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The influence of microscopic or local fields on the full frequency- and wavevector-dependent 
dielectric loss function of Si has been calculated, based on accurate empirical pseudopotential 
calculations of the electronic structure. It is shown that local-field effects, dramatically 
significant at optical (q ~ 0) wavevectors, diminish with increasing magnitude of q to 
negligible proportions as q approaches the Brillouin zone boundary. In addition it is shown 
that the calculated volume-plasmon dispersion relation is improved in comparison with 
experimental results by the inclusion of local-field effects. 

1. Introduction 

The high wavevector dielectric response of a solid is of particular interest in 
electron diffraction and microscopy in relation to inelastic electron scattering 
(Ritchie and Howie 1977; Smith 1984). The energy lost to a solid by an electron 
scattering inelastically through single-particle or collective (plasmon) excitation 
processes may be related to the dielectric function of the solid which depends 
on both the (Fourier-transformed) complex frequency wand the wavevector q 
(Pines 1955; Raether 1980), through the so-called loss function 

Im ---{ -I } 
E(q, w) , 

(1) 

where nq and nw are the momentum and energy transferred to the solid 
respectively. The general dielectric response of a periodic crystal lattice to an 
applied external field of frequency wand wavevector q is to induce rapidly 
oscillating microscopic or local fields of frequency wand wavevector q+G, where 
G is a reciprocal-lattice vector. In terms of the Fourier-transformed electric and 
displacement fields, a microscopic dielectric matrix (whose elements are defined 
in terms of reciprocal-lattice vectors) is defined by 

D(q + G,w) = I>G,G'(q,w) E(q + G',w). (2) 
G' 
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The microscopic local fields (represented by the off-diagonal elements of the 
dielectric matrix), which oscillate rapidly over the atomic unit cell, are averaged 
out over several unit cells to give the observable macroscopic dielectric function. 
The macroscopic average is defined in the standard manner as the average of the 
corresponding microscopic quantity over the primitive unit cell. The macroscopic 
dielectric function is related to the dielectric matrix through the relation (Wiser 
1963) 

1 
c(q,w) = 1 . 

[Ec,G' (q, w)]o,o 
(3) 

That is, the macroscopic dielectric function is the reciprocal of the [0,0] component 
of the inverse microscopic dielectric matrix, and contains products of the off
diagonal elements of the matrix from the inversion process. In general the 
presence of the off-diagonal local-field elements implies that 

1 
[ -1 ( )]. i= cQ,o(q,w). 
cG,G' q, w 0,0 

(4) 

The inclusion of these microscopic or local-field effects is known to improve 
significantly the calculated optical (q ~ 0) loss function of silicon with respect to 
the experimental optical and electron energy loss data (Louie et al. 1975; Cohen 
and Chelikowsky 1989). However, due to the relative difficulty and time-consuming 
nature of the accurate evaluation of the dielectric matrix for nonzero q vectors, 
the influence of local fields at high q has not been considered adequately in 
previous calculations (Cohen and Chelikowsky 1989; Walter and Cohen 1972). 
In this work we have for the first time calculated the full frequency- and 
wavevector-dependent loss function of Si with local-field effects from a complete 
evaluation of the dielectric matrix. This is based on a very accurate empirical 
pseudopotential (EPM) calculation of the electronic structure of the solid. 

We briefly outline this electronic structure calculation in Section 2, with the 
loss function calculation proper outlined in Section 3. The results (both with and 
without local-field effects) for the loss function and the related volume-plasmon 
dispersion relation are presented for q in the [1,0,0] direction in Section 4. 

2. Electronic Structure 

The detailed structure in the loss function of the solid is entirely dependent 
on the electronic structure that we consider. For this reason we have calculated 
an EPM band structure (Cohen and Chelikowsky 1989) which is inherently more 
accurate than an ab initio calculation (see Wang and Klein 1981) through the 
use of experimental information in constraining the calculated low-lying bands. 
We consider the very successful non-local pseudopotential of Chelikowsky and 
Cohen (1976), 

00 

Vpseudo(r) = L VG SGeiG . r + L Al(E) fl(r) PI, (5) 
G 1=0 
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where V G is an adjustable pseudopotential form factor, SG the usual structure 
factor, f I (r) is a function directly simulating the effects of the atomic core states 
(in our case a square-well potential), PI is the projection operator for the lth 
angular momentum state and AI(E) is an adjustable non-local energy-dependent 
well depth. In a plane-wave basis we obtain the full non-local pseudopotential 
Hamiltonian matrix elements as 

47r ~ + [2 L.., AI(E) (2l + 1) PI (cosBG,G' ) 
I 

X foRI jl(K. r) ft(r)jl(K' . r) SG-G' r2 dr, (6) 

where K = k+G, Pl(cosBK,K') is a Legendre polynomial, Rl is an estimated 
atomic well width (Animalu and Heine 1965) and T = i[l,l,l] is the usual diamond 
structure unit cell origin relative to one of the atoms. The non-local well depth 
is given in terms of the adjustable parameters a and f3 by 

(7) 

where EO (K) is the free-electron energy and EO (K F) an average energy. For 
silicon it is necessary to consider only the l = 0 angular momentum state and 
EPM form factor parameters corresponding to the three lowest values of IG - Gil 
(see Table 1). 

Table 1. Empirical pseudopotential parameters (see equations 6 and 7) used for Si 

Lattice 
constant (A) 

5·431 

Vv'3 
(eV) 

-3·429 

Vvs 
(eV) 

-0·517 

VvTl 
(eV) 

0·476 

eto 

(eV) 

7·48 

/30 
(eV) 

0·32 

Ro 
(A) 

1·06 

Fig. 1 displays the calculated band structure of silicon obtained from this 
pseudopotential with matrices of the order of 145 x 145 (the reciprocal-lattice 
vectors through the set [3,3,3] in units of 27r / a, where a is the unit cell parameter). 
The four highest valence bands and the 23 lowest conduction bands used in 
the loss function calculation are shown along the usual symmetry directions in 
k-space. 

The initial pseudopotential parameters are based on the Chelikowsky and 
Cohen (1976) values with minor modifications where needed so that the calculated 
low-lying bands correspond as closely as possible to experiment. The resulting 
relative band gaps are within at most 0·05-0·1 e V of the observed values up 
to the first few conduction bands (Grobman and Eastman 1972; Spicer and 
Eden 1968; Hulten and Nilsson 1976). The accuracy of the higher bands is 
more uncertain as experimental results are difficult to obtain (see Fraxedas et al, 
1990). However, the higher conduction bands are determined completely by the 
pseudopotential parameters, which in turn are entirely constrained by the very 
accurate low-lying bands. 
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Fig. 1. Electronic structure of silicon calculated in this work. The highest (23rd) conduction 
band included in the loss function summation is indicated by the dotted line. 

3. Dielectric Matrix and Loss Function 

An expression for the dielectric matrix in the random phase approximation 
(RPA) was first derived by Adler (1962) and Wiser (1963): 

47fe2 

EG,G'(q,w) = OG,G' - f.?lq + Gllq + G'I 

lim '"' [fo(En,(k + q)) - fo(En(k))] 
x 0-+0+ k~' En,(k + q) - En(k) -nw + ina 

x (K + q, n' I ei(q+G'). r I k, n) (k, nle-i(q+G). r I k + q, n'), (8) 
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where n is the system volume, 0: a 'damping' interaction parameter or self-energy 
term, wand q are the frequency and wavevector of the field, f 0 (E) the Fermi 
function, and the summation is over all possible transitions between allowed 
crystal Bloch states Ik, n) with energy En(k). We rewrite this expression (in the 
limit of a large crystal) in the integral form 

4rr2 '""' G G' 
€G,G'(q,w) = OGG' - Sllq + Gllq + G'I L...- Gn:n, (q,w), 

n,n' 

(9) 

G,G' 
G,G' _lim -2-1 Fn,n' (k, q) d3k 

Gn,n' (q,w) - 0--+0+ (2 )3 (k) +. , 
rr BZ Wn,n' ,q - W 10: 

(10) 

where the band-structure-dependent functions are given by 

F:;'~C;' (k, q) = (k + q, n' lei(q+G).r I k, n) (k, n I e-i(q+G').r I k + q, n'), (11) 

1 
wn,n,(k, q) = h[En,(k + q) - En(k)]. (12) 

The functions F:;'~C;' (k,q) and wn,n,(k,q) must be evaluated numerically by 
means of time-consuming band structure calculations. In order to decrease the 
calculation time for the highly singular integral in equation (10), we consider the 
special points scheme of Monkhurst and Pack (1976). The special points give 
a much better representation of the complete set of allowed k points than an 
equivalent number of random points, and may be used to generate orthonormal 
expansion functions (see Monkhurst and Pack 1976) with the correct symmetry 
to expand the functions F;;''nC;' (k,q) and wn,n,(k,q) at an arbitrary point in the 
Brillouin zone (BZ). 

We split the BZ integration into a sum of smaller integrations over mini-cells 
centred around the special points kc, writing equation (10) (suppressing band, 
matrix indices and the q dependence for simplicity) as 

(13) 

GG' and expand the band-structure-dependent functions Fn,'n' (k,q) and wn,n,(k,q) 
in a Taylor series to first order: 

The special points expansion functions of Monkhurst and Pack (1976) are used 
in conjunction with the analytic Dalton and Gilat (1972) solution to the above 
integral to obtain an analytic expression for the full integral [equation (10)]. We 
are only required to perform tedious numerical calculations of F;;'nC;' (k,q) and 
wn,n' (k,q) at the few selected special points. The approximatio~s and errors 
introduced in terminating the Taylor series expansion of the integrand at first 
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order may be made arbitrarily small by decreasing the mini-cell integration 
volume or, equivalently, increasing the number of special points. In this sense 
the accuracy of the full expression (for a given electronic structure) is limited 
only by the total number of special points we consider. 

To obtain satisfactory convergence of the macroscopic dielectric function (from 
which we obtain the loss function in Section 4), it is sufficient to use 182 special 
points in the irreducible Brillouin zone (IBZ) or, equivalently, 6912 points in the 
full BZ. The convergence has been tested with 570 (23328) point calculations in 
the IBZ (BZ), and the results differ by less than a few per cent. In addition it is 
necessary to consider dielectric matrices of the order of 59x59 in the inversion 
process, corresponding to all those reciprocal-lattice vectors G through the set 
[2,2,2] (in units of 27r/a). 

The symmetry of the dielectric matrix may be used to further simplify the 
calculation process considerably. Although EG,G' (q, w) is hermitian, its symmetry 
is in general quite complicated and is related to the wavevector q and the lattice 

GG' symmetry through the symmetry of Fn ;" (k,q) and wn,n,(k,q). For the q = 0 
case the dielectric matrix has the full symmetry of the crystal lattice; we need 

experiment (Roether 1980) 
with local field effects 
without local field effects 

E 
I 3 

2 

5 10 15 20 25 
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Fig. 2. Calculated (570 special points) and experimental optical (q = 0) loss function for Si 
around the plasmon peak. 
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only consider the 1/48 irreducible wedge of the BZ (182 k points in the 
integrations) and 72 independent terms in the dielectric matrix. In the next 
section we present results for finite q in the [1,0,0] direction, where the symmetry 
is more complicated. The 182 special points result in 963 independent sets of k 
and k+q points in the integrations. In addition there are now 225 independent 
terms in the dielectric matrix. 

4. Results and Discussion 

The calculated optical q -) 0 loss function for Si is dramatically improved in 
comparison with experimental results by the inclusion of local-field effects as first 
shown by Louie et ai. (1975). In Fig. 2 we compare the present q -) 0 results 
(from a 570-special-point calculation) with and without local-field effects, with 
the experimental results (Raether 1980). 
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Fig. 3. Calculated (182 special points) loss function for Si without local-field effects for q = 0 
to [2,0,0] in units of 27r / a. 
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The main plasmon peak centred at 17·9 e V without local-field effects is shifted 
down to 17·2 eV, only 0·3 eV above the 16·9 eV experimental plasma frequency. 
In addition the magnitude of the plasma peak is reduced by almost half, indicating 
that collective electron or plasmon excitations are less well defined in the presence 
of the rapidly oscillating microscopic fields. The agreement between experiment 
and theory (see Fig. 2) is very good, considering that electron exchange, correlation 
effects and electron-hole interactions are not considered directly in the RPA 
(see Van Camp et al. 1981) or in our band structure calculation (see Hybertson 
and Louie 1984; Manghi et al. 1985). This is partly due to the fact that the 
dielectric function at the higher frequencies, where the loss function peak occurs, 
is much less dependent on the low-lying energy levels, where electron-hole effects 
are significant, than on the higher energy bands where these effects are less 
important. The detailed structure in the loss function above 15 e V is dependent 
on (and hence a measure of) the high-lying band structure topology. 
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Fig. 4. Calculated (182 special points) loss function for Si including local-field effects for 
q = 0 to [2,0,0] in units of 27r / a. The loss function above q ;:::,; [1,0,0] is very similar to Fig. 3. 
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With increasing magnitude of q the plasma frequency shifts to higher energies 
(see Figs 3 and 4 for q ranging from ° through to [2,0,0]) and, contrary to 
previous work [performed without local-field effects: Cohen and Chelikowsky 
(1989); Walter and Cohen (1972)]' the loss function peak broadens and the 
magnitude decreases. Above q = [2,0,0] the loss function peak becomes very 
broad, indicating that collective electronic or plasmon excitations are very weak 
and not sustainable. 

The effect of the rapidly oscillating microscopic fields decreases quickly as the 
magnitude of q increases, to the extent that the dramatic effect observed on the 
plasmon peak at q = ° (Fig. 2) is almost negligible as q approaches the Brillouin 
zone boundary (see Fig. 5). This indicates that rapidly varying microscopic fields 
are also unsustainable at these high wavevectors. 
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Fig. 5. Calculated (570 special points) loss function with and without local-field effects for 
Si around the plasmon peak. Here q = [1,0,0] in units of 211/ a. 

The loss function peak is a measure of collective longitudinal excitations 
(volume-plasmons) in the solid (Raether 1980). Fig. 6 displays the loss function 
peak frequency versus wavevectcir or the volume-plasmon dispersion relation. 
Results both with and without local-field effects are compared with the experimental 
results of Stiebling and Raether (1978). It can be seen that consideration of 
the local fields considerably improves the calculated dispersion relation at small 



644 T. W. Josefsson and A. E. Smith 

q, but the effect diminishes with increasing q. The parabolic nature of the 
calculated and experimental dispersion relations is shown up to the Brillouin 
zone boundary q = [1,0,0]. Beyond this point the calculated results become too 
broad to define any clear plasma frequency. However, the RPA results do not 
seem to taper off to the extent that the experimental results do. This is not 
related to local-field effects (or poor band structure) but is most likely due to 
the neglect of Landau damping of the plasmons (Bross 1978). 
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Fig. 6. Calculated plasmon dispersion relation with (solid squares) and without (open circles) 
local-field effects. The experimental results (Stiebling and Raether 1978, solid curve) are also 
shown. 

5. Conclusion 

For small optical wavevectors q it is known (Louie et al. 1975; Cohen and 
Chelikowsky 1989) that rapidly varying microscopic or local fields dramatically 
improve the electron energy loss function as calculated from the dielectric response 
in the RPA. The calculated plasma frequency with local-field effects is decreased 
by 1 e V to 17·2 e V, approaching the experimental frequency of 16·9 e V. The 
experimental plasmon peak magnitude is also accurately reproduced. This 
reduction in the calculated plasmon peak height (by a factor of two) indicates 
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that local-field effects result in less well defined collective electronic or plasmon 
excitations. We have calculated accurately for the first time the large-q-vector 
dependence of the loss function, including the effects of rapidly oscillating 
microscopic fields. It has been shown that these local fields become progressively 
less significant as the magnitude of q increases, to the extent that they are almost 
negligible as q approaches the Brillouin zone boundary. For this reason the 
inclusion of local-field effects, while significantly improving the small-q plasmon 
dispersion relation, does not affect the large-q dispersion relation to the same 
extent. 
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