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Abstract

Many areas of modern physics are illuminated by the application of a symmetry principle,
requiring the invariance of the relevant laws of physics under a group of transformations.
This paper examines the implications and some of the applications of the principle of cyclic
symmetry, especially in the areas of statistical mechanics and quantum mechanics, including
quantized field theory. This principle requires invariance under the transformations of a
finite group, which may be a Sylow 'iT-group, a group of Lie type, or a symmetric group.
The utility of the principle of cyclic invariance is demonstrated in finding solutions of the
Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow
'iT-groups have other uses, in providing a basis for a type of generalized quantum statistics,
and in parametrising a new generalization of Lie groups, with associated algebras that include
quantized algebras.

1. Introduction

Progress in physics in the present century has in many instances followed the
discovery of a new type of symmetry in the laws of nature. The understanding
of the symmetries of space-time played a vital part in the development of the
theory of relativity; the uncovering of dynamical symmetries provided a key to
the solution of many problems in quantum mechanics; and quantized field theory
has been founded on the recognition of the statistical symmetries implied by
Fermi-Dirac and Bose-Einstein statistics, and the symmetries of the underlying
gauge transformations. In each instance," an appropriate formulation of the
physical laws has been found in terms of an algebraic structure, usually a Lie
algebra or superalgebra, and an associated group of transformations under which
the physical laws are invariant, depending on the type of symmetry involved.

In this paper we shall examine some of the implications of another symmetry
principle that, perhaps because of its apparent simplicity, has not been so well
recognized in the scientific literature. Cyclic symmetry, and invariance under
cyclic permutations, are important in many areas of physics where there are
periodicities in time or space, or some other variable, irrespective of whether
the periodic variable has a discrete or continuous spectrum. If the spectrum is
discrete, a natural description of cyclic invarance may be given in terms of Sylow
'IT-groups. Thus, electronic spin and parity are usually represented in terms of
Dirac matrices, which are generators of a four-dimensional representation of the
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Lorentz group; but there is an alternative representation (see Appendix B) in
terms of a zr-group, which gives expression to the cyclic invariance of the spin
and parity under reflections.

It has been argued (Coish 1959; Shapiro 1960; Plokhotnikov 1991) that the
apparent continuity of space and time are consistent with the hypothesis of a
finite geometry based on cyclic symmetry, and there are apparent advantages for
quantum electrodynamics and other quantized field theories in this hypothesis,
since none of the divergences associated with the space-time continuum arize.
An important feature of the finite geometries involved is that they are not
inconsistent with a kind of rotational, Lorentz and Poincare invariance. In fact,
wherever the spectrum of a variable is continuous, the usual representations are
in terms of circular, hyperbolic or elliptic functions; but (as shown in Appendix
A to this paper) all such functions can be regarded as furnishing the represention
space of a finite zr-group.

One application of the rr-groups, outlined in Appendix B, is to the quantized
theory of particles with 'colour', and was implicit in papers by the author
(Green 1975, 1976) and Kleeman (1983, 1985). The commutation coefficients of
supersymmetric field theories are elements of one of the simplest of 1r-groups,
and have a natural generalization in the colour superalgebras introduced by
Rittenberg and Wyler (1978). In the following, however, we shall be concerned
mainly with applications of the principle of cyclic symmetry to some other areas
of contemporary physics. In recent years there has been much interest in a
new type of algebraic structure, called a 'quantum group' (see Jimbo 1989,
1990) which provides new insight into a class of solutions of physical problems,
originally obtained independently by special techniques of considerable ingenuity.
Included in this class are problems in scattering theory (McGuire 1964; Yang 1967;
Gardner et al. 1967), quantized field theory (Thirring 1958; Gross and Neveu
1974; Coleman 1975; Zamolodchikov and Zamolodchikov 1979) and statistical
mechanics (Baxter 1972, 1982).

Some of the more recent developments have arizen from studies (e.g. Belavin
1981) of the Yang-Baxter equation

L R(x; »: k3;j2, j3)R(y;j l , k3;»: i 3)R (z;iI, i2; -; k2)
k

== L R(z; kl , k2;j l , j2)R(y;kl , j3;iI, k3)R (x ;i2, i3; k2,k3) , (1)
k

in which x, y and z are continuous variables and the i, j and k are positive
integers from 1 to m; the summation is over all such values of k l , k2 and k3 . In
the application to scattering theory (see Yang 1967), x is a momentum variable
and R(x) is a factor of the S-matrix. In the application to statistical mechanics
of crystal lattices (Baxter 1972), x is a variable depending on the temperature,
and R(x) is a factor of the transfer matrix [see equation (30) below]; there, (1)
may be regarded as a formulation of the 'star-triangle' relation.

The known solutions of the Yang-Baxter equation fall into a few categories,
sometimes with no obvious common feature. When a special relation, of the
form f(x) + f(z) == f(y), is assumed between the variables, there are solutions of
the type found by Yang and Baxter, and the generalization found by Belavin.
There are also possible solutions corresponding to the semi-simple Lie algebras
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and superalgebras and the 'q-deformed' generalization of these algebras (often
called 'quantum groups' or 'quantized algebras'), which have been extensively
investigated by Drinfeld (1985), Jimbo (1989) and Zhang et al. (1991a, 1991b)
among others. In some instances the existence of a special relation between
the parameters appears to be unnecessary. In this paper we shall attempt a
unification of these solutions in the light of cyclic symmetry, and in the process
shall uncover the existence of some wider classes of solutions.

In the form (1), the Yang-Baxter equation is somewhat inscrutable, but
without restriction we may express the R-matrix in the form

R(x; ii, i2; jl, j2) == L Fa (x; ii, jl)Fa(x; i2, j2),
a

(2)

with a summation over not more than m 2 terms. The solutions found by Baxter
and Belavin can be regarded appropriately as particular instances of this general
form, which is also consistent with that adopted by Khoroshkin and Tolstoy
(1991) in their derivation of the universal R-matrix for 'quantized algebras'.

Then, if Fa(x) and Fa(x) denote m-dimensional matrices with elements
Fa(x; i,j) and Fa(x; i,j), (1) can be written as

L Fa(x)Fb(y) 0 Fa(x)Fc(z) 0 Fb(y)FC(z)
a,b,c

== L Fb(y)Fa(x) 0 Fc(z)Fa(x) 0 Fb(z)FC(y), (3)
a,b,c

where Fa(x)Fb(Y) is the matrix product, and 0 denotes a direct product of the
matrices which it separates. There is considerable latitude in the choice of the
Fa(x), and also some arbitrariness in the relation assumed between Fa(x) and
Fa(x). Here, with little loss of generality, we take

Fa == fa(x)Ha, Fa == fa(x)Ha , (4)

where Ha is an element of a finite group Q'H, of matrices, H" == (Ha )- l is its
inverse, and fa(x) and fa(x) are scalar coefficients. The latter may be chosen
so that I fa(x) I == I fa(x) I. The summations in (2) and (3) are not, in general,
over all elements of the group, but over a maximal linearly independent subset
forming a basis for the algebra of the group. Then (3) can then be written

L <Pa(x)<Pb(y)<pc(z)HaHb0 tt-u, 0 HbHC

a,b,c

L <Pa(x)<Pb(y)<pc(z)HbHa 0 n.u: 0 HCHb

a,b,c

L <pa(x)<pb(Y)<Pc(z)HbHa 0 HcHa 0 HCHb, (5)
a,b,c
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where

<Pa(X) = fa(x)fa(x) ,

H. S. Green

(6)

and a = Paa, b = Pib, c = Pcc represent the results of permutations Pa, Pi; P;
applied to the affixes under the summation. Any of these may of course be an
identity, leaving the affixes unchanged.

To satisfy (5), we require that the direct products under the summations in
the first and third lines of that equation should be the same, apart from a scalar,
unless of course <Pa(X)<Pb(Y)<Pc(z) = o. The permutations may be regarded as
equivalence relations of the type

Ha, = HpHaHP, Hr; = HqHbHq, He = HrHcHr (7)

on the group. Even then, p, q and r must be chosen to ensure the existence of
scalars (Sba, S~, scb) in the algebra of the group, such that Hr;Ha, = SbaHaHb,
etc., i.e.

HqHbHqHpHaHPHbu: = UqbUbpa = SbaHO ,

u.u.srHpHaHPHCtt, = UrcU~p = S~ tt; ,

H HCHrH HbHqH H = ucucb = s-u.r q c b r q 0,

where Hi, = 1 is the identity element of GH , and

(8)

o., = ii.u.u-tr, o.: = HaHbHcHbu:HC (9)

are elements of its derived subgroup DH. Then (5) reduces to the form

L [<Pa(X)<Pb(Y)<Pc(z) - SbaS~Scb'Pa,(x)<pr;(Y)<Pe(Z)]
a,b,c

x HaHb0 trn, 0 HbH c = O. (10)

In general, all coefficients of the direct product must vanish. However,
exceptions are possible if the derived group D1-{, is central, so that ug = Vc

a Ho,
where ~a is a scalar, and H" H; may be written as ~aHcHa, in the algebra
of the group. The exceptions arise because there is then an identical relation
iH"Hc)(HaHb)(HbHC) = Vc

aHi, between the factors of the direct product, so
that it is possible for terms under only two of the summation variables a, band
c to be linearly independent. However, as will be seen in the following Section,
this possibility is realized only if there is also an identical relation of the type
f(x) + f(z) = f(y) (e.g. x = Z = Y + w) between the variables.

From these considerations it may be concluded that the solutions of the
Yang-Baxter equation may be classified according to (a) the type of finite group,
assuming that GH is finite; (b) whether there exists a relation between the
variables x, Y and Z; and (c) the type of permutations Pa, Pb, P; required to
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derive (5) or (10). The classes suggested by these criteria are not mutually
exclusive, but their relevance for our present purposes may be summarized as
follows:

[1] The derived (commutator) group DH may be central, and GH is then
what is known as a Sylow rr-group. If in addition there is a suitable relation
between the variables, the terms under the summations in (10) are not linearly
independent, and non-trivial solutions are possible. If, in addition, each of the
permutations Pa, Pi; Pc is the identity, then Hp = Ho and 'Pa(x) = 'Pa(x), etc.,
and it follows from (8) that the Sab in (10) can be replaced with Vab. The
solutions found by Baxter and Belavin were of this type and are included among
the more general solutions obtained in Section 2 below. In Apppendix B it is
shown that a group of the same type can be made the basis of a generalized
quantum statistics.

[2] If, however, Y may be varied independently of x and z, it is necessary in
general that each term under the triple summations should vanish. Then 'Pa(x)
must obviously still be a numerical multiple of, if not identical with, 'Pa(x), etc.
This is indeed a possibility, and some solutions of this type will be also be given
in Section 2 of this paper.

[3] There is also a wide variety of finite groups of Lie type. If GH is of
this type, it is a subgroup of a continous group CH, which may be a Lie group
or one of its generalizations. Possibilities of this type will be at least partially
explored in Section 3, and here too a use will be found for the Sylow 7r-groups
in deriving a generalization of the known 'quantized' algebras.

[4] The possibility of choosing more general permutations appears to be
particularly interesting when GE itself is isomorphic with a symmetric group or
an alternating group. If Uab and Uabc are as defined in (9), the general form
of (5) is applicable but p, q and r must be chosen so that UqbUpba, UrcU~p

and U~U~b are scalar multiples of the identity Ho, whenever 'Pa(X)'Pb(Y)'Pc(z) is
different from zero. It would appear that wherever there are solutions of the
Yang-Baxter equation of this type, this should be possible, but the choice of
the permutations must depend on the structure of GH. As a simple example, if
H" Hi.H" = S~HCHi.H", with S~ = ±1 as a consequence of the defining relations
of the group (as in the quaternion and generalized quaternion groups), we can
take Hp = Hq = H; = H", since then Sba = scb = 1. It is easy to find other
examples, but in the present paper we shall consider in detail only the types [1]
to [3] listed above.

2e Pi-group Symmetries

In this Section we intend to demonstrate the utility of cyclic symmetry by
obtaining general solutions of the Yang-Baxter equation, classified as type [1] in
the Introduction, where the derived group D H of GH is not only abelian but
central. Then, within the algebra of GH , the commutator Uab is a numerical
multiple Vab of the identity Ho, and the first relation of (9) may be written

HaHb = VabHbHa . (11)

As in (3), we suppose that, as matrices, the Ha are linearly independent; they
may also be regarded as forming the factor group G~ = GH /DH. The group
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GH is finite, so that any element can be written in the form wK Ha , where K
is an integer (mod m) and w is an mth root of unity, in an m-dimensional
representation. We may write the group multiplication law for G~ as

HaHb = WabHa+b, Wab/Wba = Vab, (12)

where the Wand V are mth roots of unity. The addition of subscripts defined in
(12) is easily seen to be commutative and associative; the subscripts are therefore
in a vector space S over the integers (mod m), called a grading vector space.
The elements of GH that are numerical multiples of H a form a normal subgroup
Ga of GH and are said to be a-graded. We note that H_ a = Wa,_aHa may be
different from the inverse H? of Ha , except when m = 2, though the latter also
belongs to G-a and is (-a)-graded.

The group GH characterized by (11) is a Sylow rr-group in general, so-called
because its structure depends on the set 7r of relatively prime factors of m; it
is called a p-group if m is some power of a single prime p. If m is not prime,
we shall therefore seek a solution of the Yang-Baxter equation corresponding to
some factorization m = m1m2 ... m n of m, not necessarily complete or in terms of
relatively prime factors. The factors can be ordered so that m1 ~ m2 ~ ... ~ mn;
the jth factor corresponds to a factor F j in a chain of normal subgroups in the
composition series of DH, and a grading vector a can be expressed in terms of
n linearly independent components aj, thus:

a = a1 + m1 (a2 + m2( ... + m n- 1an) ... ) . (13)

If the mj are relatively prime, the aj are uniquely determined by a relation of this
type; otherwise, it will provide essential information concerning the dimensionality
of the grading vector space. In any event, there is a representation as a direct
product of n factors, thus:

n; = Hal \8) Ha2 (8) ••. (8) Han' (14)

where the jth factor is an mj-dimensional matrix. But as such a matrix has m;
linearly independent elements, aj is itself a two-dimensional vector in a subspace
Sj of S, with components a} and a; that are integers (mod mj) with a suitably
chosen basis. If Oj1 and Oj2 are the linearly independent vectors of this basis,
aj is expressed in the form

aj = a}Ojl + a;Oj2 . (15)
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functions to be expressed in terms of Jacobi's theta-functions. The solutions of
the Yang-Baxter equation found by Baxter and Belavin were in fact expressed
in terms of theta-functions.

We shall now find explicit matrix representations for the H a . Because of
the decomposition (14), it will be found possible to obtain a general result by
assuming to begin with that m is prime or unfactorized. The matrix elements
can be expressed in terms of the W in (11): if a and b are grading vectors, a
representation for Wa b can be written down corresponding to any integral bilinear
form (a, b) in a and b, thus:

Wa b = exp(21ri(a, b)1m).

According to (12), the commutation coefficients are given by

(16)

Vab = w(a,b) , (a,b) = ((a,b) - (b,a)), (17)

where w = exp(21ri/m) is the primitive mth root of unity. The conditions
VabVba = 1 and Va+b,c = VacVbc required by (8) are obviously satisfied, and
VaO = VOa = 1. The corresponding matrix representation for the Ha is

(Ha)bc = WacDb,a+c, (18)

and it is easy to verify that (12) is satisfied. There are also irreducible
m-dimensional representations for GH, obtained from (18) by replacing vector
subscripts with their m-valued components; in a representation of this type, the
entire rr-group is generated by three matrices whose elements are WDj,k, wj Dj,k
and Dj,k+l, where j and k are integers (mod m); the order of the group is
therefore m 3 . We note that in all these representations, the inverse is also the
hermitean conjugate.

When m is not prime, (18) is still valid, but we may suppose that the
grading vectors are expressed as in (13), with linearly independent components
corresponding to factors of m. Then Ha is given by (14), and the the grading
vectors aj may be expressed as in (15), with a possibly different basis for each
value of j. The matrix elements are Wa j bj = exp[21ri(a, b)jlmj], with the following
relation between the (a, b)j and (a, b):

(a, b) = (a,b)J + ml ((a, b)2+ m2( ... + mn-l (a,b)n) ... ) . (19)

The representations obtained from (14) are analogous to those obtained by the
Hopf construction to generate new representations of quantum algebras from two
or more known representations.

Apart from the matrix representations shown in (18) there are representations
in terms of Weierstrass' elliptic functions (and therefore also in terms of Jacobian
'l9-functions), as shown in Appendix A.

Sylow 1r-groups also have an application to a generalized quantum statistics
for particles with colour, and a matrix factor group of this type (with elements
denoted by fa) was introduced by the author (Green 1975, 1976; see also Kleeman
1983, 1985) to form the basis of a field theory of particles (quarks and gluons)
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with colour. This application, which could also have implications for statistical
mechanics, is outlined, in a somewhat more general form, in Appendix B. Our
principal interest in this Section is in the application to solutions of type [1] of the
Yang-Baxter equation, and here it appropriate to recognize that a generalization
of Baxter's solution in the form

R(x) = L O(x - w + v)Ha 0 H" jO(v) ,
a

in which O(x) is a modified Jacobian 19-function, was first conjectured by Belavin
(1981); this implicitly made use of a 1r-group of the type considered in this
Section, with a complex grading vector and a special bilinear (a,b). The same
zr-group was also introduced, implicitly or explicitly, by Bovier (1983), Richey
and Tracy (1986) and Quano and Fujii (1991), in confirming Belavin's solution of
the Yang-Baxter equation; Richey and Tracy called it the Heisenberg group. The
published verifications of Belavin's solution are by no means transparent, however,
and here we shall show that, in the light of the properties and representations
of the rr-group, our generalized solution of type [1] amounts to no more than an
identity satisfied by Weierstrass' a-function.

With the group GH defined as in (11) and (12), solutions fall into two classes,
listed under [1] and [2] in Section 1. We consider first those of type [1], which
require a relation of the type f(x) + f(z) = f(y) between x, y and z; following a
change of variable f(x) ~ x - w if necessary, this may be written x + z = y +w.
From (10) with a = a, and Sab = Vab, etc., we infer that the Yang-Baxter
equation may be written

L (~a - VbaVeb)<Pa(X)<Pb(Y)<Pe(z)HaHb0 n.n: 0 H bHe . (20)
a,b,e

We now substitute HaHb = WabHa+b and HeHb = Web Hb+e, so that
HeHa = WebHb+eHa+b /Wab and H bHe = Hb+e jWeb, and then change two
of the summation variables a and c to d = a + band e = b+ c. After substituting
from (17) for the V and discarding the summations over d and e, we find that
(20) is satisfied, provided

(w(e,d) - 1)L w(b,e-d)<Pd_b(X)<Pb(Y)<Pe-b(Z) = o.
b

(21)

If we proceed from (14), it becomes clear that (20) may also be satisfied by

<Pa(X) = <p~~)(x)<p~~)(x) ... <p~:)(x), (22)

where the jth factor is the solution of an equation identical to (21), but with
dimension equal to mj instead of m, if n > 1. To obtain the most general
solution of this type, it is therefore sufficient to obtain solutions of (20) when
m = mj, and this will be done. However, we first write down a solution for
any m that, with the choice of a Jacobian basis, is equivalent to the solution
obtained by Belavin. To verify the solution, we shall need to know only that
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if 9 = glOI + g202, where gl and g2 are integers, then Weierstrass' a-function
satisfies

a(u + 2g) = By exp[2g'(u + g)]a(u) ,

By = exp[1ri(gl + g2 + gl g2)], g' = gl"71 + g2"72, (23)

where 1]1 and "72 are constants given by TJl = a'(OI)/a(OI) and 1]2 = a'(02)/a(02).
As (21) is obviously satisfied identically when w(e,d) = 1, the possibilities d = 0,

e = 0 and d = e need be given no further consideration. A consideration of other
pairs of values shows that a solution, in terms of Weierstrass' a-function, when
x+ z = Y +w, is

'Pa(x) = a(x - W + v + 2a)/a(v + 2a). (24)

To prove this, we examine the effect of a permutation b ----+ b = b+ 9 of terms under
the summation in (21) and note that, according to (23), 'Pd-b(X) acquires a factor
exp[-2g'(x - w)], 'Pb(Y) acquires a factor exp[2g'(y - w)] and 'Pe-b(Z) acquires a
factor exp[-2g'(z - w)], so that the product of the 'P is invariant. However, if we
choose 9 = d or -e, the commutator w(b,e-d) acquires an additional factor w(d,e)
which is different from 1. As the sum in (21) cannot change under a permutation
of terms, it can only be zero, and the equation is satisfied identically by (24) for
all values of d and e. Special instances of identities of this type, satisfied by the
theta-functions, were found by Jacobi (see para. 21· 22, Whittaker and Watson
1940).

We consider next factorized solutions of (21); because of (14), only m = mj
need be considered. When mj = 2, w = -1, and subscripts like b take only the
four values 0, 0 1 , O2 and 0 3 = 0 1 + O2 , so if (d,e) does not vanish, d, e and
d + e (mod 0 1 , O2 ) must be a permutation of the last three of these. When mj
> 2, w is complex, so that E_ a is distinct from Ea , except when a = o. The

required modification of (24), for fixed d and e, but any a, is

m-l

'Pa(X) = II a(x - w + Vj + 2a/m)/a(vj + 2a/m) ,
j=O

Vj=v+2jg/m. (25)

To show that this makes (21) an identity, we again exclude from consideration
the possibilities d = 0, e = 0 and d = e for which (d, e) = 1, and notice that the
permutation b ----+ b = b+ 9 (where 9 = d or 9 = -e) changes the factor w(b,e-d)
by an additional factor w(d,e) different from 1. This is sufficient to ensure the
required vanishing of the left side, provided that the product of the 'P in (21)
is invariant under the same permutation. This invariance is again guaranteed
by the condition x + Z = Y + w. For when the arguments of the a-functions are
changed by 2g/m, the factors of the numerator and the denominator in (25) are
permuted, but one of them acquires a multiplicative factor; thus 'Pd-b(X) again
acquires the factor exp[-2g'(x - w)]. But, when (x - w) + (z - w) = (y - w), the
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product of these multiplicative factors is 1 and the product of the 'P in (21) is
left invariant under the permutation. But as w(b,e-d) acquires a factor different
from 1, it follows that the left side of (21) must vanish identically.

Using (15) and (25), the solutions of type [1] of the Yang-Baxter equation
can be written down for any integer m, and any factorization. Factorization
yields not only more general solutions (because of the variety of possible values
of Oj1 and Oj2), but different matrix representations when a power of a prime is
factorized. The solution in the form (24) is a true analogue of Belavin's solution:
with the choice (1, r) of basis it can be seen that they are equivalent, since the
periodicities are the same. The significance of the appearance of the a-functions
is further elucidated in Appendix A.

It is appropriate to mention here some solutions of type [2], which require
no relation between the variables. It is clear from (19) that such solutions are
possible only if

V
ab
~aVbc == w(a,b)+(c,a)+(a,b) == 1 (26)

for non-vanishing 'Pa, 'Pb and 'Pc. This relation is not satisfied if (a,b) is a general
antisymmetic bilinear form, but it clearly is if the vectors a, band c satisfy

(a, b) == (a - b,g), (27)

etc., with a fixed value of g. This degenerate form results if a and b are both on
a fixed line (mod 201,202 ) in the complex plane, and (27) is thus seen to be an
equivalence relation satisfied by a set of grading vectors whose range is singly
periodic, instead of doubly periodic as usual. If such a relation holds whenever
'Pa and <Pb are both different from zero, the Yang-Baxter equation of this type
is again an identity. There is also a more general and less restrictive solution,
obtained by writing

H; == Hal 0 Ha2 , (28)

where a1 and a2 are unrestricted in the grading vector space, but have a sum
a == a1 +a2 which is singly periodic as implied by (27). One of the representations
of the direct product may be defined on a space of Weierstrassian elliptic functions,
as shown in Appendix A. A hierarchy of solutions of this type can be expressed
in the form (14), where the aj are unrestricted except that their sum is singly
periodic.

We conclude this Section with a brief and generalized discussion of the
applications of cyclic symmetry to various problems in statistical mechanics and
quantum mechanics. These are problems where the Hamiltonian energy of a
system is invariant, or approximately so, under the cyclic permutation of the
set of dynamical variables (spins or momenta) which determine the state of the
system. In the statistical mechanics of a two-dimensional lattice, this is true if
edge effects are neglected so that the lattice may be thought of as wound on a
torus. In the motion of a set of similar particles on a line, the invariance is
exact when a periodic boundary condition is applied. Since the Hamiltonian is
a cyclic invariant, its eigenvalues can be found by expressing it as the sum of
a set of commuting cyclic invariants. This was essentially the method adopted
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by Onsager (1944) in his brilliant but difficult solution of the two-dimensional
Ising problem; this corresponds to the choice m = 2 and assumes the relation
'P6 = 'Pi - 'P~ + <p~, in our notation. This relation can be exhibited as an identity
satisfied by the Jacobian theta-functions.

In statistical mechanics, the free energy is proportional to -log(Z), where Z
is the partition function. As in Belavin's model, we consider a two-dimensional
rectangular lattice, with interactions depending on configurations on adjacent
sites; toroidal boundary conditions are assumed, so that the ends of all rows and
columns are adjacent. For a lattice with k rows and l columns, the partition
function is given by

Z = tr (T k
) , (29)

where T is the transfer matrix connecting configurations on adjacent rows, and
tr denotes the trace. The transfer matrix T may in turn be expressed as a
partial trace of a direct product R 1 Q9 R2 Q9 ••• Q9 Rl of l similar m2-dimensional

R-matrices, thus:

T = L 'Pal 'Pa2 ... 'Pal Hal ® Ha2 Q9 ••• ® Haltr(Hal H a2 ... Hal) ,
a

R j = L 'PajHa j ® tr-,
aj

(30)

where the summation in the first line is over all of the aj. According to (14)
and (22), we may also write

T = L 'PaHatr(Hal ... Hal) ,
a

(31)

where Ha is now an ml-dimensional matrix. This expression best exhibits the
fact that the T-matrix is itself a partial trace of an m 2l-dimensional R-matrix,
and that two-dimensional lattice models of this type exhibit two types of cyclic
symmetry, which are, however, closely related. There is the rather obvious
symmetry associated with cyclic permutations of lattice sites in the same row
or column. For planar space lattices, the assumed toroidal boundary conditions
represent an approximation, though a good one, and the cyclic symmetry is
actually broken by edge effects. Quite apart from this, however, there is the
symmetry of the Rj-matrices. The latter are not actually cyclic invariants but,
according to (23)-(25), transform very simply, like R(x) --4 exp[-2g'(x - w)]R(x),
under a cyclic transformation a --4 a + g; therefore, the transformation leaves
the Yang-Baxter equation invariant. As we have seen above, this invariance is
associated with a local symmetry which, however, is important in allowing the
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quantum mechanics to be determined explicitly.
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algebras', which will be found to include 'quantum groups' or 'quantized algebras',
colour algebras, and Lie algebras and superalgebras, all as particular examples.
Since the general method adopted is well known in its appplication to Lie algebras
and superalgebras, our principal interest is in the colour and quantum algebras.
This approach also suggests a possible classification of solutions of type [3] of
the Yang-Baxter equation.

We regard the group GH as finite, but as a subgroup of a continuous group
CH of transformations with parameters that are elements of the algebra A of
a rr-group similar to that considered in the last Section. We here denote the
generators of this algebra by ha instead of Ha; if Xa = Aaha is a numerical
multiple of b«, the group CH is generated by elements of the form

H: = H(xa). (32)

As in the previous Section, the subscript a may be regarded as a grading vector,
so that if Xa and Xb are arbitrary a- and b-graded elements of A, their product
XaXb is (a + b)-graded. The group-theoretical product of H(xa) and H(Xb) is
expressed thus:

H(xa)H(Xb) = H[z(xa, Xb)] , (33)

where z(xa, Xb) is a function of Xa and Xb which completes the specification
of CH. The unit element is denoted by H(ho) = 1, so that z(xa, ho) = Xa
and z(ho, Xb) = Xb. The inverse of H(xa) is here denoted by H(xa), so that
z(xa,xa) = ho, and H[z(xa,xb)] is the inverse of H[Z(Xb'X a)]. Of course the
grading vector of ho is the null vector, and the O-graded elements of A form a
subalgebra Ao which is also the centre of A. Obviously the grading vector of x a

is (-a).
According to (12), the ha satisfy relations like hah b = Wabha+b, so that, if

Vab = Wab/Wba, we have

XaXb = VabXbXa, (34)

where the Vab may be regarded as (numerical) commutation coefficients of a
colour algebra, satisfying

VabVba = 1, Va+b,c = VacVbc· (35)

There is the possibility that Ha = ha = x a/Aa, so that the normalized
parameters are elements of the group GH ; thus, the present considerations are
a true generalization of those of the previous Section. Here, however, we follow
the well-known procedure for deriving Lie algebras (where the parameters X a

commute) and superalgebras (where the 'odd' parameters are elements of a
Clifford algebra), from the corresponding groups. We therefore give Aa and Ab,
and consequently Xa and Xb, infinitesimal values, and write

H(xa) = 1+ xaea ,

Z(Xa" Xb) = xae a + Xbeb + XaXbZabea+b· (36)
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The Zab are not necessarily central, but they belong to a commutative ring R;
moreover, if

ebXa = XaYabeb, (37)

then the Yab are also elements of R.
To obtain the generalized commutation relations of the e, we equate coefficients

of XaXbYba in the group commutator

Uab = H(xa)H(Xb)H(xa)H(x
b) = H[z(xa, xb)]H[z(x

a,
x

b)]
, (38)

and obtain

[ea, eb] == eab - Uabebea = Cabea+b ,

Uab=VabYab/Yba,

Cab = Zab - UabZba . (39)

The commutation factors Uab and 'structure coefficients' Cab are all elements
of the commutative ring R; but need commute with only a subset of the e.
Thus (39) presents a significant generalization of Lie algebras and superalgebras
(reduced to Cartan form), in which the U have values 1 and -1, and also of the
somewhat more general colour algebras defined by Rittenberg and Wyler (1978),
in which the U are still numerical constants of modulus 1. In these applications,
and that outlined in Appendix B, the U satisfy the same relations as the v
in (35). In general, however, the U satisfy UabUba = 1 but not the second of
the relations (35). Obviously there is a grading vector (a) associated with any
element ea of the algebra, determined by the subscript of X a in the first line
of (36). All elements of the ring Rare O-graded. The defining relations of the
generalized algebra are (39), together with an ansatz for Uabc, as defined in

e a Ubc = U ca Uabcea, (40)

with Vab and Yab defined in (34) and (37). We note that eaebec = Uabceceaeb, so
the U are analogues of the U defined in (9).

As the ansatz for Uabc in (40) is not very obvious, we first note some general
results. It follows by cyclic permutation of subscripts and from UbcUcb = 1 that

UabcUbcaUcab = 1 ,

UabcUacb = UabUac .

From (39) it follows also that

Cab = UabCba ,

CabCa+b,c + UabcCcaCc+a,b + UabcUcabCbcCb+c,a = O.

(41)

(42)
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The second of these relations is clearly a generalized form of Jacobi's identity,
which reduces to the known generalization for colour algebras [equation (45)
below] only when Uabc == UacUbc or Yab == Yba. But even if Yab is not symmetric,
we can define

Dab == Cab/Yab

and verify, with the help of the ansatz

Uabc == VbcYabYa+b,c/ (vcaYcaYc+a,b) ,

that

Dab == -VabDba ,

VcaDabDa+b,c + VbcDcaDc+a,b + VabDbcDb+c,a == 0,

(43)

(44)

(45)

which are precisely the relations satisfied by the structure constants of a
corresponding colour algebra. The elements Ca of the colour algebra satisfy

CaCb - VabCbCa == DabCa+b , (46)

and the importance of the generalized Jacobi identities (45) is that they guarantee
the existence of an adjoint representation in which the matrix elements (Ca)bc are
D ba 8a+b,c. When Dab and Yab are given, Cab == YabDab will satisfy (42). Thus,
the ansatz of (44) has the virtue is that it is sufficient to ensure the existence of
a solution of (42). There may be other possibilities, but it seems likely that any
solution of the Yang-Baxter equation in terms of continuous groups is associated
with some type of 'quantum algebra' defined in this way.

It is noteworthy that the generalized algebras of Lie type defined above do
in fact include quantized algebras such as Uq[gl(n)] which have been studied
intensively in recent years, and also a related but somewhat simpler algebra
which (Green et ale 1993) we call glQ(n). We adopt a tensor notation, in which
the affixes denoted by a, b, ... above are replaced by pairs of affixes (;), (f), ...,
each of which takes values 1, ... n. The commutation relations of (39) for both
algebras may be written

[
i k] _ i k ik k i ik(xk i xi k)

ej, el == ejel - Ujl el ej == ajl Vj el - vlej . (47)

The grading vectors of e; and e{ are equal and opposite, so that the e~ are
O-graded and are elements of the commutative ring R.

We first give the commutation and structure coefficients for glQ(n); these are
not merely elements of R, but numerical multiples of the identity:
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ik
Ujl Qa~7 = Q if j = k and i i= 1,
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U
i k
jl ai.k _ Q-1

Jl - if i = land j i= k,

ik
Ujl = 1, ik s:is:k th ·ajl = UlUj 0 erwise , (48)

and it can be inferred from e~e; = e;(Qe~ + 1) that

e1 = (Qd i
- l)/(Q - 1),

[e~,e{] = (Qd i _ Qdj)/(Q -1), (49)

where the di take non-negative integral eigenvalues °

We denote the corresponding elements, commutation coefficients and structure
coefficients of the quantized algebra Uq[gl(n)] by Ej, Ujt and A;T, and set

Q = q2, fi =II qdk-1.

k=l

Then, if

(50)

E i -lj-1 if (.>.)j == q i ej j ~ _ J ,

it follows from (48) and (49) that

E i -If if-1 (. < .)
j = q i-1ej j-1 ~ - J , (51)

U i k -1 ik d A i k -1 ik of . . k 1 . . k 1
jl = q ujl an jl = q ajl 1 ~ < J = < or ~ > J = >,

Ui k -1 ik d A i k 0 if z k . 1 . k . 1jl = q ujl an jl = 1 ~ = < J < . or ~ = > J > ,

U i k .ik d A i k f f (f f )-1 of· i- . kjl = ujl an jl = j j-1 i i-I 1 ~ = > J = ° (52)

Since UJfUl~i == 1 and A~7 == UJfA~i, these relations are sufficient to ensure that
the essential commutation relations

[Ei Ei+1] (h. -h, )/( -1) h d di+l' i == q 1, - q 1,. q - q , . i = i - i+1,

[Ef+1' Ef+2] == 0,
i i i+1Ei+2 == (Ei+1,Ei+2], (53)

of Uq[gl(n)], with the above commutation coefficients (cf, Gould et ale 1992), are
satisfied °

The results of the present Section provide an alternative demonstration of the
relevance of quantized algebras to the solution of the Yang-Baxter equation, as
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well as a more general definition of such algebras than has hitherto appeared in
the literature. It has also been shown that quantized algebras result from the
use of generalized parameters expressed in terms of elements of 1r-groups instead
of the numerical or anticommuting parameters of Lie algebras or superalgebras.
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equation can be rewritten as a functional equation satisfied identically by functions
of that type.

If cp(x) is any of the functions forming the basis of S, we denote by Ta any
translation between the points of an m x m sublattice of a periodic lattice, with
x as a vertex, in the complex plane:

Tacp(x) = cp(x+ 2a/m) ,

a = a101 + a202, (a1,a2€Zm) ,

where r is pure imaginary. The Ta commute, but let us define Ea by

Ea = Sa exp[-2a'(x +a/m)]Ta,

(AI)

(A2)

where Sa and a' are defined as in (23). Then EaEb = VabEbEa = w(a,b) EbEa, as
in (11) and (17), with (a, b) given by

(a, b) = 2i(ab' - a'b)/1r = a1b2 - a2b1 , (A3)

because of the identity '1]102 - '1]201 = i1r/2. This is not the most general
antisymmetric bilinear form: even when m is prime, it may be multiplied by any
integer relatively prime to m; but it is adopted for the sake of simplicity.

All elements of the group GE are of order m, so it is necessary that E;: = Eo = 1,
and since E;:cp(x) = s~ exp[-2ma'(x + a)]cp(x + 2a), we require that

cp(x+ 2a) = s: exp[2ma'(x + a)]cp(x).

Because of the identity (23), this functional equation is satisfied by

m-1

cp(x) = II a(x +Vj),
j=O

(A4)

(A5)

where the Vj are disposable constants. This result is consistent with the
x-dependence of the solution of the Yang-Baxter equation found in (24), and in
retrospect can be seen to motivate that solution. The considerations of Section 2
show that when m is not a prime, representations can be found in which cp(x)
is replaced by

n m(k)-1

cp(x) = II II a(x + Vjk IOk1,Ok2) ,
k=1 j=O

(A6)

with factors corresponding to k and a set of factors m(k) of m.
It is interesting to note that, assuming the group underlying a solution of the

Yang-Baxter equation is a Sylow rr-group, the equation itself can be written as

~ E(x) E(x) E a E(Y)E b E C

L..t a b (y) C (z) (z)
a,b,c

X CPa (x - 2d/m)cpb(Y + 2(d - e)/m)cpc(z + 2e/m)
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- '""" E(x) E(x) E(Y) E a E C E b
- L...-t b a C (Y) (z) (z)

a,b,c

X 'Pa(X - 2d/m)'Pb(Y + 2(d - e)/m)'Pc(z + 2e/m) , (A7)

instead of (20), where d = a +band e = b+ c as before, thus replacing the direct
products by difference operators. This is a functional equation, whose derivation
shows that it is no more than an identity satisfied by the a-function.

In retrospect, the a-function may be regarded as the most general of a class of
functions with periodic or quasi-periodic properties. When 0 1 = 1r and O2 = 1rT,

it can be expressed in terms of the Jacobian 'l9-functions, and when T -+ 00, the
latter may be expressed in terms of circular functions. Wherever these functions
appear in the physical literature, it is likely that a cyclic symmetry and an
application of the principle of cyclic invariance may be found.

Appendix B

Here we outline some applications of cyclic invariance to particle physics, and
especially to the formulation of a kind of generalized quantum statistics, called
'modular statistics' (Green 1975, 1976), different from parastatistics, though it
includes parafermi and parabose statistics of order 2, as well as Fermi and Bose
statistics in a new combination. As with other types of generalized statistics, the
creation and annihilation operators for unobserved particles with 'colour' do not
commute or anti-commute; however, they may be used to construct 'colourless'
products or modules which do commute or anti-commute and may therefore be
used as the basis of a field theory of observable composite particles. Field theories
based on modular statistics are consistent with the correspondence principle.

Modular statistics makes use of a rr-group GH of the type introduced in
Section 2. In its simplest form, it may be generated by three elements, w, Ha

and Hi; of order m; for convenience, we choose a and b so that the antisymmetric
bilinear form (a,b) has the value 1 (mod m); then HaHb = wHbHa. The linearly
independent elements in the algebra of the group are

Hqa+rb = (wqr)!(Ha)q(Hb)r, (B1)

where q and r are integers (mod m) which may be interpreted as a particle
creation or annihilation number and a colour index, respectively. A composite
with a particle number which is a multiple of m is colourless. If. m is odd, the
square root of wqr is always an integral power of w, but if m is even it may
include an additional imaginary factor.

For the simplest choice of m = 2, w = -1 and we can set H a = 003, Hi, = 001

and Ha+b = 002 = ia1a3, where the ak (k = 1,2,3) are Pauli matrices. For m = 4,
there are two different zr-groups, one of which has elements, expressible as in (14),
with the properties of Dirac matrices. However, in the application to colour, the
simplest choice is m = 3.

In general, to construct a field for elementary particles with colour, we use as
a colour basis the operators

€r = Ha(Hb)r, * r-1€r = W €-r' (B2)
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where E; is the inverse, which is also the hermitean conjugate of Er . It is easy
to verify with the help of (B1) and (B2) that ErEs = Wr-sEsEr, E:Er = Ws-rErE:

and, more generally,

Er(Et ... Ew)Es wp(r-s)ES(Et ... Ew)Er,

( ) * p(s-r) *( )Et .•. Ew EsEr = W ErEs Et .•• Ew , (B3)

where (Et ... Ew) is a product of (p - 1) unstarred factors. From (B1) and (B2)
it also follows that products of rn r-factors (or the hermitian conjugates of such
products), and products of the types ErE: and E;Eu form a set of 'modules' in
the abelian subgoup of GH generated by wand Ha .

The generalized quantum statistics is formulated in the first instance in terms
of a finite set (aj, a j

; j = 1 ... n) of modular creation and annihilation operators
of order m. These satisfy the generalized commutation relations given in (B6)
below, but may be constructed from mru, ordinary boson and mnf ordinary
fermion operators (ajr, at; j = 1 ... n, n = ru,+ nf, r = 1 ... m), where

ajraks - Vjkaksajr = ata: - vjka:at = 0 ,

k k k c ckajras - vjasajr = UrsUj (B4)

and Vjk, v jk and vj are -1 if both affixes are graded odd (as for fermions), and
1 otherwise (when at least one boson is involved). The modular operators are
given by

m-l

aj = L ajrEr/m!,
r=O

m-l

a j = L atE;/m! .
r=O

(B5)

There is no particular difficulty in extending the numbers (nb and nf) of modular
boson and fermion states to infinity, keeping m finite.

From (B2) it is now easily verified that the modular operators defined in (B5)
satisfy the relations

aj(ai ... al)ak - Vjkak(ai ... al)aj = 0,

(ai ... al)ajak - vjakaj(ai ... al) = 8j(ai ... at), (B6)

if the product (ai ... at) has m -1 factors. With their hermitean conjugates, these
relations are obviously those of Fermi-Bose statistics when m = 1; they are also
the same as for parastatistics when m = 2, but are different otherwise. They
generalize in a natural way the relations of modular statistics for any number
of bosons and fermions with m colour states. The variety of colour states may
obviously be expanded indefinitely by increasing the dimensions of the grading
vectors in (B1).
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