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Abstract

In the presence of a staggered magnetic field, the plaquette expansion of the Lanczos matrix
elements are obtained for the antiferromagnetic 2D Heisenberg model up to order 1/Np (Np

is the number of plaquettes on the lattice). The resulting approximate tri-diagonal form of
the Hamiltonian is diagonalised for various values of the field strength in the Np -t 00 limit
for the ground state energy density. From the behaviour of the ground-state energy density
at weak fields, the staggered magnetisation at this order in the plaquette expansion is found
to be 0·71 (in units where the Neel state staggered magnetisation is 1· 0).

1. Introduction

The two-dimensional antiferromagnetic Heisenberg model has been the subject
of a great deal of work over the past few years in connection with the undoped
copper oxides (Manousakis 1991). Unlike the one-dimensional case, the model has
not been solved exactly, instead the ground state properties have been studied
numerically for the most part. Techniques such as Monte Carlo, series, direct
diagonalisation and spin-wave theory have been employed in the calculation of
ground state properties in the bulk limit. Whilst the ground state energy is
now known to high precision (Manousakis 1991; Weihong et al. 1991; Runge
1992), the staggered magnetisation, an indication of the degree of order in the
ground state, is not known as accurately-although results consistently suggest
the existence of long range antiferromagnetic order.

Most methods usually involve calculating quantities on finite lattices and
extrapolating to the bulk limit. A new many-body technique, the plaquette
expansion (Hollenberg 1993a), which calculates directly in the bulk limit without
extrapolation, has recently been applied to the two-dimensional antiferromagnetic
Heisenberg model with quite satisfactory results for the ground state energy
density (Tomlinson and Hollenberg 1993). This calculation was primarily a study
of the method itself, using the precision of the ground state energy density for
this model as a guide. The plaquette expansion is a cluster expansion of the
Lanczos tri-diagonal matrix elements in terms of the number of plaquettes Np •

In this paper we extend these calculations to that of the ground state staggered
magnetisation by calculation of the ground state energy in the presence of a
staggered magnetic field.
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The paper is organised as follows. In Section 2 the plaquette expansion
method is outlined. In Section 3 results for the application of the method to the
2D Heisenberg antiferromagnet in a staggered magnetic field are given and the
staggered magnetisation is calculated.

2. The Plaquette Expansion

For the Lanczos recursion relation with respect to some initial trial state, IV1),

1
Ivn) == -[(H - an-1)lvn:'-'1) - t3n-2Ivn-2)] ,

t3n-1
(1)

one can derive expressions for the first few an and t3n in terms of Hamiltonian
moments (Hn) == (v1IHn

lv1) in a straightforward manner. An expansion in the
number of plaquettes on the lattice leads to the following forms for an and t3n:

_ N (_ )C3 l( -1)( _ 2)3c~ - 4C2C3C4 + C~C5 1an - p C1 + n 1 + 2 n n 4 + ... ,
~ 2~ ~

f3;, = nC2Np + !n(n - 1)C2C4 - c~
c2

2

+ !n(n _ l)(n _ 2) -12c~ + 21c2c~c4 - 4c~c~ - 6C~C3C5 + C~C6 1
2c5 N + ... ,

2 p

(2)

where the connected coefficients are defined in terms of the connected Hamiltonian
moments as (Hn)c == cnNp • The first two terms of the above expansions have
been rigorously established (Witte and Hollenberg 1993); whilst the proof for
the higher order terms is straightforward, the amount of algebra involved has
prevented it being carried out to higher order. However, the above expressions
have been verified to the ninth Lanczos iteration by direct calculation in the
one-dimensional Heisenberg model (Hollenberg 1993b).

The plaquette expansion is completely general. The only difference in application
to various models are the connected coefficients en. The connected moments
of the Hamiltonian are calculated with respect to a trial state chosen in the
appropriate sector of Hilbert space. After constructing the set of tri-diagonal
Lanczos matrices corresponding to plaquette expansions of an and t3n to order
1/N;, one examines the eigenvalue of interest, in this case the lowest eigenvalue

A~r) (Np , l), as a function of the Lanczos iteration l. Defining the ground state
energy E~r) (Np ) , given by the converged value of the eigenvalue A~r) (Np , l), one
can take the limit Np ~ 00, i.e,

. E~r) (Np ) _ c(r)
lim - C-o .

Np-+oo Np

(3)

The zero-field result for the energy density £61
) of the 2D Heisenberg antiferromagnet

was found to be within 0·8% of the exact result (Tomlinson and Hollenberg 1993)
and serves as an indication of the accuracy of the calculations presented here.
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3. The 2D Heisenberg Model in a Staggered Field

The Hamiltonian of the antiferromagnetic Heisenberg model in two dimensions
on a periodic square lattice of N spins (Np = N) is given by

H = LSi.Sj + 2B L (is:,
(i,j)

(4)

where B is the magnetic field and (i = ±1 alternates on the two sublattices.
The staggered magnetisation M is the expectation value of the field term in the
ground state,

M == lim lim (r»/' I~" ;-·szlr»/' )
B~O N ~oo «fIg.s. N L...J ':,~ i «fIg.s. •

P P i

In this notation the Neel state has staggered magnetisation MNeel = 1.

(5)
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Fig. 1. Connected Hamiltonian moments cn(B) with respect
to the Neel state for various values of the field B.

To obtain the plaquette expansion we calculate the connected Hamiltonian
moments cn(B) with respect to the Neel state for various values of the field B.
The cn(B) are shown in Fig. 1. These connected moments form the basis of the
plaquette expansion for each value of B. In Fig. 2 the lowest eigenvalue of the
Lanczos matrix contructed from the r = 0, 1 plaquette expansions for Q n and f3n
is shown for representative values of B. In the case of the r = 0 expansion there
is convergence for all B. .The r = 1 expansion develops an inflection as B is
increased; the converged value is taken at the minimum slope. This convergence
region flattens as Np -+ 00 and the energy density Ea1)(N

p)jNp converges in the
bulk limit as shown in Fig. 3. The energy densities faa) (B) and £61

) (B) are
calculated for each value of B and plotted in Fig. 4.
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Fig. 2. Ground state eigenvalue A~r) (Np , l) as a function of Lanczos
iteration l for (a) r == 0 (Np == 1000) and (b) r == 1 (Np == 4000)
expansions.

From the slopes of these lines near B == 0 we find the staggered magnetisation
for the r == 0, 1 plaquette expansions to be

M(O) == 0.84 , M(l) == 0.71. (6)
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From the slopes of these lines near B = 0 we find the staggered magnetisation 
for the r = 0, 1 plaquette expansions to be 

M(O) = 0.84, (6) 
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limit, Np ~ 00, for (a) r = 0 and (b) r = 1 expansions.

From a critical survey of the literature, Manousakis (1991) estimated the
staggered magnetisation to be in the range 0·62 ± 0·04. This is based on
agreement between various Monte Carlo calculations (Runge 1992; Trevedi and
Ceperly 1989; Reger and Young 1988; Gross et ale 1989), series expansions
(Weihong et ale 1991) and spin-wave theory. The plaquette expansion result
M(l) is a significant improvement over the first-order result M(O) and agrees
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Fig. 4. Bulk-limit ground state energy density, c6T
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as a function of the field B.

reasonably well with this consensus. Since for weak fields one would expect the
overlap with the Neel state to still be significant, the energy density £61

) (B)
should be of a similar precision to the zero-field case. This would imply that the
precision of the staggered magnetisation derived here is of the order of a few
per cent. However, in comparison with other calculations the precision is at the
10% level. Although this method has the advantage of computing directly in
the infinite-lattice limit, at low order in the expansion finite-cluster effects will
affect the results. We see the first-order plaquette expansion result has quite a
high value of this order parameter, whilst at the next order this is decreased
somewhat as the increase in cluster size allows for a greater effect of the quantum
fluctuations on the long-range order.

Clearly, the staggered magnetisation is more sensitive to the cluster size than
the ground state energy density. However, the plaquette expansion is still a
promising method of calculating such order parameters. Eventually the cluster
size should saturate the quantum fluctuations against long-range order and hence
such calculations carried to higher order may eventually give a stable result for
the staggered magnetisation in the infinite-lattice limit.
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