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Using the magnetic environment model, the moment distributions for ferromagnetic COl_xMnx 

alloys in the composition range (0 < x < 0·25) were calculated from the mean saturating 
moments of the alloys. The calculation also gives the mean moment of each species as a function 
of concentration. The predictions correspond extremely well with the existing experimental 
data. In particular, the increase in the correlation length close to the ferromagnetic critical 
concentration is clear in the cross section data and model. 

1. Introduction 

The reasons for the formation and coupling of magnetic moments in metallic 
systems have been actively pursued for many years. In 3d transition metal alloys 
the unpaired electrons form a common band, leading to non-integral values (in 
Bohr magnetons) of the atomic magnetic moments. The direct approach to this 
problem is to calculate the band structure within an approximation like the 
coupled pair approximation (CPA) and the spin density functional theory in the 
'local density' approximation (LDA). An example of this approach is that of 
Johnson et al. (1985) for a disordered Fe-Ni alloy. Some understanding of the 
ferromagnetism of these alloy systems can be obtained more simply from the 
application of phenomenological models of the moment distribution. Of these, 
the magnetic environment model (Hicks 1980) can cope with the approach to the 
ferromagnetic critical concentration, and seems particularly appropriate for the 
Co-Mn alloy system, which is the subject of this paper and has a ferromagnetic 
critical concentration of 30 at.% Mn. 

Magnetic studies (Crangle 1957; Kouvel 1960) of cobalt-rich fcc Co1-xMnx 
alloys have revealed a ferromagnetic phase whose Curie temperature steadily 
decreases with increasing manganese concentration. This phase disappears at 
around 30 at. % Mn and the system shows a clear antiferromagnetic phase at 
x> 0·42 (Men'shikov et al. 1985). The composition range that lies between these 
two phases (i.e. 0·25 < x < 0·42), however, has not been clearly understood until 
recently. 

* Paper presented at the Festschrift Symposium for Dr Geoffrey Fletcher, Monash University, 
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In 1960 Kouvel investigated the susceptibility data and hysteresis loops of these 
alloys in the composition range 0·25 < x < 0·373. From these data and previous 
measurements (Crangle 1957) he calculated ferromagnetic and paramagnetic 
moments for the compositions 0 < x < 0·373. The paramagnetic moments were 
taken from the Curie constant at high temperatures. He concluded that the 
ferromagnetic moment approached zero at approximately 30 at.% Mn. The 
paramagnetic moment, however, increased with increasing Mn concentration to 
become approximately 3JLB at 37·3 at. % Mn. 

The existence of such a large paramagnetic moment on each atom was disproved 
by Wildes et al. in 1992. Using neutron diffraction with polarisation analysis 
Wildes et al. searched for the large diffuse magnetic cross section that would 
be apparent if such moments existed. No such cross section was observed, as 
is evident in Fig. 1 which shows the large discrepancy between the expected 
cross section and the measured cross section. The expected cross section was 
calculated using the paramagnetic moment determined by Kouvel to find the 
mean spin, S, in the equation 

where Ko is the magnitude of the scattering vector K. First-neighbour interactions 
only were assumed and a value of /1 was calculated to match the susceptibility at 
300 K. Wildes et al. concluded that the moment on individual atoms is close to 
zero in the composition range between the ferromagnetic and antiferromagnetic 
phases, and that large-scale cooperation between diffuse clouds of moments was 
responsible for the observed susceptibility. 

This result is borne out by Cable (1982) who used polarised neutrons without 
analysis to measure the diffuse cross section of these alloys in the ferromagnetic 
composition range 0 < x < 0·25. Using the phenomenological linear atomic 
environment model of Marshall (1968), he was able to determine the average 
ferromagnetic moment on each species as a function of concentration. Cable 
found a positive moment on the cobalt and a negative moment on the manganese. 
Both moments approached zero as x approached 30 at. % Mn. 

This modelling, however, is not ideal. The plot of moment versus concentration 
for this system clearly shows an increasing first derivative with increasing 
manganese concentration and a critical concentration for ferromagnetism at about 
x = 0·3. The Marshall model is not equipped to deal with the increasing 
correlation length associated with criticality. The model may be corrected up to 
a point by taking it to higher order (Balcar and Marshall 1968), a method that 
soon becomes cumbersome and complicated. As an alternative, the magnetic 
environment model was developed by Hicks for both one-moment (Hicks 1977) 
and two-moment (Hicks 1980) systems. The two-moment model has been applied 
with some success to some Ni alloys (Hicks 1980; Hicks and Moze 1981). A 
further advantage of this model is its ability to predict diffuse cross sections, 
thus providing a check of the values obtained for the moments. 

By fitting the saturating moment per atom as a function of concentration with 
the model, we hoped to find the moment of each species of atom as a function 
of concentration. As a check we hoped to then predict the neutron diffuse cross 
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section, which we could then compare with the data obtained by Cable. We have 
not been completely successful, but what is clear from the following analysis is 
that the magnetic environment model provides the correct form for the low-ii 
cross sections. 

2. The Model 

The magnetic environment model for a ferromagnetic alloy with two magnetic 
species (Hicks 1980) is an attempt to model phenomenologically the size of the 
moments on the atoms as a function of their environment. This follows an earlier 
phenomenological treatment of the moment distribution (Marshall 1968) in which 
the moment on each atom is a linear function of the local atomic occupancy. The 
treatment given by Hicks differs from that due to Marshall by introducing, in 
addition, the effect of the local magnetic environment through a local exchange field. 

One may assume that meR), the moment on an atom at site R, will at first 
increase linearly with the field at that site, and then asymptote to the saturating 
moment of that atomic species. In the absence of an external field, any field 
felt at site R will thus be due to an exchange field heR), which may be broken 
down into a superposition of exchange interactions: 
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h(R) 
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L m(R'){p(R) p(R') (l(R - R') 
R#R' 

+ [P(R) (1 - p(R')) + (1 - p(R)) p(R')] (12(R - R') 

+ (1- p(R)) (1- p(R')) (2(R - R')}, (2) 

where (l(R-R') is the exchange interaction between two atoms of type 1 at 
sites Rand R', (2(R-R') is the exchange interaction between two atoms of 
type 2, and (12(R-R') is the exchange interaction between an atom of type 1 
and an atom of type 2. Here p(R) is equal to 0 or 1 for type 1 or type 2 atoms 
respectively. 

The simplest form of saturating function (Hicks 1977) is given by f(x) = x/(l +x). 
A point to note is that while this function is the simplest to deal with, it is 
not ideal. A more realistic saturating function would be odd. However, even 
the simplest of such functions complicate the algebra and the problem has to be 
linearised at some later stage (Medina and Cable 1977). Based on the above 
function, we can write the moment of the atom at site R as 

m(R) = {a2(R) +p(R)[al(R) - a2(R)]}h(R) 
1 + [B2 + p(R)(Bl - B2)] h(R) , 

(3) 

in which the a(R), which are the initial susceptibilities of the two atoms, are 
assumed to depend linearly on the local atomic environment. In this way a(R) 
consists of an on-site contribution a(O) and contributions a(R') from neighbouring 
atoms. The constants Bl and B2 are chosen such that the appropriate a(R)/ B 
is the saturating moment of the atom at R. 

Equation (3) can be Fourier-transformed and the resulting integral equation 
solved for the Fourier transform of the moment distribution. This solution is 
facilitated by writing the Fourier transform of the moment distribution in terms 
of its average and spatially fluctuating parts: 

m L exp(iK. R) + F(K) , 
R 

F(K) = L exp(iK.R) (m(R) - m). 
R 

(4) 

Here m is the mean moment and F(K) is the Fourier transform of the magnetic 
fluctuations. 

Similarly, the atomic distribution can also be written in terms of its average 
(the concentration c of species 2) and spatially fluctuating parts 

P(K) C L exp(iK. R) + D(K), 
R 

L exp(iK. R) (p(R) - c), (5) 
R 

where D(K) is the Fourier transform of the atomic fluctuations. 
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The solution of the Fourier transform of (3) can now separated into a solution 
for the mean and spatially fluctuating moments (Hicks 1980). We find 

where 

_ J(O)[a(O) - A(O)]- 1 
m = ---'-"':"":"-'-'----'--"=---

BJ(O) , 

a(O) = ea1(0) + (1- e)a2(0) , 

A(~) = L a(R)exp(i~.R) = e2A1(~) + (1- e)2 A2(~)' 
R#O 

j(~) = L (R) exp(i~. R) = e2 h(~) + 2e(1 - e)h2(~) + (1 - e)2 J2(~)' 
R#O 

B = eB1 + (1 - e)B2 . 

For the Fourier transform of the fluctuation of the moment, we find 

F(~) = [{ dffi _ (dJ(O) _ dI(~)) [2BJ2(0)]-1 
de de de 

_ (d~~O) _ d~~)) (2B)-1} D(~)] 

x [1 [J(O) - J(~)]]-l 
+ J2(0)Bffi 

(6) 

(7) 

Here the mean and fluctuating moments are functions of the atomic concentration 
and the fluctuating part of the atom distribution. These quantities differ from 
binary alloy to binary alloy because of the statistical nature of the preparation 
of alloys, but e and D(~), and consequently ffi and F(~), can be estimated by 
averaging over an ensemble of identically prepared alloys. 

In equation (6) ffi is the spontaneous moment per atom for a ferromagnetic 
sample, and this equation can thus be fitted to experimental data for the variation 
of moment with concentration, using a non-linear least-squares fitting routine. 
The parameters obtained are combinations of a(O), A(~), J(~) and B. Once these 
parameters have been optimised, the values of the individual components may be 
extracted and used to calculate F(~) for any concentration e. It is convenient 
to define M(~) by the relation F(~) = M(~) D(~). The function M(~) can be 
extracted from polarised neutron diffuse scattering results for comparison (Hicks 
1980). 

The mean moment on each species in the system can be found once M(~) has 
been calculated. The difference between the two moments is equal to the average 
of M(~) over all ~ (Marshall 1968), which can be calculated approximately by 
ignoring ~-dependent terms: 

ffi _ - - M ~ ~ (dffi _ 1 dJ(O) _ ~ dA(O)) (1 1) 8 
1 ffi2 - ( ()) de 2BJ2(O) de 2B de + BJ(O)ffi . () 
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From this quantity and the average mean moment per atom we may easily 
separate rrh and Tn2. 

3. Modelling of Co-Mn 

Cobalt-rich Co-Mn alloys have both hcp and fcc structures. Thus, particular 
care was taken in selecting the saturating moments used in the modelling, as we 
desired to fit the fcc values only. The data used are listed in Table 1. 

Table 1. Concentration versus mean moment in the composition range 0 < x < O· 35 

Mn concentration Mean moment iii Mn concentration Mean moment iii 
x = 1-c x = 1-c 

0 1.751 A 0·198 0·88c 
0·02 1·693A 0·200 0·91 B 

0·338 1·648A 0·23 0.590 

0·0525 1·593A 0·244 0·58c 
0·076 1·45B 0·250 0·50B 

0·105 1·362A 0·25 0·48E 

0·150 1·13B 0·30 0.220 

0·1852 0·983A 0·355 0.000 

A Crangle (1957). 
E Kouvel (1960). 

B Nakai et ai. (1978). c Cable (1982). ° Matsui et al. (1970). 

Fitting equation (6) to these data was not a trivial exercise. The data in 
Table 1 describe a very simple curve, monotonically decreasing from Tn = 1· 751ILB 
at 0 at. % Mn to Tn = 0 at 30 at. % Mn, and could probably be fitted with a simple 
quadratic. Equation (6), on the other hand, is a very complicated function. 
Indeed, we are attempting to fit eight parameters here with a variety of c 
dependences. It is worth noting that were this a one-moment system, the number 
of parameters to fit would decrease to three (Hicks 1977)-a far easier problem. 
As it is, fitted parameters are highly interdependent, have extremely large errors, 
and fluctuate greatly with initial values. Thus, a number of assumptions were 
made. 

First the parameter 12 was set to zero (12 is the Fourier transform of the 
exchange interaction between two manganese atoms). Considering that these 
alloy~ are dilute in manganese, the probability that two manganese atoms will 
be side by side is much less than for other pairs. 

The second assumption was to set Bl = B2 = B. This was done as the atoms 
are very similar, that is they are transition metal atoms very close to one another 
on the periodic table. As B is merely a constant such that exl B gives the 
saturating moment of an atom, it was deemed reasonable to make Bl and B2 
equivalent. As a result equation (6) becomes 

a2(0) + A2(0) c(a1(0) - a2(0) - 2A2 (0)) c2 (Al(O) + A2(0)) 
B + B + B 

1 

B[c2 h(O) + 2c(1 - c) h2(0)] . 
(9) 



Magnetic Moment Distribution 673 

To further reduce the parameters, a value for BI1 = 0·444 was assumed, and 
the expression was then fitted. Convergence was much more rapid and the 
parameters obtained had less error and were not dependent on initial values. 
The value for BI1 was then confirmed by fitting with different values of BI1. 
The fitted and separated values for the parameters obtained from the fit appear 
in Table 2. 

Parameter 

(a2+A 2)B-l 
(al-a2- 2A2)B- 1 

(AI +A2 )B- I 

BlI 
BII2 

Table 2. Fitted and separated parameters 

Value 

-4·056A 

9·780A 

-1·723A 

0·444A 

0·832A 

Parameter 

a1 (0)B- 1 

a2(0)B- 1 

Al (O)B- I 

A2(0)B- I 

Value 

3·924B 

-2·256B 

O·077B 

-1·800B 

A Value obtained by fitting equation (6). 
B Value obtained by matching the species' moments for dilute Mn to those calculated by 
Cable (1982). 
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Equation (8) was used in the separation of the parameters in that by calculating 
the difference in moment, we were able to calculate the mean moment on each 
atomic species in the system. By fitting the results to the moments calculated 
by Cable (1982), we were able to fix a result for A2 (0)B-l, and thus separate 
the other parameters (see Fig. 2). 

The fitting of Cable's data for the average moments on the two species was 
done by eye, and while the correspondence between the cobalt moments is good, 
there is a discrepancy between the manganese moments as calculated here and 
those calculated by Cable. Not only do the points not correspond, but the 
general trend of the two sets of results differs. Regarding this discrepancy it is 
worth noting that changing the values of the parameters does not significantly 
change the general trend of the results calculated here. The magnitudes of the 
calculated values do vary, however, and this puts constraints on the parameters. 

The fact that the trend in the results does not change with changes in the 
parameters gives us confidence in our results, and from all appearances the 
results are physical and believable. As stated before, these samples suffer at 
low manganese concentration from hcp contamination. Great care was taken in 
ensuring that the data used in this paper was from 100% fcc samples. Cable 
(1982) did state that his samples were between 40% and 50% fcc over the 
composition range, and perhaps it is possible that hcp contamination in the 
sample dilute in Mn would account for the discrepancy between the two results. 

To predict the form of the neutron cross sections, further assumptions had to 
be made about the ranges of A(~) and I(~). The first assumption was that 
at these concentrations, any change in susceptibility will be a very local effect. 
The reasoning behind this is simple: in a metal, if an atom of type 2 is put 
into an environment of type 1 atoms, the electrons from surrounding atoms will 
screen any charge difference. This effect is unlikely to stretch any further than 
the fi,rst neighbours. Indeed, a calculation of the Thomas-Fermi screening radius 
gives a value of approximately 2·4 A, whereas the nearest-neighbour distance is 
2·55 A. The atomic magnetic susceptibility is a result of the electron structure 
of that atom. Thus, to a good approximation, the addition of a foreign atom 
to a system will affect the susceptibility of first neighbours only. We therefore 
assumed that A(~), the Fourier transform of the susceptibility, involved nearest 
neighbours only. In a centrosymmetric structure (such as fcc) A(~) will be an 
even function: 

(10) 

for small f\" where z is a function of the squared product of the number of first 
neighbours with the distance to the first nearest neighbour. 

The same cannot be said of the exchange interactions, (R), which essentially 
constitute a potential. There are arguments to suggest that the interactions with 
atoms many atomic distances away should be considered (e.g. RKKY interactions). 
For simplicity, however, we have only considered these interactions to a maximum 
distance of the second-nearest neighbour. An initial calculation showed that 
considering only first-neighbour interactions gave the wrong f\,-dependence. Note 
that I(~) is also even and it can also be expanded for small f\, with a term 
quadratic in f\,. 
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A point to note is that by introducing the above assumptions we find that 
M (r;,) now has a factor that is Lorentzian in "', which dominates the", dependence 
as m -+ o. In the comparison of our moment disturbance functions with those 
of Cable (1982) we have thus plotted M(r;,)-l against ",2 in the hope that we 
would be dealing with straight line plots. 

Ohce the parameters were obtained and the functions A(r;,) and I(r;,) specified, 
it was a simple matter to substitute them into equation (7) to find M(r;,). This 
function has a direct correspondence with the moment disturbance functions 
plotted in Cable's (1982) paper. Before we could attempt a comparison, however, 
the important point of atomic short-range order had to be considered. 

As shown by Wildes et al. (1992) there is significant atomic short-range order 
contributing to the neutron cross sections at 32 and 37 at.% Mn. There is 
every reason to believe that a similar cross section exists at lower concentrations 
of manganese. Cable (1982) has plotted a moment disturbance function that 
assumes no atomic short-range order. We have thus made a simple correction 
by multiplying Cable's data by a short-range order function 

where Mp(r;,) is the corrected and plotted value (see Fig. 3), Me(r;,) is the value 
read from Cable's plots, and e is a short-range order parameter estimated by 
extrapolation of the moment disturbance function to r;, = 0 and equating it to 
dm/dc. The values of e for the different concentrations are given in Table 3. 

Table 3. Short-range order parameters used for each concentration 

Mn conc. 5·0 9·7 14·7 19·8 24·4 
(at.%) 

Short-range order 0·479 0·079 -0·194 -0·409 -0·500 
parameter, € 

Note that in the above equation we are considering [M(r;,)]-l. This is because, 
as noted before, we are plotting [M(r;,)]-l versus ",2 in the hope of observing 
straight line plots. Fig. 3 shows the small-", data of Cable (1982) corrected for 
atomic short-range order. The small-", cross section is isotropic, so that the 
polycrystalline data of Cable can be used. The fact that the data for each 
concentration lie approximately on a straight line is a sign that confidence may 
be placed in the magnetic environment model. 

Fig. 3 also shows for comparison the [M(r;,)]-l calculated using the magnetic 
envir~:mment model. For all five compositions the model compares well with the 
experimental data. This in itself adds justification to the assumptions made at 
the beginning of the modelling. 

4. Discussion 

The satisfactory comparison of the experimental data with the results obtained 
from the magnetic environment model is the result of a number of assumptions 
and simplifications. Each has been discussed in the text and each has some 
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physical justification. Putting aside the precise values of the parameters that go 
into the calculation, the applicability of the magnetic environment model must 
be justified by the clear Lorentzian dependence of the cross section on K" and 
the increase in the correlation length as the critical concentration is approached. 

Some confidence in the derived parameters is provided by the similarity of the 
absolute values of the slopes in Fig. 3 for all concentrations. However, further 
discussion of the parameters should wait until the model has been applied to 
other cobalt alloys with some of the parameters in common with this system. 

5. Conclusion 

From mean magnetic moment versus concentration data for Co-rich Co-Mn 
alloys, the magnetic environment model was used to find various parameters. 
These were then used to predict the moment disturbance functions for different 
compositions of Co-Mn, and these were matched against the experimental data 
of Cable (1982). The theory fitted experiment quite well. In order for this to 
happen, however, a number of assumptions had to be made in order to obtain 
believable and reproducible values for the parameters. These assumptions were 
physically reasonable, and we believe that they in no way compromised the fit 
or the success of the model. 
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