels calculated, the differences 
show an r.m.s. error of 0·0115 Ry, with eight errors lying between 0·01 and 
0·015 Ry, four errors >0·015 Ry, and a maximum error of 0·033 Ry. Table 3 
presents a comparison of the results for Au, as calculated by Christensen, and 
the calculations using the parametrisation method. Of the 36 levels calculated, 
the differences yield an r.m.s. error of 0·020 Ry, with three errors lying between 
0·01 and 0·015 Ry, 25 errors >0·015 Ry, and a maximum error of 0·045 Ry. 

The results summarised here show that the program produces results in 
reasonable agreement with other calculations. In determining these roots, Millar 
had implemented matrix diagonalisation routines which we felt at the time would 
be more suitable for calculating the roots of the determinant (1). This was 
done because we had not had much success with the routines for root-finding of 
determinants that were then available from the Monash Computer Centre. We 
had in turn varied the method for finding the mean 'conduction-band energy', 
POK., and the resonant energies. We found that while we were using the iteration 
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Table 1. Lowest six calculated levels for four reciprocal lattice directions in Cu 

Reference is to Burdick (1963) 

Level 1 2 3 4 5 6 

(000) Burdick -0·100 0·209 0·299 0·299 0·357 0·357 
Osborne -0·099 0·296 0·297 0·297 0·358 0·358 
Error -0·001 0·003 0·002 0·002 -0·001 -0·001 

(080) Burdick 0·163 0·200 0·399 0·412 0·412 0·704 
Osborne 0·1655 0·196 0·405 0·423 0·423 0·710 
Error -0·0025 0·004 -0·006 -0·011 -0·011 -0·006 

(444) Burdick 0·164 0·297 0·297 0·401 0·401 0·510 
Osborne 0·168 0·296 0·297 0·410 0·410 0·515 
Error -0·004 0·001 0·000 -0·009 -0·009 -0·005 

(660) Burdick 0·205 0·228 0·327 0·367 0·396 0·906 
Osborne 0·208 0·233 0·333 0·377 0·404 0·912 
Error -0·003 -0·005 -0·006 -0·010 -0·008 -0·006 

Table 2. Lowest six calculated levels for four reciprocal lattice directions in Au I 

Reference is to Shaiwatna (1970) 

Level 1 2 3 4 5 6 

(000) Shaiwatna -0·157 0·101 0·101 0·203 0·275 0·275 
Osborne -0 ·147 0·089 0·089 0·181 0·265 0·265 
Error -0·010 0·012 0·012 0·022 0·010 -0·010 

(080) Shaiwatna -0·014 0·012 0·308 0·322 0·402 0·638 
Osborne -0·027 -0·021 0·310 0·329 0·407 0·643 
Error 0·013 0·033 -0·002 -0·007 -0·005 -0·005 

(444) Shaiwatna -0·008 0·092 0·188 0·308 0·362 0·477 
Osborne 0·017 0·082 0·172 0·313 0·366 0·479 
Error -0·025 0·010 0·016 -0·005 -0·004 -0·002 

(660) Shaiwatna 0·020 0·060 0·220 0·275 0·350 0·928 
Osborne 0·017 0·055 0·220 0·272 0·345 0·843 
Error 0·003 0·005 0·000 0·003 0·005 -0·015 

Table 3. Lowest six calculated levels for four reciprocal lattice directions in Au II 

Reference is to Christensen (1969) 

Level 1 2 3 4 5 6 

(000) Christensen -0·164 0·155 0·115 0·211 0·288 0·288 
Osborne -0·147 0·079 0·079 0·166 0·258 0·258 
Error -0·017 0·076 0·036 0·045 0·030 0·030 

(080) Christensen -0·013 0·015 0·327 0·339 0·418 0·638 
Osborne -0·034 -0·029 0·321 0·347 0·423 0·647 
Error 0·021 0·044 0·006 -0·008 -0·005 -0·009 

(444) Christensen -0·010 0·103 0·196 0·324 0·376 0·477 
Osborne -0·025 0·077 0·163 0-325 0·377 0·482 
Error 0·015 0·026 0·033 -0·001 -0·001 -0·005 

(660) Christensen 0·029 0·071 0·277 0·282 0·358 0·828 
Osborne 0·008 0·055 0·225 0·278 0·345 0·847 
Error 0·021 -0·016 0·050 0·004 0·013 -0·019 
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methods we could get wild disagreements. These disagreements vanished when 
we used the diagonalisation techniques. As an example, Table 4 shows the 
results obtained for Pd, using a potential that was generated following a method 
described by Loucks (1967); these results are compared with those of Kaga (1971). 

Table 4. Lowest six calculated levels for four reciprocal lattice directions in Pd 

Reference is to Kaga (1971) 

Level 1 2 3 4 5 6 

(000) Kaga 0·105 0·339 0·339 0·339 0·445 0·445 
Osborne 0·082 0·438 0·438 0·459 0·587 0·589 
Error 0·023 -0·099 -0·099 -0·120 -0·142 -0·144 

(080) Kaga 0·149 0·332 0·525 0·554 0·554 
Osborne 0·132 0·283 0·535 0·567 0·587 
Error 0·017 0·049 -0·010 -0·013 -0·033 

(444) Kaga 0·186 0·332 0·332 0·530 0·530 0·666 
Osborne 0·188 0·368 0·368 0·671 0·690 0·704 
Error -0·002 -0·036 -0·036 -0·141 -0·160 -0·038 

(660) Kaga 0·202 0·248 0·411 0·466 0·525 
Osborne 0·2125 0·266 0·454 0·556 0·613 
Error -0·010 -0·018 -0·043 -0·090 -0·088 

What is immediately obvious is that for (000) the triply degenerate energy 
level at O· 339 Ry has been missed. In modern terminology this root was a 
repeller. Other examples are shown in italics. This results had been seen in the 
earlier work of Hubbard and Dalton (1968). Dalton and I spent many hours 
discussing our work whilst we were at Harwell in the late sixties, and Norris spent 
a large amount of time playing with the adjustable parameters of the theory in 
his earlier experimentation. Hubbard was keen to use the library routines at 
Harwell, and a well tried polynomial root-finding routine was the basis of the 
energy-finding routine. In later work they abandoned this method and introduced 
a matrix diagonalisation routine to find the eigenvalues. This method was highly 
successful and the iteration method was no longer used. 

Other printouts from our calculations in the early 70s show that when we 
changed the value of Ec and E1 were varied by small amounts, the values of 
the energy levels varied in an irregular manner. This possibly suggests that the 
iterative procedure was extremely sensitive to initial inputs, and so represented 
another example where potential chaotic behaviour could have been detected. 
The net result of this experimentation was that the technique was not pursued 
and the interest of the author moved to other fields. 

3. Electron-Phonon Matrix Elements 

With the current interest in high-temperature superconductivity, it is timely 
to return to the problem of how to calculate electron-phonon matrix elements. 
Surprisingly, there appears to have been little advance in this area since the early 
1970s, although there has been some resurgence with the introduction of vector 
processors. In this section I report some work which, while developed in 1970, has 
not been published. My interest was to see if I could calculate this interaction for 
chromium. The first-principles calculations, which were analysed by Golibersuch 
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(1967) amongst others, were computationally expensive, and consequently were 
largely ignored by workers in the field. The use of the parametrised approach 
to the band structure appeared to offer some hope for the development of a 
manageable program. 

To first order in the electron-phonon interaction, the matrix element describing 
the scattering of an electron with wavevector k and band index n, into a state 
with wavevector k', is given by 

Here Rjo is the position vector of the jth ion in its equilibrium position, and 
oRj is the displacement of the ion from its equilibrium position. The muffin-tin 
potential U (Rj ) is that for the case where the ions are at the undisplaced 
positions and the wavefunctions are evaluated at the Fermi level. 

On writing the wavefunction in the KKR form, i.e. 

tli"kn(r) = L CL(k) tli"kLn(r) , (8) 
L 

we can simplify the matrix element to the form 

Mk'n',kn = L Cl,(k')CL(k)(-1)JloRjJl 
JLL' Jl 

x 1 R~, (r) Y~, (r) V' -JlU(r) RL(r) YL(r) dr. 
sphere 

(9) 

The wavefunctions have the form 

(10) 

Here YL( r) is a spherical Bessel function, with the radical function RL( r) satisfying 
the equation 

In writing (9) we have expressed a vector general V in the form 

= V + + V _ + vzk . (12) 
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After some tedious algebra, described in considerable detail in Golibersuch 
(1967), the integral in equation (11) can be reduced to 

The constants A are given by 

At = V2(l + m + l)(l - m + 1) , 

At = V(l+m+1)(l+m+2), 

A:!=1 = v(l- m + l)(l- m + 2), 

{ 
87r2m 

x h,2 [U(Rs) - EFJ 

+ l(l + 2) _ (l + 1)£1 + l£t+l 
R§ Rs Rs 

(l + 1)(l-1) (l + l)£i-l 
+ R§ - Rs 

(l - 1)£1 _ £* £} + Rs 1-1 I 

X R'L-l (Rs) RdRs) . (14) 

A(j = V2(l- m)(l + m) , 

Al = V (l - m) (l - m - 1) , 

A=I=V(l+m-1)(l+m). (15) 

The coefficients CL can be calculated using a method described in Hubbard 
(1969). These coefficients are given by 

(16) 
n 
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Here the Bn are calculated from the matrix equation 

o 
Kp+Vp-EI 

h* p 

The matrix elements are defined as 

C. F. Osborne 

(17) 

Vnn, = (41l-jr) L (21 + I)R§-y1' jl(knRs)jl(kn,Rs) PI (cos ()nn') , 
I 

(18) 

The subscripts P and R in (17) refer to the preferred vectors and the rest. By 
means of an interpolation scheme it is possible to reduce the equation for the 
Bn to the form 

[
KP + V(Eo) _c_o - + V(cd _C_l -

co - C1 co - C1 

h* P 

(19) 

[
I + V(co) - V(cd 

co - C1 

o 
(20) 

The equations for the Bn are then given by 

[M 2M M2 -EI]M2 P-O _1 1 1 [B ] 
212 2 a-' (21) 

(22) 

Equations (13)-(15), (19) and (22) then define the expressions for the evaluation 
of the matrix elements. These expressions are currently being programmed and 
results of the work will be reported in a future publication. 
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4. Conclusion 

In this paper I have re-introduced a parametrisation method for the evaluation 
of the band structure of heavy transition metals, and have shown that it reproduces 
the energy levels of known band structure calculations to a reasonable accuracy. 
Further, I have indicated that the use of iteration methods for the determination 
of these energy levels gave indications of repeller and chaotic behaviour in the 
system. Finally, I have presented a formal expression for the electron-phonon 
matrix element. 
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