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Abstract 

A theoretical analysis shows that positive ion space charge effects can dominate the Cavalleri 
experiment. It is, however, confirmed that on operating in a linear regime, corresponding to 
normal experimental conditions, very accurate values for the electron diffusion coefficient can 
be obtained by extrapolating to zero X-ray pulse intensity. Both primary effects, associated 
with ions produced by the initiating ray pulse, and secondary effects, associated with ions 
produced by the RF sampling pulse, are taken into account. 

1. Introduction 

The Cavalleri technique provides a direct and accurate method for measuring 
the electron diffusion coefficient in gases (CavalIeri 1969; Huxley and Crompton 
1974; Gibson et al. 1973). However, care must be taken to either adequately 
account for or avoid space charge effects associated with the positive ions which 
are inevitably produced in the diffusion cell (Rhymes et al. 1975). To date no 
quantitative analysis of these effects of direct relevance to the Cavalleri technique 
has been given, although such effects have been previously considered in relation 
to diffusion cooling (Biondi 1954). The object of this paper is to determine 
explicitly the magnitude of the ion space charge effects and thus provide a 
measure of the accuracy of past and subsequent experimental results. 

The problem is complicated by both the experimental geometry and the basic 
nonlinear nature of the phenomena involved. Nevertheless, sufficiently accurate 
results can be obtained. In Section 2 the essential aspects of the Cavalleri 
experiment are briefly summarised and the number of ions present at any instant 
in time determined. In Section 3 exact solutions are found for three idealised 
diffusion cells and these solutions are used in Section 4 to validate the less exact 
solutions which are obtained for the actual experimental configuration. The 
results obtained in Section 4 are briefly discussed in Section 5. 

2. The CavalIeri Experiment 

The CavalIeri experimental configuration is shown in Fig. 1. A line source of 
electrons and ions is produced along the y-axis of a cylindrical glass diffusion 
cell of length 2 Wand radius R by a short X-ray pulse. For sufficiently high 
filling pressures (rv 1 0 kPa or greater) diffusion cooling can be ignored (Leemon 
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Fig. 1. Schematic diagram of the Cavalieri diffusion cell. 
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and Kumar 1975) and the electrons quickly thermalise, acquiring a Maxwellian 
distribution and a temperature equal to that of the host gas. The electrons 
diffuse to the walls of the cell, the positive ions remaining concentrated as a line 
charge during this process. In the absence of space charge effects the electron 
density is determined by the diffusion equation 

(1) 

Due to the symmetry inherent in the production of the electrons the full solution 
of equation (1) consists of many asymmetric and radial modes. However, within a 
relatively short time the lowest-order mode can be expected to dominate (Huxley 
and Crompton 1974; Rhymes et ai. 1975) and 

(2) 

where 

n(x) = no cos (~ v~) Jo(2.405 ~) , (3) 

2 (1f ) 2 1 ( 2 . 405 ) 2 1 
f3 = "2 W 2 + ~ = L2 ' 

(4) 

and where T is the diffusion time and L the characteristic diffusion length of the 
cell. 

At a sampling time ts after the X-ray pulse, the total number of electrons 
in the chamber is 'determined' by the application of an RF pulse between two 
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Fig. 2. Schematic diagram of the experimental cycle. Here t = 0 is chosen 
to coincide with the application of an RF pulse, while Ni and No are the 
total number of ions and electrons in the cell. 
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end plates at z = ± W. Each electron present causes ionisation in its immediate 
vicinity, the associated light emitted providing a means of detection. Two such 
sampling pulses at different ts (for two separate X-ray pulses) enable T to be 
determined independently of both the actual number of electrons present and 
the multiplication factor involved with the RF pulse. However, in order to 
obtain statistically reliable results the two measurements at different ts have to 
be repeated many thousands of times. Thus space charge effects not only arise 
from the positive ions produced by an initial X-ray pulse, but there are also 
cumulative effects arising from both subsequent X-ray and RF pulses. It is to 
be anticipated that an equilibrium state will be reached with the cycle of events 
being as illustrated in Fig. 2. In this figure zero time has been chosen to coincide 
with an RF pulse, the X-ray pulse having been applied at a time t = -ts. Here 
Ni and Ne are the total number of ions and electrons in the cell at time t and 
tt' is the repetition time. If we assume that we can take N ,...., e- t / T , with T a 
constant for both electrons and ions, then at t = 0-

while at t = 0+ 

Ni(O-) = Nx e- ts / Ti + Nj(O+) e-tr / Ti , 

Ne(O-) = Nx e-t./Te + Ne(O+) e- tr / Te , 

Ne(O+) = (1 + A)[Nx e-ts / Te + Ne(O+) e- tr / Te ] , 

Ni(O+) = Ni(O-) + ANe(O-). 

(5) 

(6) 

In these equations Nix = Nex = Nx is the number of electrons and ions produced 
by a single X-ray pulse, while A is the number of electrons and ions produced 
by the RF pulse for each electron present at t = 0- . 
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Equations (5) and (6) constitute the cycle balance equations and may be 
immediately rearranged to give 

(7) 

(8) 

We note, in particular, the 'breakdown' condition 

(9) 

However, the experimental measuring range is such that in normal circumstances 

(10) 

leading to 

(11) 

These same conditions also give 

-ts < t < o. (12) 

That is, Ni is a constant throughout the sampling time and (7) and (8) reduce to 

(13) 

(14) 

Noting that A must be significantly greater than unity, two extremes are readily 
identified. If tr »Ti, Ni(s; t r) ::::: Nx and the dominant space charge effect is 
that associated with a positive line charge along the y-axis produced by the 
initiating X-ray pulse at t = -ts. On the other hand, for tr rv Ti, not only will 
Ni(s; t r ) »Nx but the dominant charge will be dispersed throughout the cell, 
being primarily that due to the RF pulse. The initial distribution of such charge 
for any single RF pulse will be that of the electrons at t = 0-. However, at 
t = -ts the distribution will be that determined by the ions themselves. The 
problem is complicated by the fact that the ions will be subjected to their own 
space charge field with Ni rv e-t / Ti , Ti = constant, being a somewhat questionable 
assumption. This is further discussed in Section 4. 
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3. Space Charge Effects 

The basic equations are 

'V.E = L:nj ej/EO, 
j 

an-
_J +'V.rj =0, at 

777 

(15) 

(16) 

(17) 

Both electrons (j == e) and ions (j == i) are considered. For Maxwellian velocity 
distributions the diffusion coefficient D is isotropic and the usual Einstein relation 
between D and /-l, the mobility, exists. Here T is the gas temperature and k 
Boltzmann's constant. 

Using (17) in (16) we have 

dnj 2 
--D-'V n+ lI -n-'V.E=O dt _ J ) 1")) , 

J 

where E is determined by (15) and 

dn- an-d/ == a: + /-lj E . 'Vnj . 
) 

(18) 

Equation (18) has a simple physical interpretation. Referred to a frame moving 
with velocity /-lj E, particles j are dispersed (or congregated) by both diffusive 
and localised space charge effects (the 'V . E term). 

Noting that E = -'V cp, we put 

'ljJ = cp/2kT, (19) 

and make the substitution 

(20) 

Equations (17) and (18) then become 

(21) 

(22) 

where 

(23) 
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and the Poisson equation is 

(24) 

Equations (23) and (24) (three in total) are to be solved subject to appropriate 
initial and boundary conditions. The latter are 

nj = O*Uj = 0 

at the walls of the diffusion cell and 

(25) 

(26) 

at any plane or line of symmetry, r being a unit normal to such a plane or line. 
We seek solutions of the form 

(27) 

However, even in the absence of transients, because of the nonlinear nature of the 
equations such solutions only exist in the limit n -+ 0, that is t -+ 00. Fortunately, 
the physics dominates both the geometry and the mathematics and sufficiently 
accurate solutions of the form (27) can be found for more realistic situations. 

To define the problem explicitly, put 

1 L2 1 
7 = (32D = 15 «(3L)2 == 70F, (28) 

where L2 
70 =15' F = «(3L)-2 . (29) 

Here L is the characteristic diffusion length of the cell being defined such that in 
the absence of space charge 7 = 70, F = 1. The object of the subsequent analysis 
is to determine (3L, i.e. F, for the electrons as a function of the electron and 
ion concentrations in the cell. We start by considering three exact solutions. 

(3a) The Planar Cell 

Consider a diffusion cell consisting of two infinite plane walls separated by a 
distance 2 W. Ions are concentrated in an infinite plane sheet midway between 
the two walls (see Fig. 3). We assume that the dispersed charge is such that 

(30) 

This condition is a statement that the distributed charge, both electrons and 
ions, is small compared with the ion concentration at z = o. We put 

(31) 
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Fig. 3. Planar diffusion cell. 

where, for this particular configuration and condition, E is a constant given by 

E _ Nsei 
- 2Eo ' 

and where Ns is the number of ions per unit area in the sheet. Define 

(32) 

(33) 

We note that aj and hence Ej is positive for electrons but negative for positive 
ions. 

Referring now to equations (22), (25), (26) and (27), the equation to be solved 
is 

00] = 13] - a;, (34) 

subject to the boundary conditions 

Uj =0, at z = ltV, (35) 

dUj = _ a U 
dz J J' 

at z = O. (36) 

We consider electrons only, for which Ej and aj are positive. On putting 

,,(=aW (37) 
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and dropping the subscript j (= e), the solution is 

E:S1 

E ;:: 1 

IB = -EA, 

_I_=E, 
tan I 

U = Ae'Yz/w + Be-'Yz/ w , 

I ---=E, 
tanh I 

b-E)B= b+E)A. 

In particular, for E = 1; 1=0, ;32H12 = E2 = 1 and 

U = Uo (1 -E~) = Uo (1 - ~) . 
W W 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

In general, for this case L = (2/1f)TiV, and on solving the eigenvalue equations 
(39) and (42) the factor F as defined in equation (28) can be determined, the 
results being given in Table 1. The origins of the analytic solutions given in this 
table are readily seen. 

Table 1. The factor F for the planar cell (electrons only) 

0 I F = [(2/7f),6W]-2 
Numerical value Analytic solution 

0 1·57 1 1+2(2/7f)20 
0·1 1·51 1·08 

0·2 1·43 1·18 
0·3 1·35 1·29 
0·4 1·27 1·40 
0·5 1·17 1·53 
0·6 1·05 1·68 
0·7 0·92 1·83 
0·8 0·76 2·02 
0·9 0·54 2·25 

1·0 0 2·47 (7f /2)2 

1·5 1·28 4·03 
2·0 1·91 7·00 
3·0 2·98 20·5 
4·0 3·9972 1.1 x102 

5·0 4·9995 5x102 (7f2 /16)0 -2e2< 



Space Charge Effects 781 

For E = 0, 'Y = 7r /2, hence on putting 'Y = (7r /2 - 8) we have from equation 
(39) 

Thus for E and hence 8 small 

2 
8 = -E, 

7r 

On ignoring terms in E2 the analytic solution for F for small E follows. 
For E> 1 we have from (42) 

For E large 'Y ~ E and hence 

Thus 

Finally, if we were to consider for this case the behaviour of dispersed ions (as 
distinct from those fixed in the sheet) we would still obtain equations (38)-(43). 
However, for the ions E is negative and the only solution is Ui = O. That is, in 
particular, for the boundary condition (36) with ai =1= 0 there is no solution of 
the form Ui "" e-t / T1 with Ti a constant. To obtain such a solution we must take 
ai = 0 at z = O. That is, the ions must be completely dispersed. We return to 
this problem in Section 4. 

(3b) The Infinite Symmetric Cylinder 

Referring to Fig. 1 we take W = ± 00 and let there be a uniform positive ion 
line charge in the z, rather than the y, direction. Referring to (22), (23), (25) 
and (26), the equation to be solved is 

d2 U 1 dU 2 2 
- + - - +(,8 -a )U=O, 
dr2 r dr 

(45) 

subject to the boundary conditions 

U=O, r=R, (46) 

dU 
-= -aU 
dr ' 

r =0. (47) 
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For this case 

where E = Ni ei/27fTEo, with Ni being the number of ions per unit length. We 
define 

(48) 

whence (45) is simply an ordinary Bessel equation of order v. 
Obviously £ and v are similar dimensionless parameters. In fact on defining 

an equivalent mean space density np by Ns liV = 2np L2 and Ni = 7fnp L2, then 

( L )2 £-2 -
- 2hi ' 

( 49) 

where the ion Debye length is 

(50) 

The factor of 2 for the planar case arises from the fact that there are two sides 
to the cell. As will be seen in the next section (49) and (50) constitute a very 
important observation. 

Returning to equation (45), with a given by (48), the solution for electrons is 
(O<v<l) 

with, in particular, 

dU = _ ~ U 
dr r' 

But, for (3r == x, for any Bessel function 

x--+O, 

at r = O. 

J' = dJn 
11- dx ' 

and the boundary condition (52) gives A = o. Thus 

(51) 

(52) 

(53) 

Equation (53) is also a solution for v = 0, that is, no space charge, and we have 
in particular for v = 0 and U = 0 at r = R, 

(3R = 2·405 =} L = R/2· 405 . 
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Thus the factor F of equation (29) is simply F = (2·405/;3R)2, with the ;3R 
being the roots of 

Lv(;3R) = O. (54) 

The results are given in Table 2 and presented graphically in Fig. 4. For 
comparison the planar case is also shown in the same figure. 

Table 2. The factor F for the cylindrically synnnetric cell (electrons only) 

v 

0 
0·1 

0·2 
0·3 
0·4 

0·5 

F 

f3R F = (2.405/f3R)2 
Numerical value 'Analytic' approximation 

20 

10 

2·405 
2·2486 

2·0883 
1·9228 
1·7509 

1·5708 

Symmetrical 
cylindrical 

cell ~ 
o 

Linear : 
5 region I 

I 

( / 
I .0' 

0·5 1·0 

1 1 + 2(7r/4·81)v = 1 + 1·3v 
1·14 

1·30 
1·56 
1·88 

2·34 [(2/7r)2.405J2 

2-0 3-0 

E, v 

Fig. 4. The factor F == Tc/TcO versus space charge parameters 
for both planar (E) and cylindrically symmetric (v) cells. Exact 
values are given in Tables 1 and 2. 

The roots of (54) have been taken from Janke-Emde-Losch (1960). Unfortunately, 
values of v > 0·5 are not recorded but this is of no great consequence, the rapid 
increase of F with v for v > 0·5 being obvious. Again for v > 1 real roots 
of (54) may not exist and as in the planar case a different solution should be 
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found. The 'analytic' approximation given in Table 2 for v :S 0·1 is accurate to 
within 1%. 

(3c) The Finite Symmetric Cylinder 

Take now W to be finite and assume as before (equation 30) that space charge 
effects associated with dispersed charge can be ignored. Then in general for the 
symmetric case 

and from (22) the equation to be solved is 

(55) 

subject to 

aU 
- arU; 

ar 
r = 0, (56) 

aU 
- azU; 

az 
z = 0, (57) 

U=O; r=R, z=T¥. (58) 

In the absence of space charge a solution of (55) determines L, this being, as 
already noted (equation 4), given by 

1 (7r)2 1 (2.405)2 
L2 = "2 W2 + ~ (59) 

Again, in general, we have 

(60) 

Put now 

(61) 

and define 

F = (2.405)2 
r (3r R ' 

F __ 7r_ ( )
2 

z - 2(3z W ' (62) 



Space Charge Effects 785 

then we have 

(63) 

This is a general expression but for it to be of value we must be able to determine 
{3r and {3z separately. For ar and az functions of r or z only, or ar and az 

functions of r only and z only respectively, separation of variables is possible 
and solutions of the type already discussed are readily obtained. 

Of special interest is the case of an infinite line of positive charge along the 
z-axis (r = 0) plus an infinite plane sheet of positive charge in the xy plane (cf. 
Fig. 1). For this case Fr and Fz are as given in Tables 1 and 2. If now, in 
particular, the xy sheet charge is zero, then 

(64) 

Then as the line charge is increased from zero to some relatively large value, Fr 
will rapidly increase and F will tend to a saturation value 

( 2 )2/ 2 (4.81)2 W2 
Fsat = :; W L = ----;- Ji2 + 1 . (65) 

or for R = W 

F sat = 3·34. (66) 

This result is of considerable interest for the actual Cavalleri configuration. 

4. The Actual Experimental Configuration 

The actual experimental configuration differs considerably from those discussed 
in the preceding section. In the first place, referring to Fig. 1, any line charge 
will be along the y-axis instead of the symmetry (z) axis. Again depending on 
the repetition time, tn much of the associated space charge will be distributed 
throughout the cell rather than concentrated in a line or on a plane. The result 
is that no exact solutions comparable with those found in Section 3 are possible. 
However, using the reults of Section 3, approximations of sufficient accuracy can 
be found. Referring to Section 2 we consider two cases, Ni (s; t r ) = N x and 
Ni(s; t r ) »Nx · 

(4a) The Case Ni(s; t r ) = N x 

For this case the charge is concentrated along the y-axis and condition (30) 
is still satisfied. The basic problem is readily identified. Referring to Fig. 5 and 
ignoring end effects 

(67) 
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y 

x 

Fig. 5. Radial variable R as a function of the cell variables r, (), z. 

where 

(68) 

For the r, (), Z coordinate system of Fig. 5 

a· = e· \1 'lj; = - Nl ej ej R\ (r sin2 () r + r cos () sin () 9 + Z z) , 
J J 47rkTEO 

It follows that for aj other than zero, solutions involving separation of variables 
do not exist. 

y 

z - - - -t----+--=--+--"---- z 

.--

Actual Equivalent 

Fig. 6. Actual and equivalent Cavalleri configurations for Ni(s; t r ) = Nx • 

However, if we think of y and R as being the variables with y == Z = Zeq, 

R == r = req , we can consider the equivalent system shown in Fig. 6. For both 
the actual and equivalent system the line charge is along the y-axis and 

(69) 
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From the preceding section, equation (63), we immediately have 

with 

Fy = 1 (71) 

and FR given by Table 2. Obviously we wish to determine the ratio Weq/ Req 
such that for the real system F = Feq . 

For exact equivalence between the two systems we postulate the following 
conditions. 

(i) Since we must have TO = TO eq , then Leq = L. That is, from equation (4) 

1 [(4.81 Weq )2 ] _ 1 [(4.81 W)2 ] -2- ---- +1 --2 --- +1. 
W~eq 'if Req \IV 'if R 

(72) 

(ii) As already implied (Section 3b, also see next subsection) the basic scaling 
parameter is L / hi; hence 

(73) 

(iii) But in addition to (ii) we would expect the basic space charge parameter 
to be l/ and that this should be the same for both systems, giving 

From (ii) it follows that we must have 

Equations (72) and (74) now give 

( 4.81 Weq)2 

'if Req 
[w R ( 'if)2 ]-1 -+- -- -1 

R W 4·81 

For W / R = 1 this gives Weq / Req = 1 and 

3·34 
F = Feq = --.,.----

2·34/FR +1 

(74) 

(75) 

(76) 

The exact appropriateness of conditions (i)-(iii) is uncertain. However, the result 
(76) is consistent with a physical interpretation of the behaviour of F. In 
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particular, because of (69), and hence (71), we expect F to approach a saturation 
value, the electrons being restricted in the z but not the y direction by the space 
charge fields. Again for 

W --» 1 
R 

and 
W --« 1 
R ' 

equation (85) gives W eq / Req « 1 and hence 

F = Feq ~ Fy = 1 . 

(77) 

(78) 

At first sight this appears to be an inappropriate result, but on reflection it 
is also consistent with our physical expectations. Conditions (77) are simply a 
measure of the relative physical scale of the system and if satisfied, the charge 
along the y-axis will appear as little more than a minor perturbation to the 
system as a whole. 

F 

4 

3 

,-
" 

,-

/ 
/ 

/ 

Saturation 
/-

OL-L-______ -L ________ ~ __________ J_ ____ ~ 

0·1 
2 

O·S 
10 

1·0 
20 

Fig. 7. Factor F versus v and Nt (line density) for the Cavalieri experiment for Ni(s; t r ) = N x • 

From (76) the saturation value of F is 3·34, being within 10% of this value 
for F ~ 20. Using the values of FR given in Table 2, for R = W the values of 
F can be determined and are given in Fig. 7. The corresponding values for Nl 
have been deduced from (48), with Nl = 1·8 X 105 v (cm-1); T = 300 K. 

An approximation for the linear region is readily obtained. On putting 
FR = 1 + 8FR in (76), we have 

F = (1 + 8FR) 1 - - 8FR ~ 1 + - 8FR , ( 1 ) 2·34 
3·34 3·34 

which from Table 2 is 

F ~ 1 + 0·95v v < 0·1 

= 1 + 0·5Nl X 10-5 (79) 
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We note from Fig. 7 that the major departures from linearity occur in the 
range 105 < Nz < 2 X 105 cm-I, while the curve is linear to within 1% for 
N z < 4 X 104 cm- I . In practice N z is determined by the intensity I of the X-ray 
beam and the actual value is unknown. This is of no consequence since, provided 
the linear part of the F curve is found, an extrapolation for I -+ 0 will give an 
extremely accurate value for TO. Because of this the accuracy of the preceding 
analysis is relatively unimportant. On the other hand, it is extremely important 
to ensure that the operating conditions do not correspond to the saturation level. 
For this region the value of F given is at best an approximation, while the 
apparent independence of F on I could lead to the false conclusion that space 
effects are insignificant. Of course it is possible that the finite length of the line 
charge could lead to an Ey and thus obscure the existence of a true saturation 
level. This however would only lead to further confusion and thus this region of 
the F -v curve should be avoided. 

As already noted in Section 3, other nonlinear effects could arise from the 
space charge field of the electrons themselves. The mean electron density at the 
sampling time ts is given by 

_ N z 2R -t.IT 
ne - 2 e 

2rrR W 
(SO) 

Referring now to equations (22), (23) and (24) we have 

(S1) 

where for this case of Ni (Sj t r ) = Nx 

(S2) 

and we have put 

1 f)'lj; _ 1 f)'lj;e _ (32.1. 
-------- 'fie· 
De f)t De f)t 

(S3) 

For (32 to be a constant the terms in the coefficient of Ue in (S1) must be 
independent of time. That is, the terms involving 'lj;e must be negligible. A 
simple criterion ensuring this is 

(S4) 

or from (SO) 

Nz e2 (2L2) -t IT -- e R «1. 
47rkTEo RW 

(S5) 
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From (48) and (4) for R = W this reduces to 

(86) 

We take as a measure of ts and TO· 24e- t ,/T = 0 ·1, giving l/ «10. Alternatively, 
for a 1 % error in (32, and hence T, we require l/ < 0·1, which corresponds to 

(4b) The Case Ni(s; t r ) > N x 

From equation (14) we have 

where 

For 

(87) 

(88) 

(89) 

(90) 

the distributed charge dominates the line charge. For this situation the space 
charge fields inhibit electron motion in all directions and no saturation effect is 
to be expected. In general such distributed effects may only confuse the situation 
and it could well be prudent to take 

A'e-tr / Ti ;S 0·1 (say), 

requiring 

tr ~ Ti Inl0A'. (91) 

Given Ti and A', which may be determined from the experiment (see Appendix 
A), this is a relatively easy criterion to satisfy and operation on a linear part 
of the T-l/ (Nl or I) curve is still possible. Unfortunately the condition (91) 
may be too restrictive. For example, for A' '" 100 and Ti '" 1 s we would require 
tr ~ 7 s. This could well be too long and to reduce this by a factor of 3 (say) 
we would require 

(92) 

It is therefore necessary to look at this case in greater detail. 
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We note that for Ni(s; t r ) »Ne(s), equations (22), (23) and (24) become 

(93) 

(94) 

(95) 

Equation (93) is a linear equation with the (32 of (94) a constant. However, in 
general, 'lj; will be a complex and unknown function of position and a solution 
involving separation of variables is again no longer possible. The problem is 
partly simplified by noting that, on ignoring completely the line charge along 
the y-axis (cf. Fig. 1), the boundary conditions become 

oUe = 0 
or ' 

at r = 0, (96) 

oUe =0, 
OZ 

at z =0. (97) 

Nevertheless, we must still approximate. If in (93) we were to assume (3~q = constant 
then a solution of this equation subject to (96) and (97) is simply 

with 
(98) 

L being as given by equation (4). Furthermore we would have from (94) 

(99) 

Such a solution of course requires both V'lj; and V2'lj; to be constants, which is 
impossible. Again if we were to take V'lj; constant then the boundary conditions 
(96) and (97) would be inappropriate. However, for ni uniform, V2'lj; is a constant, 
while from (95) 

x<L, 

hi being the ion Debye length as previously defined. Thus assuming (99) to be 
formally correct we would have 

F= (100) 
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It follows that for L/h j « 1 and a uniform ion distribution, (100) is an exact 
result. However, in the light of the cases considered in the preceding section we 
can take this a stage further. On putting x / L = ~, we have 

F-. 1 
- [1- ~(L2 /2hr)]2 . 

(101) 

Now, as already noted, this gives an accurate result for uniform nj for small 
L/hj , while the fact that it becomes infinite for 

(102) 

is at least qualitatively, if not quantitatively, quite consistent with the exact 
solutions obtained in the preceding section. We therefore take (101) as being an 
adequate solution to the problem. [For h j < L/2, F remains infinite, the electron 
'boundary' effectively contracting, that is, L decreases, so that (102) is always 
satisfied.] 

Inserting numbers, equation (101) is 

( N )-2 
F = 1- R 10-6 , (103) 

where N is the total number of ions in the cell and R is the radius in cm. [The 
numerical factor, 10-6 , corresponds to R = W, T = 300 K. For other cases it 
should be multiplied by (W/R)(300/T).] 

Alternatively, using (88) we have 

(104) 

with 

(105) 

For tr/Tj » 1 this gives, in a linear approximation, 

F = Te/TeD = 1 + 0·4Nl X 10-5 , (106) 

where Nl is the equivalent line density per cm defined by 2RNl = N = N x • 

The agreement between (106) and (79) is remarkably good, giving credence 
to both results. More importantly, this agreement implies that (103) and (104) 
are adequate approximations irrespective of the ion distribution. It is important 
to appreciate fully, however, that they are by no means exact. For example, 
referring to (104), due to self space charge effects Tj will be a function of all 
other variables Nx , A, tr and ts. It is to be expected that it will vary from 
its value, TjD, in the absence of space charge to its ambipolar value, TiO/2, as 
Te -+ 00. Of course Te will never actually become infinite, tending instead to Tj. 
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In general equation (104) is the cycle balance equation and as such, because of 
(105), is a complex equation for Te. The dependence of Te on other parameters 
is given more explicitly in the alternative form 

with 

b=(l-x~)eQX, 

TeO 
X=-, 

Te 

ts 
a=-, 

TeO 

10-6 e- tr / Ti 

b = -- N x A t / a , R 1 - e- r Ti 

(107) 

In this form it is possible to identify two extreme cases: 

(i) 

(ii) 

(108) 

for which equation (107) reduces to 

(109) 

This corresponds to both the line and distributed charge produced by the 
X-ray pulse being dominant. Since (108) will inevitably require tr » Ti, this 
case has already been considered in equations (106), (79) and (91). 

(110) 

This corresponds to the positive ion charge produced by the RF pulse being 
dominant. For this case (107) exhibits extremely interesting behaviour as a 
function of a, this being discussed in Appendix B. 

In general in all cases the experimental observations are made in the linear 
region of the Te-Nx (i.e. I) curve in the neighbourhood of x = 1. Here TeO 

is determined by extrapolation as 1-+0. Using previq.,us estimates of Nl [d. 
equations (106) and (79)] this region corresponds to 

0< b < 0·04. (111) 

For both the extreme cases considered here operation within these limits gives 

Te 
- =l+,,(NI , 
TeO 

where for the first case, from equation (106), 

"( = 0·4 X 10-5 = constant, 

(112) 

(113) 



794 B. S. Liley 

while for the second case (see Appendix B) 

4 X 10-6 Ae-a e- tr / Ti ,= (114) 

Implicitly for this case e- tr / Ti is of the order of unity, and the sensitivity of , 
to A, t" a (=ts/TeO) and, in particular, Ti makes operation under conditions 
corresponding to (110) somewhat questionable. 

5. Discussion 

The results obtained in this analysis emphasise not only the importance of, 
but the dominance of space charge effects in the Cavalleri experiment. To achieve 
accurate results, it is essential to operate in a regime in which the electron 
diffusion time is clearly dependent on the positive ion line density produced by 
the X-ray pulse, that is linearly dependent on the X-ray intensity I. In this 
regime accurate values for TeO can be obtained by extrapolating the Te-I curve 
to I = O. An approximate relationship for this region is 

Nl being the positive ion line density per cm. In the work of Rhymes et ai. 
(1975, Fig. 1) such a linear plot is given for neon at 13·38 kPa. In terms of a 
relative density no the equation is 

Te = TeO(1 + o· 04no) . 

Comparison with the preceding equation gives 

no = 1 == Nl = 8 X 103 cm- 1 , 

a value well within the linear limits. 
For a guaranteed linear dependence on I, a basic requirement IS for the 

repetition time tr to be such that 

(115) 

where A is the RF pulse amplification factor, ts the sampling time and Te ~ TeO' 

For Ae-ts / Te rv 100 thfs gives tr rv 7Ti. Shorter repetition times are desirable. 
The analysis indicates that a linear dependence on Nl as such is still possible for 
such times but that there is a sensitivity to ts, A, tr and in particular Ti, the 
ion containment time, which could lead to nonlinear behaviour. Such behaviour 
might, however, be minimised by the experimental procedures, and somewhat 
lower values of tr than that given by (115) could possibly be achieved. 
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Appendix A 

The basic equations are 

The first in this set is the space charge equation and the second the cycle balance 
equation. Although these equations are only approximations to the real case, 
they can nevertheless be regarded as exact in the sense that we wish to determine 
the unknowns Nx , TeO, A and Ti by fitting such functions to experimentally 
determined curves. In particular, equation (104) implies that T e versus tr curves 
for A and ts constant will be of the form shown in Fig. 8. [This is in agreement 
with the observations of Rhymes et al. (1975, Fig. 2).] Such curves could be 
fitted by the functions (AI) in several ways. We only discuss one. 

Equations (AI) may be rearranged to give 

~ -----~-----------

Fig. 8. Schematic curves of Tc versus ir for different Nx (A and is are held constant.) 
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where 

On decreasing N x , that is I, the minimum value of Te = TeO can be found. Thus 
for given tr and ts, C and /3 are known as a function of N x , that is I, while h 
is a constant. Thus 

But 

h == Cl - Nxl 

Cl + /31 Nxl A 
(A2) 

N x3 h 
N =-1 =P3, 

xl 1 

with P2 and P3 being known. Thus within equations (A2) there are two equations 
which enable A and Nxl to be determined, while the remaining equation determines 
h and hence Tj. 

Appendix B 

Consider the function [equation (107)] 

b = (1 - x! )eaX ; (B1) 

we are interested in the domain 

We note that 

(i) x = 1, b = 0; x = 1, b = 1, 

(ii) db ( 1 ( l)) ax -= - --, +a1-x 2 e , 
dx 2X2 

giving db/dx = -00, b = 1 and db/dx = _eC< /2, b = O. 
We note, in particular, that for a (= ts/TeO) > 2, equation (B1) exhibits 

hysteresis type behaviour with maxima and minima occurring at 

bmax = ~ (1 - VI - ~)eaxmax, 

b . -.! (1 + V1- ~)eaXmin mm - 2 a' 

Curves for a = 0, 1, 2, 3 and 4 are given in Fig. 9. 
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Fig. 9. The function b = (1 - x! )e"'X for various a. 

25 

For A", 0 the relevant curve is that for a = 0 with [cf. equation (110)] 

10-6 N 
b=-- x 

R 1 - e-tr / n . 

For A very large, corresponding to equation (110), 

10-6 N x Ae-tr / Ti 

b = -- ---,.-;--R 1 _ e- tr / Ti • 

797 

(B2) 

(B3-) 

For a > 2 the remarkably small change in T e with relatively large changes in b 
and the possibility of more than one equilibrium state for b> bmin is unexpected 
and somewhat surprising. This, however, merely reflects the ability of the system 
as a whole to adjust the ion concentration, and hence T e , to maintain the cycle. 
Of course not all possible equilibrium states may be stable. This has not been 
investigated. 

A basic observation is that for given b, x increases with increasing a. That 
is, Te decreases with increasing ts. This is not surprising since for all other 
parameters fixed, increasing ts corresponds to fewer ions being produced by the 
RF pulse. 

As noted in the main text, most experiments are conducted in the neighbourhood 
of x = 1 within the range 0 < b < 0·04. For A large and practical values of 
A and Nx this corresponds to tr/Ti '" 3. Again for A large from (B3) and 
db/dx = -e'" /2 at x = 1, for A and tr fixed, for x '" 1 we obtain the linear 
relationship 

this leading to equations (112) and (114). 
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