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Abstract

In this article, we review three areas of study in which the resonant interaction between atoms
and laser radiation plays a central role. Firstly, coherent optical transients are discussed in
which the direct observation of this interaction can be studied via the detection of the Rabi
frequency in optical nutat ions. Secondly, the response of atoms to resonant radiation in an
optical cavity leading to optical bistability and other effects is described. Finally, the new
field of atom manipulation by resonant laser fields is introduced, in particular, the deflection
of atomic beams. The underlying theoretical framework for the experiments performed is
discussed, ranging from full quantum electrodynamic to semiclassical models.

1. Introduction

Narrow bandwidth, single mode, tunable dye lasers were developed and
commercialised two decades ago. Their widespread availability caused a resurgence
in activity in the area of atomic spectroscopy. However, not only was it now
possible to obtain spectra of very high resolution, it was also feasible to study
coherence effects in atom-light interaction.

This revolution in experimental methods has forced a commensurate change in
theoretical approaches. With conventional non-laser light sources, it was generally
assumed that, at most, only one photon interacted with an atom during the
lifetime of an atomic excited state. Such a weak excitation allowed perturbation
theory to be applied. Even if more than one photon was involved, they were not
coherently related and rate equations were sufficient to describe the system.

To include the coherence effects in a theoretical description requires the ability
to handle superposition states. Models involving the density operator achieve
this but, even though the Hamiltonian describing the atom and the atom-light
interaction is quantum-mechanical, the light field is treated classically. This leads
to an absence of the non-coherent relaxation terms which must then be included
on an ad hoc basis. This process is relatively straightforward for simple atomic
systems of two or three energy states, but it is not feasible when there are more
states than this. It was for this reason that even complex atomic transitions
such as the D2 line of sodium in hyperfine representation, which has a total
of 24 magnetic substates, were, by approximation, described by two or three
states. At times, the number of states participating in an interaction can be
reduced by some preparation. For example, optical pumping of the sodium D2
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hyperfine transition 32S1/2(F=2)-32P3/2(F=3) by circularly polarised light can
achieve a two-state system, 32S1/2(F=2, mF=2)-32P3/ 2(F=3, mF=3). However,
it is not always possible or desirable to effect this pumping in an experiment.
Theoretical models employing a fully quantum-mechanical representation for the
atom, field and their interaction are now available for a complete description of
atom excitation by resonant laser radiation.

In this review article, we shall discuss three topics involving laser-atom
interactions; namely, coherent optical transients, optical bistability and atom
manipulation. The interrelationships between the topics and, in particular, the
underlying theoretical development will be emphasised.

2. Coherent Optical Transients

Probably the most fundamental manifestation of the coherent interaction
between laser radiation and an atomic transition is Rabi cycling (Knight and
Allen 1983). This phenomenon is best described by considering an atomic
transition between two isolated states, the lower of which is the ground state,
[g). When the atom is exposed to a near-resonant monochromatic field, the
excitation probability as a function of time is of harmonic form with a frequency
of (Q2+Ll2)1/2, where Ll is the frequency detuning of the radiation from the
transition and Q is the on-resonance Rabi frequency associated with the transition.
The Rabi frequency is a measure of the strength of interaction between the
radiation field E and the induced atomic dipole D and ·is defined as

Q = -D.E/n. (1)

The physical interpretation of the excitation probability is that the individual
atom, initially in the ground state, is excited to the upper state Ie) by the
absorption of a photon from the radiation field, and then is stimulated to return
to the ground state, also by its interaction with the field. Once back in the
ground state, the atom is re-excited and the cycle continues. Thus an individual
atom experiences a coherent optical cycling interrupted randomly by incoherent
events such as spontaneous emission or collisions.

Formally, the macroscopic polarisation of an ensemble of atoms subjected to
a coherent laser field is given by

P = Ntr(pD) , (2)

(3)

where N is the atomic number density and p the density operator. The amplitude
E (z, t) of the scattered field is related to the amplitude P (z, t) of the polarisation
by Maxwell's wave equation which is given, in the slowly varying amplitude
approximation, by (Allen and Eberly 1975)

a 1 f) iWL
- E(z, t) + - - E(z, t) = - P(z, t) ,
az C at 2CEo

where z is the direction of radiation propagation and W L the radiation frequency.
By considering the macroscopic polarisation of a medium of two-level atoms
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shown that the field amplitude scattered by the atoms in the forward direction
(coherent scattering) will exhibit Rabi oscillations (Brewer 1975). 'Suddenly' is
here measured on the time scale of the upper state lifetime which for atoms is
typically of the order of 10 ns. The oscillations persist for only a few lifetimes
as the dephasing of the coherent signal from the ensemble is achieved by the
non-coherent relaxation of individual atoms. Indeed, even in the absence of an
incoherent. relaxation process, the Boltzmann distribution of atomic velocities in
the medium, which gives rise to a distribution in the detuning frequency from
the Doppler effect, causes a dephasing of the oscillatory signal which takes on
the form of the Bessel function of the first kind, Jo. This oscillatory signal is
often referred to as an optical nutation.

Brewer and Shoemaker (1971) demonstrated how the forward-scattered field
amplitude could be detected in the presence of a laser field using a heterodyne
method when they observed Rabi oscillations in optical nutations from molecular
transitions. The molecules were Stark-shifted into resonance with radiation from
a CO 2 laser by the sudden application of an electric field. We adapted this
experimental technique to the study of Na atoms where the requirements for the
voltage pulse were more severe with the need to apply an electric field of the
order of 100 kV cm"! in a time of the order of 1 ns.

H.V. Supply

30 MQ Charging Resistor

Coaxial
DelaYLine~

Spark GapT ~ #r *Laser500. I ..... "

capaCito.r-.r:-11---T--1 Termination ,-----
Divider -:::- I -;- ....... " Polarizer

.---..J / -> ""

Vapour Cell

Fig. 1. Schematic diagram of the apparatus used for the
detection of coherent optical transients. [From MacGillivray et
ale (1978).]

A schematic diagram of the apparatus used for the detection of optical nutations
in atomic Na is shown in Fig. 1 (MacGillivray et ale 1978). The high voltage
pulsing unit consisted of a supply, a delay line, a coaxial pressurised spark gap
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and a matched termination. This unit produced voltage pulses of up to 20 kV
amplitude with rise times of approximately 1 ns and durations 60 ns, which were
applied to platinum electrodes spaced 1· 9 mm apart inside a glass cell. The cell
was filled with Na which was heated to form a vapour. The intensity profile of the
linearly polarised, single-mode, cw laser beam was Gaussian with a lie diameter
of about 2 mm. The laser was tuned to the D2 line of Na. The transmitted
beam was detected by a PIN photodiode after passing through an aperture which
excluded all but the uniform central region. The output of the photodiode was
monitored by a storage oscilloscope which was triggered by the applied voltage

(a)

Fig. 2. Optical nutation data for
various values of laser intensity
expressed as total power in a 2 mm
diameter Gaussian profile beam. The
corresponding values of the deduced
Rabi frequency for each curve are (a)
127 MHz, (b) 140 MHz, (c) 165 MHz
and (d) 180 MHz. The dotted curve
in (b) is from the calculation of
a two-state density matrix model
normalised to the first maximum (see
text for details). Curve (e) is the
applied electric field pulse. [From
MacGillivray et al. (1978).]
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pulse. The enhanced signal-to-noise ratio of the heterodyne signal enabled
single-shot recording of the data. Owing to the heterodyning method used, the
slowly varying part of the transmitted light intensity detected is proportional to
the real part of the scattered field amplitude E. For an ensemble of two-state
atoms, the scattered field can be determined from equations (2) and (3) yielding,
for the heterodyne signal,

Re[E(t)] = CD12Im[p12 (t)]av , (4)
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where C is a constant for the atomic species, D 12 is the relevant dipole matrix
element and the imaginary part of the slowly varying density matrix element,
Pij, defined by

Pij = Pij exp[i(wLt - kz)] , (5)

(6)

is averaged over the velocity profile of the atoms in the ensemble. The density
matrix element can be determined from the solution of the component equations
derived from the density operator equation of motion (Allen and Eberly 1975)

p= - *[H, p] + relaxation terms,

where H is the semiclassical Hamiltonian and the relaxation terms are added in
an ad hoc manner.

Fig. 2 exhibits typical data. The oscillatory features are due to the scattered
field amplitude and are optical nutations. At switch-on of the voltage pulse, the
transmitted intensity decreases rapidly due to the absorption of photons as the
atoms in the ensemble are excited to the upper state. Then follows an increase
in the intensity above its steady-state value as photons are coherently emitted
from the atoms due to stimulated emission. This cycle continues but is rapidly
damped out due to the processes discussed above. Apparent in the data is the
increase in the Rabi frequency of the optical nutation as the intensity is increased.
From equation (1), it can be seen that the Rabi frequency is proportional to
the square root of the intensity. We have subsequently observed optical nutation

32P3/2

325
1/2

mF =

F=3

F=2

F=1

F=O

F'=2

F'=1

-3 -2 -1 o 1 2 3

59.5 MHzI
35.5 MHz1

1.772 GHz!
Fig. 3. Energy states, in hyperfine representation, associated with the D2 line of sodium.

Studies Involving the Resonant Interaction 5 

where C is a constant for the atomic species, D12 is the relevant dipole matrix 
element and the imaginary part of the slowly varying density matrix element, 
Pij, defined by 

Pij = Pij exp[i(wLt - kz)] , (5) 

is averaged over the velocity profile of the atoms in the ensemble. The density 
matrix element can be determined from the solution of the component equations 
derived from the density operator equation of motion (Allen and Eberly 1975) 

p = - * [H, p] + relaxation terms, (6) 

where H is the semiclassical Hamiltonian and the relaxation terms are added in 
an ad hoc manner. 

Fig. 2 exhibits typical data. The oscillatory features are due to the scattered 
field amplitude and are optical nutations. At switch-on of the voltage pulse, the 
transmitted intensity decreases rapidly due to the absorption of photons as the 
atoms in the ensemble are excited to the upper state. Then follows an increase 
in the intensity above its steady-state value as photons are coherently emitted 
from the atoms due to stimulated emission. This cycle continues but is rapidly 
damped out due to the processes discussed above. Apparent in the data is the 
increase in the Rabi frequency of the optical nutation as the intensity is increased. 
From equation (1), it can be seen that the Rabi frequency is proportional to 
the square root of the intensity. We have subsequently observed optical nutation 

-3 -2 

F=3 

F=2 

F=1 

F=O 

F'=2 

F'=1 

-1 o 1 2 3 

59.5MH% 1 
35.5 MHz 1 

1.772 GHz ! 
Fig. 3. Energy states, in hyperfine representation, associated with the D2 line of sodium. 



6 W. R. MacGillivray and M. C. Standage

signals in the Na D lines both from an atomic vapour and a multiple atomic
beam system by using an electro-optic switch to create a rectangular light pulse
from the cw laser radiation (Farrell et al. 1985; Schulz et ale 1989).

Plotted on curve (b) of Fig. 2, and normalised to the first maximum of the
experimental data, is a theoretical curve computed from the two-state semiclassical
density operator theory of equation (4). That a two-state theory should give
good agreement was somewhat of a surprise considering the energy level structure
associated with the D2 line of Na in hyperfine representation, as illustrated
in Fig. 3. Subsequent Fourier analysis of the data indicated that the optical
nutations consisted of essentially a single Rabi frequency. The Rabi frequency
associated with each of the hyperfine transitions in the D2 manifold can be
written as (Farrell et ale 1994)

(

2 .!
61Tc reg 2 , , 1.

[lFmF,F'mF' = nw:
g

) C(FmF, F mF', L, L )I2 , (7)

Table 1. Values of C (FmF, F ' m F', L, L ') of equation (7) for the rr excitation of the hyperfine
transitions 328.1 (F=2)-32P ~ (F=3, 2,1)

2 2

mF -3 -2 -1 0 1 2 3

F==3 -1/v'3 -4/v'30 -3/v'I5 -4/v'30 -1/V3
F==2 1/v'3 l/vU -l/vU -1/V3
F==l 1/V20 1/v'I5 1/V20

where F is the total angular momentum quantum number in hyperfine representation
and L is the orbital quantum number for each state. The prime indicates a
substate of state [g), while weg is the transition frequency, reg the relaxation
rate between the two states, and I the radiation intensity. The coefficient
C (Fm p, F ' m P', L, L ') consists of angular momentum vector addition coefficients
derived from reducing the dipole matrix element from F representation to a
common reduced matrix element in L representation. If we assume that the ground
states can be resolved by the narrow-band laser radiation, 1T excitation from
the 32 S.l(F ==2) state to the 32P~(F==3,2,1) states consists of twelve hyperfine

2 2
transitions. The constants C(Fmp, F' mp', L, L ') for these transitions are given in
Table 1 where it is apparent that they have a wide range of values. Calculation of
the optical nutation signal for this system is via a straightforward generalisation
of equation (4) and is given by

Re[E(t)] == C L o.; Im[Peg(t)]av ,
eg

(8)

where the sum is over all the optical coherences formed between the substates
of [e) and [g). However, the derivation of the component equations for the
density matrix is not straightforward because of the difficulty in determining
the relaxation terms. Rather, we have generalised the atomic operator method
introduced for two-state systems (Ackerhalt et al. 1973; Ackerhalt and Eberly
1974) in which the relaxation terms arise naturally from the quantum treatment of
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the field. This is a fully quantum-electrodynamic theory for the atomic operator
a whose time evolution is governed by the Heisenberg equation of motion

a = _!-[(j H]n' , (9)

where the Hamiltonian in the Heisenberg representation is fully quantum-mechanical
and the operator elements are given by

(7ij = Ii) (jl· (10)

The details of the derivation of the component equations for a general non
degenerate two-level system can be found elsewhere (Farrell et ale 1988). As
is the case with the density matrix elements, the component equations for the
atomic operator are derived in terms of the slowly varying element, Xij

(jij = Xij exp[-i(wL t - kz)] , (11)

where kz is the phase due to propagation in the z direction. Recognising the
relationship between the atomic operator and density matrix elements as

(Xij(t)) = pji(t)

leads to the recasting of equation (8) as

Re[E(t)] = C L o.; Im[Xge(t)]av.
eg

(12)

(13)

0·4

[IntenSity

(GIi<)jl/<

o

\0\'\"2.')
. \~eo.\}e(\C'l

~u\'O-\\O(\

0·6

Fig. 4. Fourier transforms of the optical nutation signals calculated for the 7r excitation of
the 32S1/2(F=2)-32P3/2(F=3, 2, 1) hyperfine transitions of sodium. The signals are plotted
as a function of the square root of the radiation intensity expressed as the Rabi frequency of
the 32S

1/2(F=2, mF=0)-32 P3 / 2(F=3, mF=O) transition. [From MacGillivray et ale (1990).]
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Fig. 4. Fourier transforms of the optical nutation signals calculated for the 7r excitation of 
the 32S1/2(F=2)-32P3/2(F=3, 2, 1) hyperfine transitions of sodium. The signals are plotted 
as a function of the square root of the radiation intensity expressed as the Rabi frequency of 
the 32S1/ 2(F=2, mF=0)-32 P3 / 2 (F=3, mF=O) transition. [From MacGillivray et ai. (1990).] 
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Equation (13) has been evaluated for the 1r excitation of the 32S
1/ 2 (F = 2)

to 32P3/ 2(F=3, 2,1) transitions of Na without the averaging over the atomic
velocity profile (MacGillivray et ale 1990). The averaging makes no qualitative
difference to the computed signals. In Fig. 4 the Fourier transforms of the
optical nutation signals are plotted as a function of the square root of the
radiation intensity expressed as the Rabi frequency of the 32S

1/ 2 (F = 2, mF=O) to
32P3 / 2(F=3, mF=O) hyperfine transition. As can be observed from the plot, at
low intensities there are a number of frequency components which would give rise
to a complicated optical nutation signal. However, by the time that the intensity
scale reaches 150 MHz (about 40 mWmm-2 ) the signal has collapsed to a single
frequency. That the calculations of a two-state model fitted the experimental
data of Fig. 2 at 140 MHz is explained by the results of Fig. 4 since, at this
nutation frequency, the signal does consist of essentially one frequency due to
the interference between all of the component Rabi frequencies.

Another demonstration of Rabi cycling was observed in a different experiment
(Murray et ale 1991) in which mercury atoms were stepwise excited by inelastic
electron collisions followed by resonant laser interaction. Fig. 5 is a schematic
of the stepwise process. Stimulated absorption and emission cycles are possible
in the laser excitation of the 61P l-6

1D2 transition. Coincidences between the
scattered electrons and photons from the 61D2- 63P

1 channel were detected,
yielding a time-resolved intensity signal as shown in Fig. 6. While no oscillations
are apparent in this signal which would indicate Rabi cycling, it was noted that
the decay time of the signal, which measures the laser-excited state lifetime, was
5·8±1 ns, corrected for radiation trapping effects. The accepted lifetime value for
the 61D2 state is 10·9 ns. The reduction in the decay time can be explained as
the first full Rabi cycle, that is, one cycle of absorption and stimulated emission.
No further cycles were observed in this signal since the lifetime of the 61P

1 state
is only 1·3 ns, and so there is a much greater probability at this laser intensity
that the atoms will relax back to the ground state rather than being re-excited
to the 61D2 state. A calculation of the time-resolved signal using the full QED
model was in good agreement with the observed data for a laser intensity of
60 mW mm -2. An experiment is being planned where the electron-excited state
will be a metastable state allowing for many Rabi cycles in the laser-excited
transition. Under these circumstances, Rabi oscillations should be apparent in
the time-resolved coincident fluorescence signal.

Other phenomena that are classified as coherent optical transients include
photon echoes and free induction decay (FID). The latter effect was studied
using the same apparatus as used for the optical nutation experiments described
above. Whereas the optical nutation signal is generated from atoms switched
into resonance with the laser radiation, atoms switched out of resonance produce
the FID signal in the forward scattered direction as they relax back to their
equilibrium condition. As for the optical nutation, the FID signal is phase-related
to the laser radiation and so can be detected by the same heterodyning method.
For two-state atoms, the scattered field amplitude is observed as the slowly
varying component of the detected intensity, as given in equation (4). However,
in this case, the density matrix component is calculated from the equations of
motion with the Rabi frequency term put to zero and with the steady-state
solution as the initial conditions. This model reflects the conditions that the

8 W. R. MacGillivray and M. C. Standage 

Equation (13) has been evaluated for the 7r excitation of the 32S1/ 2 (F=2) 
to 32P3/ 2 (F=3, 2,1) transitions of Na without the averaging over the atomic 
velocity profile (MacGillivray et al. 1990). The averaging makes no qualitative 
difference to the computed signals. In Fig. 4 the Fourier transforms of the 
optical nutation signals are plotted as a function of the square root of the 
radiation intensity expressed as the Rabi frequency of the 32S1/ 2 (F=2, mF=O) to 
32P3/ 2 (F=3, mF=O) hyperfine transition. As can be observed from the plot, at 
low intensities there are a number of frequency components which would give rise 
to a complicated optical nutation signal. However, by the time that the intensity 
scale reaches 150 MHz (about 40 mWmm-2) the signal has collapsed to a single 
frequency. That the calculations of a two-state model fitted the experimental 
data of Fig. 2 at 140 MHz is explained by the results of Fig. 4 since, at this 
nutation frequency, the signal does consist of essentially one frequency due to 
the interference between all of the component Rabi frequencies. 

Another demonstration of Rabi cycling was observed in a different experiment 
(Murray et al. 1991) in which mercury atoms were stepwise excited by inelastic 
electron collisions followed by resonant laser interaction. Fig. 5 is a schematic 
of the stepwise process. Stimulated absorption and emission cycles are possible 
in the laser excitation of the 6 1 P 1-61 D2 transition. Coincidences between the 
scattered electrons and photons from the 61 D2-63P 1 channel were detected, 
yielding a time-resolved intensity signal as shown in Fig. 6. While no oscillations 
are apparent in this signal which would indicate Rabi cycling, it was noted that 
the decay time of the signal, which measures the laser-excited state lifetime, was 
5·8±1 ns, corrected for radiation trapping effects. The accepted lifetime value for 
the 61 D2 state is 10·9 ns. The reduction in the decay time can be explained as 
the first full Rabi cycle, that is, one cycle of absorption and stimulated emission. 
No further cycles were observed in this signal since the lifetime of the 61 PI state 
is only 1·3 ns, and so there is a much greater probability at this laser intensity 
that the atoms will relax back to the ground state rather than being re-excited 
to the 61 D2 state. A calculation of the time-resolved signal using the full QED 
model was in good agreement with the observed data for a laser intensity of 
60 mWmm-2. An experiment is being planned where the electron-excited state 
will be a metastable state allowing for many Rabi cycles in the laser-excited 
transition. Under these circumstances, Rabi oscillations should be apparent in 
the time-resolved coincident fluorescence signal. 

Other phenomena that are classified as coherent optical transients include 
photon echoes and free induction decay (FID). The latter effect was studied 
using the same apparatus as used for the optical nutation experiments described 
above. Whereas the optical nutation signal is generated from atoms switched 
into resonance with the laser radiation, atoms switched out of resonance produce 
the FID signal in the forward scattered direction as they relax back to their 
equilibrium condition. As for the optical nutation, the FID signal is phase-related 
to the laser radiation and so can be detected by the same heterodyning method. 
For two-state atoms, the scattered field amplitude is observed as the slowly 
varying component of the detected intensity, as given in equation (4). However, 
in this case, the density matrix component is calculated from the equations of 
motion with the Rabi frequency term put to zero and with the steady-state 
solution as the initial conditions. This model reflects the conditions that the 



Studies Involving the Resonant Interaction

Laser Excitation

~

61P
, 1

Electron
Excitation

61 S, 0

~D2

63P
t--,--

9

Fig. 5. A stepwise electron-photon excitation scheme in Hg. The target atom is excited by
inelastic electron collision from the 61So ground state to the 61 PI state, followed by further
excitation by resonant laser radiation to the 61D2 state. The fluorescence photon emitted by
spontaneous decay in the 61D2-63 P 1 relaxation channel is detected in coincidence with the
scattered electron.

100

80

~·c
::J

~ 60
~
:.0
~
C 40
'00
c
Q)

E
20

100 200

Time (ns)

300

Fig. 6. Time-resolved electron-photon coincidence fluorescence intensity from the 61D2-6
3 P l

transition of Hg derived from the scheme of Fig. 5.
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Fig. 6. Time-resolved electron-photon coincidence fluorescence intensity from the 61 D2-63 Pl 
transition of Hg derived from the scheme of Fig. 5. 
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ensemble has reached a time-independent steady state with the radiation before
being switched out of resonance with it. It follows from the two-state theory
(Brewer 1975) that the time dependence of Re[E(t)] has the form COS(LlW12t),
where ~W12 is the Stark shift of the transition frequency produced by the applied
voltage pulse.

FID signals from the D1 line of Na are shown in Fig. 7 as a function of
the electric field of the applied voltage (Hannaford et ala 1979). To simplify
the analysis of the signals, low laser powers were used to greatly reduce the
frequency of the optical nutation signal produced by those atoms switched into
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Fig. 7. Coherent optical transient
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Fig. 8. Hysteresis loop of a bistable system subject to an intensity cycle. The arrows show
the direction of change of the intensity.
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resonance. In Fig. 7, the high frequency FID signals are superimposed on an
optical nutation signal of about 10 MHz. By measuring the frequency of the
FID oscillations, the frequency of the transition Stark shift is obtained. This
represents a straightforward method of obtaining polarisabilities of atomic levels.
In the experiment described above, values deduced for the scalar and tensor
polarisabilities for the 32P! and 32p ~ level of Na were in good agreement with
values obtained previously by other, more complicated experimental techniques.

3. Optical Bistability

Optical bistability is the descriptive title given to a class of optical devices
which possess two different steady-state transmission states for a given input
radiation intensity. The system must have some strongly nonlinear property and
the transmission must depend on the output intensity, so that some feedback
mechanism is required. In which state the system is found depends on its
immediate history, giving rise to a hysteresis cycle (Fig. 8). Gibbs et ale (1976)
were the first to observe the phenomenon by cyclically varying the intensity of
laser radiation injected into a Fabry-Perot etalon containing Na vapour. The
appropriate nonlinearity was deduced to be the dispersion of the medium and
feedback was achieved by the partially reflecting, partially transmitting output
mirror. Other experiments demonstrating dispersive and absorptive optical
bistability in atomic Na in Fabry-Perot etalons were subsequently performed
(Sandle and Gallagher 1981; Weyer et ale 1981).

The interest in optical bistability was not restricted to fundamental research
because of the potential of the phenomenon to be applied in the areas of
optical communication and optical data processing and storage. Much work
has been carried out in developing materials suitable for applications, including
semiconductor devices, liquid crystals and interference filters. It is an area of
ongoing interest in many laboratories. A definitive text has been produced on
the topic (Gibbs 1985).

The theoretical models for optical bistability are based on the Maxwell wave
equation [equation (3)] relating the electric field of the radiation to the macroscopic
polarisation of the medium, and include appropriate boundary conditions for the
cavity. The polarisation is normally calculated from a semiclassical density matrix
theory describing the atomic response to the intracavity field. The resultant set
of coupled differential equations are referred to as the Maxwell-Bloch equations.

Even though the original experimental work was performed in two-mirror,
standing-wave optical cavities (Fabry-Perot etalons), the early theoretical models
were developed for ring optical cavities. The internal radiation fields in these
devices are travelling waves and, as such, are easier to include in the Maxwell-Bloch
equation models than standing waves. If the input mirror is positioned at z = 0
and the output mirror at z = L, then the boundary conditions for a ring cavity
are given by (Lugiato 1983)

E(O, t)

ET(t)

TtEI(t) + Rexp( -iLlc IR) E(L, t - Llt) ,

TtE(L, t),

(14a)

(14b)
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Fig. 9. Schematic diagram of the apparatus configuration for optical bistability experiments 
using sodium vapour. The dashed lines indicate how the Fabry-Perot etalon can be converted 
to a three-mirror ring cavity. [From Schulz et al. (1983).] 
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Fig. 10. Transmission of the ring cavity showing optical bistability for the sodium Dl 
transition. The low-frequency side is to the right. The solid (dashed) trace represents a sweep 
to lower (higher) frequency. [From Schulz et al. (1983).] 
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where EI( t) [ET( t)] is the incident [transmitted] field amplitude, R (T) is the 
resistivity (transmittivity) of the input and output mirrors (where the mirrors 
are assumed to be identical and absorptionless so that R + T = 1), L1c is the 
cavity detuning from the radiation and TR is the empty cavity round-trip time 
which is the inverse of the free spectral range. 

The first optical bistability experiment performed at Griffith University was 
to observe the effect in a ring cavity as well as in a Fabry-Perot etalon (Schulz 
et al. 1983). The apparatus for the experiment is illustrated in Fig. 9. Radiation 
from a Spectra Physics 380A single-mode dye laser was injected into the optical 
cavity which contained Na vapour as an intracavity medium. The Fabry-Perot 
etalon consisted of two 93% reflecting, A/100 plane mirrors, one of which was 
mounted in a PZT aligner/translator. The etalon had a free spectral range of 
970 MHz and a finesse of about 9. The cavity could be converted to a ring by 
the addition of one 100% reflecting mirror. The ring cavity also had a finesse of 
9 but a free spectral range of 700 MHz. The radiation was linearly polarised in 
the direction perpendicular to the plane of the ring. The frequency of the laser 
was scanned and the transmission of the cavity, detected by a photomultiplier 
tube, was recorded on a storage oscilloscope and photographed. Fig. 10 shows 
data for the transmission of the ring cavity for laser frequency scanning about 
the Dl line. The cavity transmission profiles are distorted due to the switching 
between the lower and upper branches of the system. The bistable behaviour is 
evidenced by the observation that the frequency at which the switching occurs 
in a profile depends on the direction of the frequency sweep. The asymmetry 
about the centre indicates that the dispersion of the medium is the origin of the 
bistable behaviour. 
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Fig. 11. Apparatus configuration for studying the response of a bistable system to a fast 
light pulse. The intracavity medium consisted of 25 parallel sodium beams. [From Schulz et 
al. (1989).] 
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Optical bistability was also observed in a system in which the medium consisted
of 25 parallel beams of Na (Schulz et ale 1989). A schematic of this apparatus
is shown in Fig. 11. The aim of the work with this apparatus was to investigate
the response of a bistable system to a fast light pulse. This pulse was formed
from cw radiation from an actively stabilised Spectra Physics 380D dye laser by
an electro-optic switch. The pulse had a rise time of 1 ns and duration that
could be varied between 2 and 480 ns and was passed through a 1 mm aperture
so that its intensity profile was reasonably flat. The atomic beam system was
contained in a vacuum chamber together with the mirrors which formed either a
Fabry-Perot etalon of free spectral range 615 MHz or a ring cavity of free spectral
range 1230 MHz. Both cavities had a finesse of about 10. The transmitted light
was focused onto a PIN photodiode whose output was recorded on a fast storage
oscilloscope.
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Fig. 12. Simulated response of a ring cavity with a sodium vapour medium to a light pulse
with a rise time of 1·5 ns switched on at t = 10 ns and off at t = 170 ns. The cavity free
spectral range is taken as 1200 MHz and the finesse of the cavity is increased from the top
left to the bottom right. The intracavity field was kept constant and the system maintained
below the threshold for bistability. [From Schulz et ale (1989).]
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The atomic beams had a residual Doppler width of approximately 200 MHz
which was about the same value as the power broadening by the radiation at the
intensities used. Thus the ground state transitions from the F = 2 and F = 1
states of the 32S! level could be resolved, but not the transitions to the hyperfine
states of the 32P.a level. To facilitate computer simulations of the experiment,

2

the atomic energy level scheme associated with the D lines was approximated to
three states of the 'lambda' type with two ground states and one upper state.
Further, the dipoles associated with the transitions were taken as equal, as were
the branching ratios for the excited state decay. This model for the Na D2 line
.had been used previously (Orriols 1979). Confidence in this model was enhanced
during the course of this work when it was discovered that the Rabi frequencies
observed in optical nutation signals from both the resolved transitions were equal.
With this simplified energy level structure and the desirability of invoking a
classical field model to facilitate the inclusion of the boundary conditions in
the Maxwell equation, semiclassical density matrix models were derived for the
bistable systems.

Depending on the characteristic times associated with the optical cavity and the
atomic medium, the dynamic response of the bistable system to a light pulse can
be dominated by one constituent or the other. For example, in the 'good' cavity
limit where a high finesse cavity has a lifetime which is much greater than that
of the relevant atomic level, the response of the system is governed by the cavity
time evolution, and the atomic response is deemed to follow that of the cavity
instantaneously. This allows for the elimination of the time-dependent terms in
the equations of motion describing the atomic behaviour. The transient response
of such a system to a light pulse has been studied by Kimble's group (Grant
and Kimble 1983; Rosenberger et ale 1984). Conversely, in a system which has a
cavity with a low finesse such that the characteristic time associated with the
atomic transition dominates-the 'bad' cavity limit-the response of the atomic
medium would be observed. Computer simulations solving equation (3) with the
boundary conditions of equation (14) of the response of a ring optical cavity
with a sodium vapour medium for various values of finesse are shown in Fig. 12,
where the transmitted intensity is plotted as a function of time. The radiation
was assumed tuned to the 32S! (F=2) to 32 p ~ (F) transition and the cavity was
tuned to the radiation. The three-state model for the associated sodium energy
levels as described above was employed. The cavity was modelled to have a
free spectral range of 1· 2 GHz and the intracavity intensity was maintained at
a constant value under conditions below that necessary for bistability. The light
pulse was assumed to switch on at t = 10 ns with a rise time of 1· 5 ns and to
switch off at 170 ns. The cavity finesse (F = ttR! / T) increases from top left to
bottom right. For the low values of finesse, optical nutation signals due to the
atomic response to the light pulse are clearly evident. However, for the highest
finesse, no nutation signal is apparent and the time response is dominated by
the slow intracavity radiation filling time.

For the Griffith experiment, the system approached neither the good nor the
bad cavity limit, that is, the cavity and atomic lifetimes were approximately
equal. The response of the ring cavity system to a 450 ns light pulse tuned
approximately to the 32S! (F = 2) to 32P3/2(F) transitions is shown in Fig. 13.
The data show the transmission of the system versus time for various cavity
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Fig. 13. Response in the transmission of a bistable ring cavity system
with an array of sodium beams as its intracavity medium to a light
pulse with 1 ns rise time and of 450 ns duration. The free spectral
range of the cavity was 1230 MHz. The injected radiation was tuned
to the 328.1 (F==2)-3 2 p a (F==3,2,1) transitions of the sodium D2 line
and the civity tuning 2was varied in a sequence from top left to
bottom right through resonance with the radiation. The length of
the dash in each figure is 100 ns. [From Schulz et al. (1989).]

frequency settings. Before applying the pulse, it was first established that the
system was in a bistable regime in the steady state by cycling the intensity. The
tuning range of the cavity was approximately from -150 to 50 MHz (although
this parameter could not be measured exactly), ranging from the top left to the
bottom right. The best estimate for zero detuning was the profile in the centre
of the second bottom row. The asymmetric behaviour of the system about zero
detuning indicated that the bistability was dispersive in nature. Analysis of the
steady-state curves shows that for the large negative detunings, the system was
switching straight on to the upper branch from well above the switch-up threshold.
However, as the cavity was tuned closer to resonance with the radiation, the
input intensity tended towards the switch-up threshold, resulting in a delay before
switching to the upper branch. This delay became greater as the cavity was
tuned to positive detuning frequencies until, in the last plot, the system did not
switch to the upper branch at all during the pulse, even though still in a bistable
regime in the steady state. This phenomenon of long delay in switching when
the intensity of the injected radiation is just above the threshold for switch-up is
known as critical slowing down, and had previously been observed in good cavity,
all-optical bistable systems (Grant and Kimble 1983; Mitschke et al. 1983).
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Because the bistable system could be described by neither the good nor bad
cavity limits, neither the atomic nor the cavity response could be adiabatically
eliminated from the Maxwell-Bloch equations of motion (Bonifacio and Meystre
1978). Hence the system of coupled first-order differential equations with the
time delay included in equation (14a) had to be solved numerically (Schulz et
ale 1989). Simulated transmissions for the ring cavity system versus time are
shown in Fig..14, calculated for conditions similar to those of Fig. 13. The
qualitative agreement is quite good although the delay in switching is longer in
the simulated data. This disagreement may be due to the simplified atomic level
structure or the assumption of a flat intensity profile.

During the optical bistability studies, a new phenomenon was discovered (Schulz
et al. 1983). This effect occurs only in a sodium-vapour-filled Fabry-Perot etalon
under conditions below the threshold for bistability. The feature is shown in
Fig. 15. The effect occurs in the cavity profile tuned approximately midway
between the two ground-state hyperfine transitions. This profile was broadened
and split and an enhanced emission peak appeared in the middle of the split peak.
The cavity had a free spectral range of about 980 MHz and a finesse of 5. That
the effect appeared in a Fabry-Perot etalon and not in a ring cavity suggests that
it is due to the motion of the atoms through the standing wave. As well, such
an effect had not appeared in the theoretical solution to an ensemble of two-state
atoms moving through a standing wave (Carmichael and Agrawal 1980). A density
operator model was developed based on the theory of rotating frames (Pegg and
Schulz 1985; Schulz et al. 1987) which describes an ensemble of three-state lambda
configuration atoms moving through a standing wave. It was also necessary for
the Doppler broadened transitions from the ground states to overlap as indeed
is the case for sodium atoms in a vapour. This condition was necessary so
that there could be a velocity class of atoms which, due to their motion and
detuning, could have the radiation propagating in one direction Doppler tuned
to one transition from the ground states, while the counter-propagating radiation
is Doppler tuned to the other transition. It is the same velocity group that gives
rise to the well-known 'cross-over resonances' observed in saturation absorption
spectroscopy (see, for example, Levenson and Kano 1988). In the atomic beam
system as described above, this feature was not observed due to the fact that
the ground state transitions were resolved. Subsequently, it was deduced that a
four-state model for the sodium atom under the conditions of this experiment
was more appropriate (MacGillivray and Pegg 1988). In this model, the two
ground states are each excited simulataneously to two orthogonal upper states.
The simulation with this model is shown in Fig. 16. The agreement between
the theoretical calculation and the experimental data is very good.

The theoretical modelling showed that the narrow, enhanced emission feature of
Fig. 15, the so-called 'central feature', occurred at an absolute frequency slightly
detuned from the frequency midway between the two ground state transitions.
The slight asymmetry in the system was due to the unequal branching ratios
in the cross-relaxation channels. An absolute frequency is always attractive for
use in standards but, in this case, the width of the feature was too great. The
theoretical models predicted that the central feature would be observed only for a
small range of parameters of atom density, radiation intensity and cavity finesse
and free spectral range, highlighting how fortuitous was its observation.
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in the transmission of a Fabry-Perot etalon filled with sodium vapour
under conditions below threshold for bistability. See text for details.
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4e Atom Manipulation by Light

There is currently considerably activity in developing methods of atom cooling
and trapping and other forms of manipulation using light or a combination of
light and magnetic fields. Several popular reviews have been written on the
topic recently (see, for example, Cohen-Tannoudji and Phillips 1990; Chu 1992
and references therein). In the Australian context, there are four groups known
to be actively pursuing research in this area. Both the Australian National
University and the Melbourne University/ CSIRO Division of Materials Science
and Technology groups are developing atomic interferometers by different methods
and a group at the CSIRO Division of Applied Physics is constructing an ion trap
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apparatus for frequency standards experiments. At Griffith University, the work
is concentrating on the information obtainable by detecting atoms in a beam
that have been deflected by a laser propagating at right angles to the beam.

To describe the deflection process in physical terms, we consider the interaction
between an atom in the beam and resonant laser radiation. The atom absorbs a
photon then, as observed directly in the optical nutations described in Section
2, it can be stimulated by the radiation to emit a photon. Because stimulated
emission is a coherent process, the photon will be emitted in the same direction
as the radiation and so there will be no net change in the momentum transferred
to the atom. However, when the atom relaxes due to the incoherent spontaneous
decay process, the photon can be emitted in any direction with equal probability.
After several events of absorption followed by spontaneous emission, there will be
a net transfer of momentum to the atom in the direction of propagation of the
radiation. This is the principle behind cooling atoms with radiation propagating
in the direction opposite to that of the atomic motion. If the laser beam is at
right angles to the atomic beam, the interaction will result in a deflection of the
atoms.

In a uniform travelling laser field, the expectation value of the deflection force
(F (t)) for resonant interaction between the radiation and an ensemble of atoms
is given by (Ungar et ale 1989)

(F(t)) = -i nk ~:=rPge(t) - Peg (t)] il;g ,
eg

(15)

where k is the wave vector of the radiation, [leg is the Rabi frequency of the
transition between states Ig) and Ie), and Pge(t) and Peg(t) are the slowly varying
components of the density matrix, suitably averaged over the ensemble, which
describe the optical coherences. The momentum transferred to the atoms by this
force in the time interval t = 0 to t, where the laser-atom interaction commences
at t = 0, is written as

(P(t)) = L amn(t) Pmn(O) .
mn

(16)

That is, the transferred momentum, and hence the atomic deflection, depends
on the value of the density matrix at the time the atoms enter the laser beam.
The terms amn(t) describe the optical pumping of the atom by the radiation, and
are calculated using the full QED model discussed in Section 2. For single-mode
excitation in the reference frame defined by the laser polarisation, that is, the
direction of propagation for circular polarisation and the direction of the electric
field vector for linear polarisation, the only initial-state density matrix elements
on which the momentum depends are the ground-state population terms P~g(O),

where the superscript denotes the laser frame. A deflection measurement would
yield information on the initial distribution of population among the ground-state
substates. However, the initial ground-state population elements, P~g(O), are
related to the elements of any other frame, P;'g"(O) say, by (Blum 1981)

P~g(O) = L D~'g*(w)D~"g(w) P;'g"(O) ,
g'g"

(17)
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where D:"g(w) is an element of the operator which describes the rotation from
the laser frame to the other frame through Euler angles w (Edmonds 1974).
It can be seen from equation (17) that if the atoms have been prepared by
some process in a frame other than the laser excitation frame, then a deflection
measurement will contain information about off-diagonal (superposition state) as
well as diagonal (population) density matrix elements in the P or preparation
frame.

Further, by selecting various geometrical arrangements and then determining
the ground-state population terms in the laser excitation frame by atomic
deflection measurements for each, complete information about the preparation of
the atom may be obtained including superposition states. Recently, it has been
demonstrated that it is possible to obtain information about a state population
distribution from atom deflection by resonant laser photons (Kaiser et ale 1991).
In this experiment, the deflection of He 23S

1 metastable atoms by laser radiation
of fixed polarisation as a function of applied magnetic field was measured, yielding
a so-called 'mechanical Hanle effect'.

We intend to use the deflection technique to study inelastic collisions between
electrons and atoms, in particular, electron excitation of metastable states in
atoms (Summy et ale 1992). Information about the differential cross sections
(populations) and the amplitudes and relative phases of the electron scattering
should be obtained by measuring the atomic deflection after the collision using
appropriate laser polarisation settings. Extensive theoretical modelling has been
performed and a pilot experiment is currently in progress. Deflections of Na
atoms of the order of 10 mm in 1·2 m travel after the laser interaction have been
observed. Theoretical work has also predicted that deflection by a dispersion
process may be more sensitive although the specifications of the experiment are
more stringent. We are considering this method further.

5. Conclusion

We have reviewed three areas of investigation into resonant laser-atom
interaction which have been or are currently being undertaken. In all of the
studies described, the experimental data have been supported by simulated data
from theoretical models. The most sophisticated of these models is the full
quantum-electrodynamic description which has been developed to be generally
applicable. This theoretical approach has been tested not only by explaining the
data from experiments included here, but also in other detailed tests (Meng et
ale 1992).

In principle, the QED model should be employed to describe resonant laser
radiation excitation of atomic transitions at all times, but there are practical
limits in terms of the computing facilities available. The best example in the
work reviewed was for optical bistability, where using the full 24-state model
for the sodium D2 line in the Maxwell-Bloch equations for a Doppler-broadened
medium inside a ring cavity, let alone the standing-wave cavity of a Fabry-Perot
etalon, was a numeric and computing impossibility. In these circumstances, it
was shown that good qualitative agreement between the data and a semiclassical
density matrix theoretical model with a simplified atomic state structure for
sodium could be obtained. This enabled explanation of all of the phenomena
observed, including the unpredicted central feature.
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Fundamental to all models of resonant radiation excitation of atoms is the need
for a detailed knowledge of the Rabi frequencies for the associated transitions.
This is particularly true when non-degenerate energy states are involved, as both
the amplitude and the phase of the Rabi frequency must be included in the model
to describe correctly the quantum interference effects. There are several known
methods for calculating values for the Rabi frequency and, until recently, there
appeared to be disagreement in the relative phases produced by each within a
manifold of transitions. However, this inconsistency has recently been removed
and calculations of the Rabi frequency can now proceed with confidence using
any of the methods (Farrell et al. 1994).

Research in the areas of atomic spectroscopy and quantum optics is still a
fertile ground. In the last two decades, new topics such as optical bistability,
multiphoton processes, squeezed states, quantum non-demolition measurements
and now atom cooling and manipulation have made enormous impacts both within
and beyond the atomic physics community. In the field of collision physics, the use
of resonant excitation by laser radiation to enable a more detailed understanding
of the scattering processes, as well as the performance of new experiments, is
becoming more widespread. There is much more work to be done.
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Fundamental to all models of resonant radiation excitation of atoms is the need 
for a detailed knowledge of the Rabi frequencies for the associated transitions. 
This is particularly true when non-degenerate energy states are involved, as both 
the amplitude and the phase of the Rabi frequency must be included in the model 
to describe correctly the quantum interference effects. There are several known 
methods for calculating values for the Rabi frequency and, until recently, there 
appeared to be disagreement in the relative phases produced by each within a 
manifold of transitions. However, this inconsistency has recently been removed 
and calculations of the Rabi frequency can now proceed with confidence using 
any of the methods (Farrell et at. 1994). 

Research in the areas of atomic spectroscopy and quantum optics is still a 
fertile ground. In the last two decades, new topics such as optical bistability, 
multi photon processes, squeezed states, quantum non-demolition measurements 
and now atom cooling and manipulation have made enormous impacts both within 
and beyond the atomic physics community. In the field of collision physics, the use 
of resonant excitation by laser radiation to enable a more detailed understanding 
of the scattering processes, as well as the performance of new experiments, is 
becoming more widespread. There is much more work to be done. 
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