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Abstract

Every law of physics is invariant under some group of transformations and is therefore the
expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or
statistical. At the most fundamental level, statistical symmetries are expressed in the field
theories of the elementary particles. This paper traces some of the developments from the
discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of
generalizations of Bose statistics is described. A supersymmetric generalization accommodates
fermions as well as bosons, and further generalizations, including parastatistics, modular
statistics and graded statistics, accommodate particles with properties such as 'colour'. A
factorization of elements of ggl (nb, n f) can be used to define truncated boson operators. A
general construction is given for q-deformed boson operators, and explicit constructions of the
same type are given for various 'deformed' algebras; these include a rather simple Q-deformed
variety as well as the well known q-deformed variety. A summary is given of some of the
applications and potential applications.

1. Introduction

The purpose of science is the discovery of order in the apparent chaos of natural
phenomena. The most fundamental of scientific achievements are formulated in
the laws of physics, and it has gradually become apparent in the last hundred years
that, without exception, these laws are best understood as revealing underlying
symmetries in nature. There is a group of transformations and an invariance
associated with every symmetry, and it is the discovery of the invariance which
may be regarded as the ultimate aim of both experimental and theoretical physics.

A symmetry may be classified as geometrical, dynamical or statisticaL The
laws of relativity express the geometrical symmetries of objective space and
time. The laws of mechanics, and especially of quantum mechanics, express the
dynamical symmetries relating the experiences of different observers. At the
most basic level, the laws of field theory express the statistical symmetries of
the elementary particles. The centenary of S. N. Bose (1894-1994) is a suitable
occasion to recognize the absolute importance of his achievement (Bose 1924)
in the discovery of Bose statistics, the first known type of quantum statistics,
and one of the two fundamental symmetries of nature. The primary object of
this paper is to trace some of the subsequent developments in quantum statistics
from this discovery to the present day.
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Bose's original application of quantum statistics was to the quantum theory
of black-body radiation, but there have been profound consequences throughout
experimental and theoretical physics, leading on the one hand to the understanding
of phenomena such as superfluidity, superconductivity and the stimulated emission
of radiation, as in lasers, and on the other hand to the solution of problems in
quantum mechanics, quantized field theory, quantum statistical mechanics and
the Bose-Einstein condensation. In this paper we shall discuss algebraic methods,
including some which are new, for the treatment of such problems, in the context
of supersymmetry.

In fact, the simplest formulation of any statistical symmetry is in algebraic
terms. With a photon, or any other boson, we may associate a creation operator
b"; and a corresponding annihilation operator b; these can be represented by
semi-infinite matrices satisfying

bb* - b*b == 1 , (1)

where 1 is the unit matrix. Though this matrix formulation seems far removed from
Bose's discovery, it has the same meaning: the matrix Ni, == btb, representing the
number of bosons with the same spin and momentum, can have any non-negative
integral eigenvalue, yet they do not satisfy classical statistics, inasmuch as the
interchange of two bosons of the same type leaves the state unchanged.

The invention of Fermi-Dirac statistics, which provides a natural formulation
of Pauli's exclusion principle, followed in 1926. For an electron, or any other
fermion, the matrices a* and a, corresponding to b* and b, satisfy the very similar
relations

aa" + a*a == 1 , (2)

but, because of the difference in sign, the matrix N] == a' a, representing the
number of fermions of a particular type, has only the eigenvalues 0 and 1 in an
irreducible two-dimensional representation.

It is surely no coincidence that matrices of both types also have dynamical
applications. Maxwell's equations imply that the photon is also a linear oscillator,
and in the dynamical context a position and momentum can be associated with
an oscillator, given by x == i(b - b*)/2! and p == (b+ b*)/2! in suitable units,
respectively; these matrices satisfy the commutation relation [x, p] == xp - px == i,
first stated by Born and Jordan. Similarly, the there-or-not-there property of an
electron is matched by the dynamical up-or-down property of its spin, and in
the dynamical context a and a" are simply operators which shift the spin from
the value! to -~ and back again. The energy E of an oscillator, in terms of
luu, where w is the angular frequency, is given by

e==E/(tiw)==~(b*b+bb*)==Nb +~; (3)

Ni, still has non-negative integral eigenvalues, and the additional term ~ represents
the 'zero-point' energy of an harmonic oscillator that is peculiar to quantum
mechanics. In another dynamical context, the up-or-down component of the spin
S is given by
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S = !(a*a - aa*) = Nf - !'
where N] still has the eigenvalues 0 and 1.

As a matter of interest, it follows from (1) and (3) that
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(4)

be - eb = b, eb* - b* e = b* , (5)

and these relations, together with (3), define the Lie superalgebra osp(2,1) in
Cartan form. In the dynamical context, it was noticed by Wigner (1950) and
Yang (1951) that this superalgebra has representations more general than implied
by (l)-though of course they did not express it in that way! It was easy to
conclude (Green 1953) that there must be generalizations of Bose statistics for
which (1) was also not satisfied. But it follows in the same way from (2) and
(4) that

as - Sa = a, Sa" - a" S = a" , (6)

and these relations, together with (4), define the Lie algebra so(3) in Cartan
form, and it is well known that in the dynamical context there is a whole series
of representations more general than implied by (2).

The expression of dynamical quantities in terms of boson and fermion matrices,
or equivalently in terms of representations of the Lie algebras osp(2, 1) [or so(2, 1)]
and so(3), can be used to obtain exact solutions to many elementary problems
of quantum mechanics. This algebraic method, developed in principle by Born,
Jordan, Heisenberg, Pauli and Dirac, is so much simpler than the method based
on Schrodinger's equation that its neglect over a long period is surprising. It is
also easily extended to a wide variety of problems that do not have exact solutions
by means of a technique of 'codiagonal perturbations' (Green and Triffet 1969).
However, in recent years, through a series of generalizations of the simple boson
and fermion algebras, the range of exactly soluble problems has also been widely
extended. This has been brought about especially by the 'q-deformation' of the
symmetries associated with the classical algebras and superalgebras (Sklyanin
1982; Jimbo 1990). But this is not the only type of deformation compatible with
symmetry and supersymmetry, and in the course of this paper we shall uncover
general relations between the classical and deformed superalgebras, including
deformed superalgebras with more than one parameter that are rather simple
and have not been studied previously. In the final Section of this paper we shall
illustrate some of the applications with the help of these 'Q-deformed' algebras.

Certain of the extensions to be considered are adapted to the requirements
of quantized field theory. From the ordinary boson and fermion creation and
annihilation operators, it is in fact easy to construct the bare bones of field
theories capable of representing particles of various types; but it is necessary to
provide for the possibility of bosons or fermions in different states, distinguished
by spin, momentum, and possibly other properties such as charge and colour. The
bosons and fermions can both be accommodated in a supersymmetric algebra. If
"i = 1 in bosonic states, or -1 in fermionic states, and bj = vjbj creates while
bj annihilates a particle in the jth state (j = 1, ... , n), then

[bk' b
j
] = bkbj - v_k,jbibk = Vjot , (7)
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where the brackets denote the generalized commutator, and

V-k,j == 1 - !(1 - v_k)(1 - Vj) .
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The notation implies that in general the subscripts of commutation factors like
Vjk are to be treated as grading vectors depending on the types of particles, and

VjkVkj == 1, Vj+k,l == VjlVkl . (8)

For ordinary bosons and fermions, the subscripts are Z2-graded, but there are
other possibilities -which will be mentioned below.

We remark here that although we are treating the number of types of particles
(n) as finite, there are no insuperable problems when n ~ 00. It is well known
that there is a matrix representation for these operators in a direct product
of representations corresponding to the individual particles; this is particularly
simple for bosons.

If b{ and the generalized anticommutator {bi,bk } are defined by

j_. lj_·
bk - {lY,bk} - "2 Dk -llbk,

it is easy to verify with the help of (7) that

(9)

. l . l l l .
[bi, b ] == bib - Vj-k,lb bjk == vlDklY,

k k . k
[bj, bl] == bjbl - V-j,k-l lYbk == VkDj bl ,

. l . l l· l i.i . l
[bi, bm] == bibm - Vj-k,l-mbmbi == vlDklYm - Vj-k,l-mVjD~bk . (10)

Now, although (7) and (9) imply (10), equation (10), even in conjuction with
(9), does not imply (7). In fact the last equality of (10) implies that the b{ are
elements of and define the superalgebra ggl(nb, nf), where nb and nf are the
numbers of bosonic and fermionic states respectively. Also, (9) and (10) together
imply that the v, bk , and bi, together with the generalized anticommutators
{bi, bl} and {bk' bm} are elements of the superalgebra OSp(2nb,2nf + 1). If only
bosonic states are present (nf == 0), the superalgebra reduces to osp(2n, 1); if only
fermionic states are present (nb == 0), it reduces to so(2n+l). If bi and bk belong
to the simplest of the represesentations of the superalgebra OSp(2nb'2nf + 1), (7)
is in fact satisfied and a synthesis of Bose and Fermi statistics results. But there
is a whole series of other representations, which correspond to the generalization
of quantum statistics known as parastatistics.

The symmetries of this generalization of Bose and Fermi statistics are implied
by the structure of osp(2nb, 2n f +1); the represention theory has been investigated
by Druhl et al. (1970), Bracken and Green (1972), Gray and Hurst (1975),
and Ohnuki and Kamefuchi (1982), among others. Parastatistics is old enough
(Green 1953) for its applications to have been thoroughly investigated (Messiah
and Greenberg 1969; Green 1972). It is noteworthy that Greenberg and Macrae
(1983) have shown that it is quite possible to formulate a viable gauge theory
of quarks and gluons in terms of parastatistics. But, except in the instances
of parastatistics of orders 1 and 2, field theories based on parastatistics present
certain difficulties (Gray 1973), and it seemed to the author worth enquiring
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whether there might not be another and perhaps simpler kind of generalized
quantum statistics, better suited to quantum chromodynamics.

The result (Green 1975, 1976) was called modular statistics, because observable
particles (e.g. baryons or mesons) were identified as modules consisting of a
number of intrinsically unobservable particles (e.g. quarks or gluons). This idea
has some affinity with modern string theories. The cyclic symmetry invoked is
one which is often overlooked because it is so simple, but has applications in
many areas of physics (Green 1994).

Modular statistics of of order 1 are indistinguishable from ordinary quantum
statistics, and modular statistics of order 2 are the same as parastatistics of order
2, but for m > 2 there are differences. If lJi and bk are creation and annihilation
operators for modular particles of order m, the defining relations are

bj(bi ...bl)bk - V-j,-kbk(bi ...bl)bj == 0,

(bi...bl)bjbk - vk,_jbkbj(bi ...bl) == vk8j(bi ...bl) ' (11)

and their conjugates, if the product (bi...bl) has m -1 factors. They generalize in
a natural way the relations of modular statistics for any number of bosons and
fermions with m colour states. There are 'colourless' modules, defined as products
of the lJi and bk, like lJibk and (bi...bl)bk, that satisfy ordinary commutation
and anticommutation relations, and it is these that are supposed to create or
annihilate observable particles, such as baryons and mesons. If this concept of
colour is correct, quarks and gluons can only occur in modules, and will never
be seen in isolation.

Colour statistics is a generalization of ordinary quantum statistics that is closely
related to modular statistics (Kleeman 1983, 1985), and has defining relations
identical with (7)-(9) above, except that the commutation coefficients Vjk in (8)
are not restricted to the values -1 and +1, but are complex in general, and
typically mth roots of unity, if m different colours are required. Again it is only
'colourless' products of the colour operators which commute or anti-commute,
and only these can create or destroy the observable particles. With the more
general values of the Vjk, the commutation relations in (7), or (9) and (10), define
a colour superalgebra that is a particular instance of the algebras introduced by
Rittenberg and Wyler (1978). Just as bosonic and fermionic operators can be
used to construct the elements of ordinary superalgebras, coloured boson and
fermion operators can be used to constuct the elements of colour superalgebras,
at least in certain representations.

There are other modifications of quantum statistics. One kind of modified boson
was introduced by Lohe and Hurst (1971) to construct general representations
of ordinary Lie algebras. Another current modification of quantum statistics is
found in 'fractional' statistics, with a kind of modified boson called anyons (see
Aneziris et ale 1991; Sen and Chitra 1992), whose use, however, is limited by
topological considerations to two-dimensional problems. In the following Sections,
we shall study yet another kind of generalized quantum statistics which, like
parastistics, makes use of the relations (10), but has a different construction for
the particle creation and annihilation operators.
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2. Factorizations of ggl(nb,nf)

Modular or coloured bosons and fermions can be constructed from ordinary
bosons and fermions and inherit their symmetry; even the parabosons and
parafermions inherit the symmetries of the superalgebra OSp(2nb,2nf + 1). We
shall now discuss the possibilities inherent in a somewhat different generalization
of boson and fermion creation and annihilation operators, defined simply as
elements of a particular representation of the superalgebra ggl(nb + 1, nf). This
algebra can also be regarded as a supersymmetric generalization of the 'truncated'
boson algebra studied by Buchdahl (1967) and Kleeman (1981).

The representations of ggl(nb' nf) in terms of ordinary bosonic and fermionic
operators, with elements of the form

b{ == llbk + A8~, (12)

where A is an invariant, are well known. A factorization of the generators of this
particular type is only available in states of maximal symmetry and, if ru, > 0,
in infinite-dimensional representations; however, it may be generalized in the
following way.

We consider completely reducible representations in which vjbJ is the hermitean
conjugate of Vkb{. In an irreducible finite-dimensional representation, the highest
weight vector 1/J is defined by the conditions b{1/J == 0 for 1 ::; j < k ::; n == nb+ nf,
and the set of highest weights (ll' l2, ..., In) as the eigenvalues of the vjb; on this
vector:

vjb;1/J == lj1/J . (13)

The eigenvalue of the positive definite matrix vjvkbibj == bjb{ + VjVk~ - b~
cannot be negative, so vk(lj - lk) 2: 0 when j < k. All other vectors of the
representation space can be obtained from 1/J by multiplying it by products of
the b~ with n 2: l > m 2: 1.

The highest weights serve to label irreducible representations (assuming they
are completely reducible), and can be regarded as eigenvalues of a set of invariants
(AI, A2' ..., An) of the universal enveloping superalgebra.

Now, ggl(nb,nf) is a subalgebra of ggl(nb+l,nf), and the latter is spanned by
the larger set of elements b{ with values of j and k up to n + 1. In general, the
irreducible representation of ggl(nb + 1, nf) with highest weights (ll, l2, ..., In+l)
contains many irreducible representations of ggl(nb' nf), but if Vn+l == Vn and
In+l == In it contains only the representation of ggl(nb' nf) with highest weights
(ll' l2, ..., In); let us choose this representation, and suppose that the highest
weight vector of ggl(nb + 1, nf) is 1/J, so that j is allowed to take values up to
n + 1 in (12). Then b~+l1/J == 0 for all j < n + 1, and by multiplying this equation
by products of the b~ having n 2: l > m 2: 1, we see that it is also true that
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and that, within any tensor representation of ggl(nb, nf), the factorization

. . . . ' +1bl = dCk + lnVj-n,n-kVjb~ (d = Vnb~+1' Ck = b~ ) (15)

is possible, where In is an invariant of ggl(nb' nf). We note that when Vn = 1, the
choice In = 0 is possible, and still permits tensor representations corresponding
to any type of symmetry.

This is an analogue of the result (11) that is valid within a much less
restricted class of representations. It can also be regarded as an application of
the factorization method for finding the least eigenvalue In of b~ when Vn = 1.
As d is the hermitean conjugate of VjCj, the eigenvalues of the

N j = vjdcj (16)

are non-negative integers. We note that cjck is an element of ggl(nb,nf) in an
irreducible representation with highest weights (l1 - In, l2 - In, ...,0), though its
factors are well-defined only within the specified representation, with In = In+1,
of ggl(nb + 1, nf). We shall interpret the cj and Ck as generalized creation
and annihilation operators; they are clearly different from the corresponding
operators of parastatistics, and cannot be used with the same freedom, since Ckcj
vanishes within the irreducible representation of ggl(nb, nf) considered. They
have finite-dimensional representations, and in purely bosonic representations
have the same algebraic properties as the 'truncated' bosons of Buchdahl (1967)
and Kleeman (1981), with the commutation relations

. l . l l . l .
[dCk' c] = dCkC - Vj-k,lC dCk = Vlbkd ,

[ k] k k s:kCj, C ci = CjC Cl - V-j,k-lC ClCj = VkUj ci . (17)

The factorization will be used in the following to construct representations of
various 'deformed' generalizations of ggl(nb' nf).

3. Q-Particle Algebras

The possibility of further significant generalizations of quantum statistics
appeared with the development of 'q-deformed' algebras or 'quantum groups' by
Sklyanin (1982), Jimbo (1990) and others. This has been followed by several
different generalizations of (1) and (2). The first, developed by Greenberg (1990,
1991) and Mohapatra (1990), was based on the generalized boson commutation
relation

bqb~ - qb~bq = 1 (-I~q~I), (18)

which reduces to (1) when q = 1 and (2) when q = -1.
Another generalization was found by Biedenharn (1989) as a by-product of a

boson construction of the q-deformed algebra sUq (2). His commutation relations
can be written in the form

b b* - qb*b = q-ANq q q q , Nbq - bqN = bq, b~N - Nb~ = b~ , (19)
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with A = 1. Obviously (18) corresponds to A = 0; this value, and A = 2, were
considered by Mohapatra (1990) in a discussion of possible physical applications
of this type of generalized boson, which we shall call a q-boson. The quantum
statistical mechanics of these particles has been formulated in different ways by
Martin-Delgardo (1991) and Lee (1992). The interesting limit q ~ 0 was studied
by Govorkov (1983), and in finite-dimensional representations the resulting algebra
is closely related to the 'truncated' boson algebra of Buchdahl and Kleeman,
which was discussed in the last Section.

For arbitrary values of q, the generalized boson creation and annihilation
operators of these types can be expressed in terms of the ordinary boson creation
and annihilation operators satisfying bb" - b*b = 1; it is in fact easy to verify
that the relations (19) are satisfied by the substitutions

bq = bf(N), b~ = f*(N)b*, N = b*b,

f(N)f*(N) = (q-AN - q-N)/[N(ql-A - 1)] , (20)

and the ordinary boson algebra is recovered in the limit q ~ 1.
The algebra for a single type of q-boson is easily extended to allow for any

number of states, with different spins, momenta etc., if the creation and annihilation
operators in different states are allowed to commute or anticommute, and matrix
representations can be found in the usual way in terms of direct products of
matrices representing the individual q-bosons. Again, the representations are
particularly simple when creation and annihilation operators for different types
commute.

However, in the following we shall consider objects of a different kind, which
will be called Q-particles. For the sake of simplicity, we consider only those of
bosonic type (nf = 0). A single particle of this kind has creation and annihilation
operators e* and e satisfying a relation of the type

ee* - e*e = D..(N) , (21)

where N has non-negative eigenvalues, just as in (19) and (20). The function D..(N)
is not unique, but has two special forms that will be obtained unambiguously below,
by assuming that e and e* are elements of generalizations of gl(n) = ggl(n, 0),
called glQ(n) and Uq[gl(n)], respectively.

We first state the generalized commutation relations satisfied by the elements
e{ (j, k = 1, ...n) of glQ(n). These are

j l _ j l jl l j _ l j jl j l
[ek, em] = ekem - vkmemek - 8kem - vkm8mek'

jl l·
vkm = wk/w:n, w~ = 1 + (Qj - 1)8~ , (22)

and it should be noted that, apart from the e{, only constants are involved
in this definition. When Qj = 1, w~ = 1, and these relations define the Lie
algebra gl(n), the irreducible representations of which are well known and were
included in the discussion of the previous Section. But it is not immediately
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clear that they allow matrix representations for any values of the Qj. They are
self-consistent for interchange of the pairs of affixes (j, k) and (l, m), and also
under hermitean conjugation, but this is of course not sufficient. The question
will be settled by obtaining explicit expressions for the e{ in terms of the d and
Ck introduced in the previous Section, but first we obtain a few general results.

From e;e{ == et(Qje; + 1), with k i= i, it follows that

j u, )/( )ej == (Qj - 1 Qj - 1 , (23)

if we require that, when the Qj ~ 1, the representation should reduce the
representation of gl(n), with In == 0, in (15). As in (16), Nj has non-negative
integral eigenvalues and Nje{ == et(Nj + 1); similarly, e{Nk == (Nk + l)e{ when
k i= j. The simplest invariants of the Q-algebra are functions of ~j=lN j , but there
are polynomials in the e; of this form only if the log(Qj) are commensurable.

From (22) it follows that

. k k . N N
Qje1ej - Qkeje1 == Qj(Qj j - 1)/(Qj - 1) - Qk(Qk k - 1)/(Qk - 1). (24)

To obtain representations in terms of gl(n), we may now set

e{ == gj(Nj)dckgk(Nk), N j == dCj. (25)

For j i= k, (24) then yields a difference equation

QjGj(Nj)Gk(Nk + 1) - QkGk(Nk)Gj(Nj + 1)

== Qj(Qfj - 1)/(Qj - 1) - Qk(Q~k - 1)/(Qk - 1)

with the solution

Gj(Nj) == Njgj(Nj)gj(Nj) == (Qfj - 1)/(Qj - 1), (26)

which determines gj(Nj), apart from an arbitrary phase factor. For the eigenvalue
o of Nj, gj(Nj) may be given its limiting value 1.

We have now succeeded in satisfying all the relations (22) defining glQ(n) in
terms of the generalized creation and annihilation operators

ej == gj(Nj)d,

It is also possible to write

j _ 1 . j
ek - "2({eJ,ek} - ~j(Nj)8k)'

ek == ckgk(Nk).

ejk - l{ej ek}
- 2 , ,

(27)

ejk == ~{ej, ek}, (28)

where ~j (Nj) == [ej,ej] == Qfj, thus obtaining a representation of all the generators
of ospQ(2n,l) in terms of Q-particle creation and annihilation operators. We
have also obtained the form of the function ~(N) in (21), corresponding to this
type of deformation.

Statistical Symmetries in Physics 117 

clear that they allow matrix representations for any values of the Qj. They are 
self-consistent for interchange of the pairs of affixes (j, k) and (l, m), and also 
under hermitean conjugation, but this is of course not sufficient. The question 
will be settled by obtaining explicit expressions for the e{ in terms of the d and 
Ck introduced in the previous Section, but first we obtain a few general results. 

From e1e{ = e{(Qje1 + 1), with k -=J. j, it follows that 

j N ej = (Qj J - l)/(Qj -1), (23) 

if we require that, when the Qj ~ 1, the representation should reduce the 
representation of gi(n), with in = 0, in (15). As in (16), N j has non-negative 
integral eigenvalues and Nje{ = e{(Nj + 1); similarly, e{Nk = (Nk + l)e{ when 
k -=J. j. The simplest invariants of the Q-alge bra are functions of ~j =1 N j , but there 
are polynomials in the e1 of this form only if the log ( Q j) are commensurable. 

From (22) it follows that 

Qje{ej - Qkeje{ = Qj(Qfj -l)/(Qj - 1) - Qk(Q~k - l)/(Qk - 1). (24) 

To obtain representations in terms of gi(n), we may now set 

Nj = dCj. (25) 

For j -=J. k, (24) then yields a difference equation 

with the solution 

(26) 

which determines gj(Nj ), apart from an arbitrary phase factor. For the eigenvalue 
o of Nj , gj(Nj ) may be given its limiting value 1. 

We have now succeeded in satisfying all the relations (22) defining giQ(n) in 
terms of the generalized creation and annihilation operators 

(27) 

It is also possible to write 

where .6.j (Nj ) = [ej, ejl = Qfj, thus obtaining a representation of all the generators 
of ospQ(2n,1) in terms of Q-particle creation and annihilation operators. We 
have also obtained the form of the function .6.(N) in (21), corresponding to this 
type of deformation. 



118 H. S. Green

We now assume that the Qj have the same value (Q) for all j. The resulting
Q-deformed algebra is a supersymmetric generalizaton of one obtained by the
method of infinitesimal transformations elsewhere (Green 1994), and glQ(n)
still differs essentially from the q-deformed algebra denoted in the literature by
Uq[gl(n)]. However, there is a relation between them. If we write

€j = <p(Nj )e;+l <p* (N j +1), j (N) j+1 *(N)E = <p j+1 ej <p j,

<p(N)<p*(N) = q1-N, q2 =Q, (29)

and make use of (24), we find

[€j, €j] == €j€j _ €j €j = (qhj _ q-h j )/(q _ q-1),

and that if

Ej = [Ej, €j+1] == €jEj+1 - qEj+1 Ej ,

then

[ '] - , -1' 0€j, €j = €j€j - q VEjEj = .

hj = Nj - Nj+1 , (30)

(31)

(32)

So, these and the other commutation relations of the q-deformed algebra
Uq[gl(n)] (Jimbo 1990) are satisfied identically by the substitutions of (29). It
is also possible to obtain a supersymmetric generalization corresponding to the
q-deformed algebra Uq[ggl(nb,nf)] (Bracken et ale 1990). In the above we have
considered 'deformations' determined by only a single parameter q, but there
may well be q-deformations, like those obtained for glQ(n) above, involving n
or more parameters qj; the existence of such generalizations of Uq[ggl(n)] is
in fact suggested by the work of Manin (1989), but a more general statement
and verification of the commutation relations is not at all simple and will not
be attempted here. In illustrating the applications, we shall therefore restrict
attention to the Q-deformed variety of Lie algebras.

4. Applications of Generalized Statistics

We conclude with a brief summary of the more important uses and potential
uses of generalized statistics, in most instances using the Q-deformed algebras
for the purpose of illustration.

(1) The deformed algebras were introduced originally with the motivation of
finding new solutions of the Yang-Baxter equation (Jimbo 1990), which
has applications in quantum mechanics, quantized field theory and the
statistical mechanics of crystal lattices. These have been discussed in a
separate paper (Green 1994) and will not be elaborated here.

(2) The applications to quantized field theories and thence to high-energy
particle physics of various types of generalized statistics have already
been mentioned. The deformed creation and annihilation operators could
have some use in the formulation of nonlinear field theories, but the
development of such field theories is outside the scope of this paper.
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(3) The simplest applications are to quantum mechanics. Here, for the
purpose of illustration, we shall consider a system of n generalized
oscillators. With ej and ej (j = 1, ...n) defined as in (27), the energy of
the j-th oscillator will be assumed to be a Q-analogue of the energy Ej

of the simple oscillator in (3):

1" 1Ej/(nwj) = 2(eJej + ejeJ ) = Gj(Nj) + 2~j(Nj),

~j(Nj) = Gj(Nj + 1) - Gj(Nj) , (33)

with Gj(Nj) given by (26), and in units of lu», This is clearly a nonlinear
function of the number operator Nj in general and the energy levels are
therefore not equally spaced; however, it is still true that e j raises the
eigenvalue of Nj by one unit, and ej lowers it by one unit; therefore,
like boson creation and annhilation operators, they are ladder operators
which can be used to move from one energy level to another.

If mutual interactions are neglected, the energy of a system of oscillators
of this type is

E(N) = LEj(Nj) = L !{ej,ej}nwj
j j

(34)

and is a transcendental function of the N j in general. However, in
constructing interactions for the Q-oscillators, we might wish to make
use of the elements of glQ(nb) given in (25). Typically, these raise
the eigenvalue of one of the N j by one unit and lower the eigenvalue
of another by one unit, and leave ~jNj unchanged. Thus, it may be
appropriate to construct a Q-deformed energy that is conserved, and this
is always possible. For the sake of simplicity, assume that Qj = Qk = Q,
so that Gj(N) = Gk(N) = G(N) and ~j(N) = ~k(N) = ~(N). Then,
with the help of identities such as ~(Nj+Nk) = ~(Nj)~(Nk) and
G(Nj + Nk) = ~(Nj)G(Nk) +G(Nj), it is easy to construct invariants of
ggl(n) in terms of which the combined energy of any set of interacting
Q-oscillators might be expressed.

(4) The statistical mechanics of a set of M Q-deformed oscillators within a
region of unit volume, neglecting energy of interaction between different
oscillators, can be derived from the canonical partition function

ZM = exp( -(3FM) = IIL exp[-{3Ej(Nj ) ] ,

j N j

(36)

where FM is the free energy for the set of M = ·~jNj particles, and
the summation is over all non-negative values of N j • As in (34), the
oscillators are distinguished only by their frequencies Wj, and, as usual,
(3 = 1/(kBT), where kB is Boltzmann's constant and T is the absolute
temperature.
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The above canonical partition function can also be used for an
independent-particle model of a set of particles in a region of unit volume,
with energy levels determined by the number of particles in each level
but approximating to those of the oscillators. In this application, Nj

represents the number of particles occupying the jth energy level, and
we can set Ej(Nj) = E(Nj) = [G(Nj) + ~~(Nj)]€j. The corresponding
grand partition function is

Z = e{3p = exp ( ~ exp{,B[JlN - E(N)]}) , (37)

where p is the pressure and J1 is the chemical potential per particle. The
number density p and the internal energy U per unit volume are given by

1 8Z---,p - (3Z 8J1
1 8Z

U = ,BZ 8,B . (38)

The internal energy can also be computed for the density M = ~jNj,

using the canonical instead of the grand partition function, and this was
done to compute the curves in Fig 1, which correspond to five different
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~ (= 1/kBTarb. units)
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Fig. 1. Internal energy U, for various values of Q, as a function of inverse temperature for
a set of oscillators with a Q-deformed energy spectrum.
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values (0·94, 0·96, 0·98, 1·00 and 1·04) of Q. The curve with Q = 1
of course corresponds to the equally spaced energy levels of a Bose gas.
The curve for Q = 1· 04 reflects an increased internal energy at higher
temperatures (small (3), but not at lower temperatures because of a much
reduced probability of the occupation of the higher levels, whereas the
reverse is true for Q < 1.

(5) The theory of the Bose-Einstein condensation, which is linked to quantum
statistical mechanics, depends rather sensitively on the value of Q. The
critical temperature, where a condensation into the state of lowest energy
(j = 0) occurs, is reached when the chemical potential reaches a value
near to !€o, which would cause the summation over No in (37) to diverge
if extended to infinity. For Q = 1 this occurs when No has an expectation
value given by (3No(No)(J-l - !€o) ~ 1. However, for more general values
of Q the corresponding condition is

(3NoJ-l - [G(No) + !~(No)]€o ~ 1. (39)

The theory of superfluidity in liquid helium, due to London (1938) and
Tisza (1938), attributes the transition between the normal and superfluid
states to the Bose-Einstein condensation. The predicted temperature of
the phase transition, assuming Q = 1, is about 10% too high, but this is
easily remedied by the use of a value of Q ~ 1 + 1/(5No) a little greater
than unity.
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