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Abstract

We present a new and very powerful theoretical method-a distorted-wave Born approximation
(DWBA) with an arbitrary final-state electron-electron correlation function. This method
combines the flexibility of including any theoretically desired electron-electron correlation
and the physical clarity of the DWBA method. Calculations explore the use of an auxiliary
final-state wave function with the exact boundary condition, in attempting to describe the
absolute cross sections for ionisation of helium in coplanar symmetric kinematics and to resolve
discrepancies between theory and experiment.

1. Introduction and Theoretical Background

Some questions have been raised since Brauner, Briggs and Klar (BBK) (1989)
first used a final state with the exact boundary condition (Rosenberg 1973) in a
calculation of the (e, 2e) reaction on the hydrogen atom:
Question 1: Can the analogous state be incorporated in a calculation for a larger
atom?
Question 2: Is the correct final-state boundary condition formally necessary for
a correct calculation of ionisation?
Question 3: Is it relatively simple to find a universally valid method of calculating
ionisation by incorporating the exact boundary condition?
Recently these or similar questions have generated extensive theoretical and
experimental work (Brauner et al. 1991; Jones et al. 1993; Pochat et al. 1993;
Klar et al. 1993).

In discussing these questions it is sufficient, at energies where resonances in
two-body subsystems (McCarthy and Bo Shang 1993) are unimportant, to use
a three-body model of ionisation, two bodies being the electrons, for which the
relevant dynamical variables are distinguished by subscripts i == 1,2, and the
third being the residual ion, which plays the part of a massive, charged, inert
core. The electron-core interactions are represented by static exchange potentials
Vi, The subscript 0 is used for dynamical variables of the incident electron.

The analogue of the BBK final state is

(q,(-)(k1,k2)1== (X(-)(k1)X(-)(k2)C(k1 - k 2)1, (1)
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where IX(-)(ki ) ) are distorted waves, defined by

(Ei - K; - Vi)lx(-)(ki ) ) == 0, (2)

and the coordinate-space representation of the final-state correlation factor C is

CBBK (1], k , r ) == r(1- i1])e-1r1J/
2 FII (i1]; 1; -i(kr + k.r)). (3)

Here

1] == 1/2k, k == ~(ki - k 2), r == rl - r2. (4)

We use a formalism in which two-electron states are not explicitly antisymmetrised.
Antisymmetrisation is achieved in ionisation amplitudes by means of an exchange
term obtained by reversing the roles of ki and k2. Antisymmetric states are used
in calculations if necessary.

The first question above was affirmatively answered by Klar et ale (1993), who
calculated coplanar symmetric cross sections for helium using the amplitude

(kIk2ITlako) == (<I>(-) (kl, k 2 )IV lax(+)(ko)) , (5)

where V is the electron-target potential, la) is the orbital of the struck electron
in the independent-particle model, and IX(+)(ko)) is a distorted wave calculated
in the potential (aIVla). The numerical method uses Cartesian coordinates
and six-dimensional Gaussian quadratures. Coplanar symmetric kinematics was
chosen because of the existence of absolute experimental data and because the
data provide a severe test of theory since they scan a wide range of recoil
momentum p == Iko - kj - k21 and momentum transfer K == Iko - k.], where k i
is the momentum of the faster electron.

The second question was answered negatively (Klar et ale 1993), where three
forms of the formal T-matrix element for the three-body problem were considered:

(k Ik 2IT la ko) == (X(-)(kl)X(-)(k2 )IV - UIlw~+)(ko))

== (w(-)(k l , k 2 ) IV - UIlax(+)(ko)) (6)

== (<I>(-)(kl, k 2 )IV - UIlax(+)(ko)) (7)

+ (<I>(-)(kl, k 2)IH - Elw~+)(ko) - ax(+) (ko)) . (8)

Here UI == (aIVla), w(±) represent exact eigenstates of the three-body Hamiltonian
H with initial/final-state boundary conditions, X( -) (kj ) is calculated in the potential
UI [not VI as in (1)] and <I>(-)(kl,k2) is an auxiliary final-state function, whose
choice is arbitrary. The notation H in (8) indicates that H operates on the bra
state.

We calculate the first term of (8), considering the second term as a correction
that is to be minimised. The choice <I> (-) == w(-) reduces the second term to
zero and makes (8) equivalent to (7). Equating the bra vectors of (6) and (8)
reduces (8) to (6).
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The answer to the second question is obtained by considering the correction
term of (8). The state lax(+)(ko)) has the same asymptotic form as the exact
state IW~+)(ko)). Therefore the coordinate representation of the ket vector is
zero in the asymptotic region so that the asymptotic form of <I>(-)(kl,k2 ) is
irrelevant. Nevertheless it is sensible to start with the correct asymptotic form
in trying to choose <1>( -) as close to w(-) as possible in a given situation.

The object of the present work is to discuss the third question in terms of
choices of the arbitrary auxiliary function (rl,r2\<1>(-)(k1,k2)). The ultimate
objective of this approach to the ionisation problem is to choose a function that
makes the second term of (8) negligibly small. Complete calculation of this term
of course requires a solution of the problem, so other criteria must be found for
judging whether it is small enough.

Here we use an experimental criterion, comparison of a calculation using the
first term of (8) with coplanar symmetric cross sections. These data provide a
severe test of theory since absolute experimental data exist and since they scan
a wide range of recoil momentum p == Iko - k, - k 2 1 and momentum transfer
K == Iko - kj ].

2. Calculation and Results

The'forrns used for the auxiliary function (rl, r21<1>(-) (kj , k2)) are all summarised
by (1) with different expressions for the correlation factor C. The calculation
denoted BBK uses the form (3), while DWBA uses C == 1. Figs 1a-e show
coplanar symmetric cases at different incident energies for helium. At 74· 6 and
100 eV there is little to choose between BBK and DWBA. At the lower energies
absolute cross sections favour BBK, but details do not agree with experiment.

It is certain that the product form (1)-(3) is invalid in the interior region.
Since DWBA is known to be successful [see for example Konovalov and McCarthy
(1992) and McCarthy (1992)], in many cases where final-state correlations are
unimportant we have chosen a form for C that is 1 in the interior region and
given by (3) at large (asymptotic) distances. This is

C f3('T], k, r) == e-(r~+r~)/f32 + (1 - e-(r~+r~)/f32)CBBK('T], k, r) . (9)

The first amplitude of (9) is BBK for small {3 and DWBA for large {3.
Fig. 1f shows the energy dependence of the coplanar syrnmetric cross section

at 45° observed in two different experiments by Pochat et al. (1993) and by
Murray and Read (1993) [normalised to the data of Pochat et ale (1993) at
100 eV].

DWBA does not include any final-state electron-electron correlation. The effect
of this correlation becomes very important for coplanar symmetric (e, 2e) processes
in forward or backward scattering at any energy. For example, the differential
cross section (see Fig. 1) should vanish at a and 180° due to electron-electron
repulsion. DWBA gives a nonzero answer at these angles. On the other hand
BBK includes this correlation for any rl and r2. These two cases represent
two extremes which, we expect, should give very realistic bounds for the correct
answer. This statement is well illustrated by Figs 1d and 1e. The two experiments
are in good agreement with each other (Fig. 1f) which makes the experimental
data used in Fig. 1d and 1e appear quite reliable. Also, the points lie within
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the region bounded by the DWBA and BBK calculations, especially for the front
scattering angles.

Unfortunately the experimental data are incompatible for incident energies
below 74·6 eV. This makes it difficult to draw any conclusions from Figs 1a-c
where the theoretical bounds, the DWBA and BBK calculations, do not contain
experimental points as they do in Figs 1d and Le. To further illustrate this
point, we choose two intermediate cases (Figs 1a and If). Fig. If shows the
{3 = 6 calculation, which agrees with the experiment of Pochat et al. (1993),
while the BBK calculation agrees with the data of Murray and Read (1993).
Also, Fig. 1a shows that the cross section for {3 = 2 is intermediate between BBK
and DWBA, although it does not seem that a different choice of {3 would yield
detailed agreement with experiment. A more sophisticated parametrisation of C
may be needed in the interior region to get better agreement with experiment.

Using the above reasoning we conclude that a good understanding of the
(e, 2e) process is achieved at energies above 74·6 eV. The theory also gives
quite a close description of the experimental data at these energies. However,
the energy region below 74·6 eV still has some major discrepancies and further
experimental and theoretical work is required to resolve this problem. The
further experimental work will have to resolve the major disagreement between
two experiments (Fig. If). Further theoretical development would be able to
check the assumption that the correct answer lies within the bounds of DWBA
and BBK (Figs 1d-f). Such theoretical work is under way (Bray and Stelbovics
1992, 1993).
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the region bounded by the DWBA and BBK calculations, especially for the front 
scattering angles. 

Unfortunately the experimental data are incompatible for incident energies 
below 74·6 eV. This makes it difficult to draw any conclusions from Figs 1a-c 
where the theoretical bounds, the DWBA and BBK calculations, do not contain 
experimental points as they do in Figs 1 d and 1 e. To further illustrate this 
point, we choose two intermediate cases (Figs 1a and 1f). Fig. 1f shows the 
(3 = 6 calculation, which agrees with the experiment of Pochat et al. (1993), 
while the BBK calculation agrees with the data of Murray and Read (1993). 
Also, Fig. 1 a shows that the cross section for (3 = 2 is intermediate between BBK 
and DWBA, although it does not seem that a different choice of (3 would yield 
detailed agreement with experiment. A more sophisticated parametrisation of C 
may be needed in the interior region to get better agreement with experiment. 

Using the above reasoning we conclude that a good understanding of the 
(e, 2e) process is achieved at energies above 74·6 e V. The theory also gives 
quite a close description of the experimental data at these energies. However, 
the energy region below 74·6 e V still has some major discrepancies and further 
experimental and theoretical work is required to resolve this problem. The 
further experimental work will have to resolve the major disagreement between 
two experiments (Fig. 1f). Further theoretical development would be able to 
check the assumption that the correct answer lies within the bounds of DWBA 
and BBK (Figs 1d-f). Such theoretical work is under way (Bray and Stelbovics 
1992, 1993). 
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