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Abstract

Momentum-transfer theory is used to derive approximate expressions for transport properties
of electrons and ions in a gas in crossed electric and magnetic fields. Included in the formal
discussion are the generalised Einstein relations, negative differential conductivity, Tonks'
theorem and the equivalent reduced electric field concept. Specific topics dealt with include
the ratio Dn/DJ.. for electrons, which 'flips over' as the magnetic field is increased, the
enhancement of negative differential conductivity through increased BIN, and a discussion of
anisotropic scattering.

1. Introduction

It was pointed out ten years ago by Blevin and Brennan (1983) that many
aspects of electron swarm behaviour in gases in crossed electric and magnetic
fields remained unexplored at that time, both theoretically and experimentally,
despite a long history (Huxley and Crompton 1974; Heylen 1980) of studies of gas
discharges in transverse magnetic fields. Heylen (1980) had previously remarked
on the neglect of this topic in standard texts, conjecturing, quite reasonably, that
the extra complexity introduced by the magnetic fields had possibly acted as a
deterrent to discussion. Since then, Brennan and coworkers (Brennan and Garvie
1990; Garvie and Brennan 1990; Brennan et ale 1990), Schmidt and collaborators
(Schmidt 1986, 1991, 1992, 1993; Schmidt and Polenz 1988; Kunst 1992; Kunst
et ale 1993), Ness (1993, 1994), Ikuta and Sugai (1989) and Biagi (1988, 1989)
have made significant advances both theoretically and experimentally, but it
remains true to say that much work remains to be done to achieve a level of
understanding comparable to that attained over the last two decades for transport
in electric fields only (Robson and Ness 1986; Ness and Robson 1986; Mason
and McDaniel 1988; Viehland 1992). This remark applies especially to transport
in the presence of 'reactive', non-particle-conserving collisions (e.g. ionising and
attaching collisions), which still generates some debate (Robson 1991), even in
the absence of the extra dimension provided by a transverse magnetic field. One
of the main motivating forces behind the investigations of the Heidelberg group
led by Heintze (1978, 1982) and Schmidt (loc. cit.) is the application to multiwire
drift tube detection of high-energy particles (Hargrove et ale 1984). However, the
problem has an intrinsic interest in its own right, and this is the thrust of the
present paper.
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As a natural progression from previous work for magnetic field-free situations
(Robson and Ness 1986; Ness and Robson 1986), Ness (1993, 1994) has developed
a 'multi-term' solution of the Boltzmann equation

(at + v . V'+ ~ (E + v x B). o; + J) f = 0

for the swarm particle phase-space distribution function f (r, v, t). In this
approach, one represents f by an expansion like (57) below to whatever order £
of spherical harmonics Y R.m(v) that is necessary to meet some accuracy criterion.
This generalises the 'two-term' (£ ~ 1) theory which underpinned earlier studies of
electron swarms (Huxley and Crompton 1974). Neither is there any restriction to
simple collision cross sections (Braglia and Ferrari 1973a, 1973b). Agreement with
experiment is excellent over a wide range of EIN and BIN. However, the associated
tensor analysis and algebra, along with the detailed numerical computation, do
not readily lend themselves to physical interpretation. There is thus an identifiable
need at this time for a straightforward qualitative or semiquantitative analysis
which provides the necessary insight. Momentum-transfer theory (Mason and
McDaniel 1988; Robson 1984, 1986; Robson and Ness 1988; Ness and Robson
1988) has served this purpose well for the magnetic field-free case and there is
every reason to believe that it will do the same for the far more difficult case
when B i= o.

The scope of the present paper is the provision of relatively simple but
approximate formulas for transport properties of ion and electron swarms in
crossed electric and magnetic fields, in the absence of reactive effects. This latter
proviso is made in this initial study in order to keep the complexity of the equations
to a mimumum. However, it is acknowledged that many important and interesting
phenomena occur in gaseous discharges involving ionisation, recombination and
attachment, and a follow-up paper is planned specifically for this purpose, along
the lines of Robson (1986) and Robson and Ness (1988).

Although we do exclude non-particle-conserving collisions at present, both
elastic and inelastic processes are considered and the formulas obtained are valid
for both ions and electrons. Specific topics dealt with in Section 2 are:

(i) calculation of the temperature tensor T (four independent components);
(ii) derivation of generalised Einstein relations (GER) linking the five

independent components of the diffusion tensor D with mobilities along
E and E X B respectively;

(iii) negative differential conductivity (NDC);
(iv) the equivalent reduced electric field concept; and
(v) Tonks' theorem.

Section 3 involves further discussion of the formulas, along with some calculations
for electron swarms in simple model gases.

2. Theory

(a) Balance Equations

In what follows, we refer to Robson (1984) as I. Balance or 'moment' equations
can be derived from Boltzmann's equation in Section 1 by multiplying by
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appropriate functions ¢(v) of ion velocity v and integrating over all v . Setting
¢(v) = 1, mv and !mv2 gives, respectively, the equation of continuity

at n + \7 . n(v) == 0,

the momentum balance equation,

-kT.\7n+nq(E+(v) X B) ==nJ-lVm((€))(V) ,

and the energy balance equation

Q- -. \7n == (€) - !M(V2
) - !M(v)2 + O((€)).

tu/;

(1)

(2)

(3)

Equations (2) and (3) are valid to first order in the density gradient \7n; if
non-particle-conserving collisions were considered, it would be necessary to go
to second order in density gradient (Robson 1986). Equations (2) and (3) are
also approximate to the extent that the traditional approximation, e.g. 1(9) of
momentum-transfer theory has been made. Again, if non-conservative collisions
were dealt with, the next highest term in 1(8) would need to be included. Such
higher-order reactive effects are considered in later work.

In these equations m and M denote the masses of an ion and neutral molecule
respectively, while v and V denote their velocities. The reduced mass is
J-l ~ mM/(m+M), while the average of the energy € in the centre of mass is

(€) == !J-l( (v2)+ (V 2
) ) , (4)

(5)

if (V) = o. Equation (2) is a generalisation of 1(10) to the extent that E is
replaced by E+(v) X B, but the energy balance (3) is identical with 1(11), i.e,
the magnetic field does not explicitly modify the energy balance.

In equation (2) v m ( €) denotes the total momentum-transfer collision frequency,
accounting for all scattering channels, both elastic and inelastic, while in (3),

2m
Ve == . lJm

m+M

can be thought of as a collision frequency for kinetic energy transfer. Also in (3),

Q == ~m((v - (v)}2(v - (v)))

is the heat flux per ion, while as in 1(13),

n((E))= M I>f{(V:)-(iIi)}/ve ,
m+M.

1

(6)

(7)

the sum being over all inelastic processes i, characterised by threshold energy €;
and (total) collision frequencies Vi. Superelastic processes are accounted for by
the collision frequency Vi, for which we have approximately (Ness and Robson
1988):
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(V;(E)) ~ (V;(E))exp [ -E[(k~g - 2~EJ],

R. E. Robson

(8)

where T g == M (v2 ) j3k is the neutral gas temperature. As noted in I, a reasonable
representation of the average inelastic rate is

where

(~(E)) ~ ~((E))S(3Etj2(E)) ,

S(~) =(1+ ~)e-e

(9)

(10)

varies smoothly between 0 and 1 corresponding to energies well below and well
above threshold respectively. Equations (8) and (9) are exact for Maxwellian
energy distributions. A further discussion of collision frequencies, including
explicit formulas and definitions, can be found in Appendix A.

The ion temperature tensor appearing on the left side of (2) is defined by

kT == m ((v - (v)) (v - (v))) . (11)

Note that it is symmetric. Since this appears with "Vn, we need calculate it
only to zero order in density gradient. The balance equation, obtained by taking
the moment of the Boltzmann equation in Section 1 w.r.t. ¢ = mcc plus some
algebraic manipulation, is

where

re(kT X iJ - iJ X kT) (
3MiJy) ( 3iJy) ) (1 + -- kT - 1 - _.. M (v v)
4mvm 4vm

[
M i7v ( ) ( 3iJ

y
)]- -.- E + kTg 1 - _.- 1 ,

2MVm 4vm
(12)

r __ qB
e ==~-

MVe '

Vy == Vy -

-
Vy == Vy -

2mvm O((E))
3M(E)

2mvm O((E))
M(E)

(13)

(14a)

(14b)

The (total) collision frequency for the viscosity V y is defined in Appendix A.
We can solve (2), (3) and (12) simultaneously for (v), (E) and kT, once the

collision frequencies V m (E), t/; (E) and Vi (E) are specified. However, as has always
been the philosophy behind momentum-transfer theory, our aim is to derive
relationships between experimentally measured quantities, rather than trying
to evaluate the quantities separately. In particular, we obtain the generalised
Einstein relations (GER) below, linking diffusion coefficients and mobilities.
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(b) Spatial Homogeneity, Drift Velocity and NDC Criterion

As in I, it is convenient to omit averaging brackets in what follows, i.e.

283

(v) -+V, (E) -+ E. (15)

For spatially uniform conditions, (2) and (3) yield

q(E + v X B) == j-tVm(E)V,

E== ~kTg + !Mv2
- n(E) ,

respectively. Equation (16) can be rearranged to read

v =vIIE.(l-iJB)+vi.13 X 13+voB,

where

VII == KE/[l + (KB)2], Vi. == KBvlI '

vo == K E. 13, K == qjvm(E) .

(16)

(17)

(18)

(19a, b)

(19c, d)

The quantities vII, v1- denote drift velocities in a plane perpendicular to B,
in directions parallel and perpendicular to the projection of E in that plane
respectively, while Vo is the drift velocity along B. In this work for the greater
part we consider E and B to be orthogonal, i.e,

so that

13.B == 0, Vo == 0, (20)

v == vII 13 + Vi. 13 X 13. (18')

We shall henceforth assume (20) to be true. In the case of constant collision
frequency, equations (19) constitute actual solutions, but otherwise they are
merely rearrangements of equation (16), which must be solved simultaneously
with the energy balance equation (17).

The ratio

r m == KB == qB/j-tvm (21)

represents the ratio of the magnetic gyro frequency (in the centre of mass frame)
to the momentum-transfer collision frequency. The so-called Lorentz angle <.p is
determined by:

tano == Vi./vlI == KB. (22)
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On the other hand, the drift speed is given by

R. E. Robson

( 2 2 )1.V = VII + Vl 2

KE

(1 + K 2B2)~

E.
B smc ,

(23)

(24)

Other equivalent expressions for the drift velocity are

VII = vcosep, Vl = vsinep. (25)

These formulas and their relation to previous work will be further discussed
below.

The following differential identities are obtained from (B16) and (B17) in
Appendix B:

8V II
8E

8Vl

8E

__ 1 + 0' + Mvi vm ' /vm ~
- MKE 8E'

B(l + 0' - MV~ vm ' /vm ) ~

ME 8E

(26a)

(26b)

Thus, assuming that 8E/8E > 0 always, there is NDC in the direction parallel
to E if

1 + 0' + Mvi vm ' /vm < 0,

while the NDC criterion transverse to E is

. , 2'
1 +0 - MVIIVm /Vm < O.

(27)

(28)

Equation (27) reduces to the condition 1(19) in the limit as B (and therefore
Vl)--+O.

Interestingly enough, the field derivative of the drift speed is given by the
expression,

8v 8vII 8v..L 1 + 0' 8E
V 8E = vII 8E + V..L 8E = --x;[ 8E '

and so NDC occurs in speed if

1 +0' < O.

(29)

(30)

Equations (29) and (30) are identical to equations 1(18) and 1(19) respectively.
The types of elastic/inelastic cross section combinations which satisfy (30) are
discussed in I.
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Further discussion of these NDC criteria can be found below. Finally, we note
another pair of useful identities, also obtained in Appendix B:

Mvm'/vm
1+0 (

E 8vII )/( 2 8VII)- -_. - 1 v-l - EVil - .. -
vII 8E BE

( E 8V-l)/( 8V-l)KB 1- -. _. VIIV-l+EvlI-··
V-l BE 8E

(31a)

(31b)

These last two formulas are invaluable in formulating the GER. They have a
counterpart in 1(17) for the zero magnetic field situation.

E
t

ExB f ......

z

~B

~x

y

Fig. 1. System of coordinates used
in this paper.

We shall defer discussion of the solution of the temperature tensor equation
(12) to Appendix C and here merely note that T has the following structure,

[

T-l

T= ;1t
T'H. ]

T-l' ·

Til

(32)

for the system of coordinates shown in Fig. 1.

(c) Spatial Inhomogeneity: Diffusion Tensor, Generalised Einstein Relations

We now write

(v) == v + S», (E)==E+8E, (33)

where v, E are the spatially homogeneous drift velocity and mean energy of the
previous section and S», 8E are corrections to these, respectively, of order Vn.
If equations (33) are substituted into (2) and (3) and only terms to first order
in small quantities are retained, we obtain

kT. Vn - nq8v X B

Q
--~. •Vn

nVe(E)

nJL[Vm(E) S» + Vm'(E) 8EV],

8E[1 + O'(E)] - Mv. 8v.

(34)

(35)
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Elimination of De between these equations then gives

- 1 (lim')kT.;;Vn- q8v X B=-J.L vml+ 1+0,Mvv .Bu ,

where

kT == kT _ J-tllm'VQ
(1+ n')lIe •

Now the diffusion tensor D is defined by the relation

n S» = -D.'1n,

R. E. Robson

(36)

(37)

(38)

and substitution into (36) and equating coefficients of n-1 '1n therefore gives

- (lim')kT = qB X D + J-t lim D + --, vv . D .
1+0

(39)

On the other hand, the same form of equation results if we differentiate (16)
w.r.t. E and contract the result with kT:

kT= B X (K.kT) + ~ (vm K.kT + 1~~, Mvv. (K.kT») , (40)

where K is the differential mobility tensor

8Vi

K i j == BE
j

·

Comparison of (40) and (39) shows that

k
D=K.-T

q

or equivalently, with implied summation on repeated indices,

k - k - 8Vi
D ·· = K·l-Tij = -Tij 8E .
~ I q q i

(41)

(42)

(43)

This is the generalised Einstein relation, through not yet in a particularly useful
form.

We can calculate K explicitly by differentiating (18) w.r.t. E. Then, assuming
the form (32) for the temperature tensor, we find that (42) yields the diffusion
tensor

[

D.l.

D = »;
D.l.'

D1-l]

;11 '
(44)
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Elimination of 8E between these equations then gives 

- 1 (Vrn') kT.; Vn - qbv X B = -J.L Vrn 1 + 1 + 0' Mvv .bv, (36) 

where 

(37) 

Now the diffusion tensor D is defined by the relation 

nbv = -D. Vn, (38) 

and substitution into (36) and equating coefficients of n- 1 Vn therefore gives 

- (vrn') kT = qB X D + J.L Vrn D + --, vv. D . 
1+0 

(39) 

On the other hand, the same form of equation results if we differentiate (16) 
w.r.t. E and contract the result with kT: 

kT= B X (K.kT) + ~(vrnK.kT + 1 ~~, MVV.(K.kT)) , (40) 

where K is the differential mobility tensor 

BVi 
K·=

>J - BE. 
J 
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where

Dl.. = KII kTl.. _ kT'H avl..
q q BE

MQl.. vm//vm (VII v.!. avl.. ) (45)
+ 2q(1 + n/) ~ + vII aE '

- kT1-l kTII avJ..
D1-l = KII- - -_.

q q BE

MQlIvm'/vm(vIIVl.. avl..) (46)
+ 2q(1+n/) ~ + vII aE '

Dl..' = KkTl..' (47)
q

D'H = Kl.. kTl.. + aVIl kT'H
q BE q

Mvm'/vma, (vi. aVII) (48)+ 2(1 + n/)q Ii - vII aE '

kT1-l BVII kTII
D II = KJ..-· +--

q BE q

Mvm'/vmQII (vi aVII) (49)+ 2(1 + n/)q Ii - vII aE '

with

KII == villE, KJ.. == vi-IE. (50a)

Notice that QJ.. and QII are elements of the heat flux vector, defined by

Q = (QJ.., 0, QII)· (50b)

These formulas can be considerably simplified by making use of the identities
(31) and by defining the 'correction factors':

QII
L\II == 2kTil vII '

QJ..
L\l.. == 2kT'H vII ·

(51)

Thus, we have the generalised Einstein relations

D - K kTJ.. K kT1-l (1 (1 A. )aenKJ..)J.. - II - - J.. -_. + + UJ.. ,
q qaenE

- kT1-l kTII ( . aenKl )
D1-l = KII-q- - Ks. q 1 + (1 + L\II) aluE '

(52)

(53)
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where 

DJ.. = KII kTJ.. _ kT'/-l 8vJ.. 
q q 8E 

MQJ..Vm'/Vm(VIIVJ.. 8VJ..) 
+ 2q(1 +n') ~ +vlI 8E ' 

(45) 

~ 
= KII kT'/-l _ kTIl avJ.. 

q q 8E 

MQII vm' /vm (VII VJ.. 8vJ.. ) 
+ 2q(1+n') ~ + vII 8E ' 

(46) 

DJ..' = KkTJ..' (47) 
q 

D'/-l = KJ.. kTJ.. + 8vII kT'/-l 
q 8E q 

Mvm' /vm QJ.. (vi 8VII ) 
+ 2(1 + n')q Ii - vII 8E ' 

(48) 

DII 
kT'/-l 8VII kTIl 

=KJ..-+--
q 8E q 

Mvm' /Vm QII (vi 8VII) 
+ 2(1 + n')q Ii - vII 8E ' 

(49) 

with 

KII == vlI/E, KJ.. == vJ../E. (50a) 

Notice that QJ.. and QII are elements of the heat flux vector, defined by 

Q= (QJ.., 0, QII)' (50b) 

These formulas can be considerably simplified by making use of the identities 
(31) and by defining the 'correction factors': 

- QII Llil = , 
2kTilvil 

(51) 

Thus, we have the generalised Einstein relations 

D K kTJ.. K kT'/-l (1 (1 A )8inKJ..) .1..= 11-- .1..-- + +~J.. , 
q q 8inE 

(52) 

- kT'/-l klll ( 8inKJ..) 
~ = KII-q- -KJ.. q l+(l+~II) 8lnE ' (53) 
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K kT.l'
q

kT.l kT1-{ ( 8fnKII)K.l-+KII- 1+(1+~.l)-8~·- ,
q qfnE

kT'H kTII (. afnKII )D II == K.l--· +KII-· 1+(I+~II)-·-··_···
q q afnE
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(54)

(55)

(56)

It can be seen that the GER are considerably more complex than the corresponding
relations 1(3) and (4), to which they reduce, of course, in the limit as B ~ o.

(d) Considerations of Anisotropy: Temperature Tensor

The ion temperature tensor is defined by (11) and explicit expressions for the
elements shown in (32) are given in Appendix C. The differences between these
elements reflect the degree of anisotropy of the velocity distribution function f( v)
in velocity space. Normally one accounts for such anisotropy through a spherical
harmonic decomposition,

L £

f(v)~f(L)(v)== L L f£m(v)Y£m(V) ,
£==0 m=~£

(57)

in which the number L+l of spherical harmonics is chosen to satisfy predetermined
accuracy criteria for transport properties. For electrons, for which m « M, the
so-called two-term approximation (L == 1) dominated transport coefficient theory
and computation until the late 1970s, when it became recognised that 'multi-term'
analysis (L 2: 2) is required, especially when inelastic electron-molecule collisions
are important. (See the review by Robson and Ness 1986.) The results of
Allis (1956) and Huxley and Crompton (1974) are derived from two-term theory.
On the other hand, for ions it has long been recognised that f (v) is generally
appreciably anisotropic (see for example Fig. 12 of Wannier 1953), even when
collisions are elastic, and that multi-term analysis is almost always required,
although this terminology is not commonly used by workers in ion transport
(Mason and McDaniel 1988).

In the two-term approximation, with Iflml « Ifol, the temperature tensor (32)
reduces to a scalar, i.e.

i: ~ T.l' ~ Til, T'H ~ 0, (58a, b)

as can be readily verified by evaluating the average (11), f(v) being approximated
by (57) with L == 1. In what follows, we shall establish the conditions under
which equations (58) hold, starting from the general expressions for T.l' T.l'
Til and T'H given in Appendix C.

Initially we look at the relatively uncomplicated case where B == O. In the
absence of inelastic processes we have n == 0 and, by (14a, b),

Vv = Vv = u; = N g27f'J(1 - cos2 x )a(g, X) sinX dX . (59)
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Vy = vy = l/y = N g27r J (1 - cos2x)a(g, X) sinX dX . (59) 



Approximate Formulas 289

In addition, if B ::= 0, then re = 0, V-L = 0, v::= vII and equations (C23)-(C26)
reduce to

kT-L'

kTjI

kT-L = n; +[(m + M)vv
/ (1 + 3MVv

) ] Mv2 , (60a)
4mvm 4mvm

::= kTg + [(1- 3//v + (m+M)//v)/(l+ 3M//v)]Mv;2, (60b)
4vm 4mvm 4mvm I

kTrt = O. (60c)

These results are exact for the Maxwell model where Vv and V m are constants,
independent of energy (Wannier 1953), but are only approximations in other
cases, where Vv and l/m are functions of mean energy (E). It is our intention to
use these formulas, and their generalisations which follow, in a qualitative fashion
only, for a literal, quantitative application is not always desirable (Skullerud
1973).

For electrons or light ions, m« M and the temperature tensor is generally
isotropic:

kT-L ~ kTII ~ kTg + !Mv2
,

as follows from (60a, b) with

Mvv/mvm » 1.

(61)

(62)

There is an important exception to this, however, for strongly anisotropic, backward
scattering, for which a(g, X) is appreciable only for X rv 'lr, i.e. cosx ~ -1. Then
by (59), we have t/; ~ 0 but the momentum-transfer collision frequency

//m = N g21r J(1 - COSX) a(g, X) sinX dX (63)

is not necessarily small. Thus the inequality (62) may not be satisfied and
the temperature tensor may not be isotropic for strong backward scattering.
The two-term approximation of the velocity distribution function would not be
expected to hold in these circumstances and indeed this result has long been
known (Lin et ale 1981). Notice that strongly forward anisotropic scattering
(X ~ 0) does not violate (62), since both V m and Vv are then small.

If inelastic as well as elastic collisions are important, then equations (60) no
longer hold. Equations (C23)-(C26) then yield for B = 0:

kT-L'

k1j1

kTrt

kT.l. = ukTg + Ao M v2
- 2Aon ,

ukTg + Al Mv2
- 2Aon,

0,

(64a)

(64b)

(64c)
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where u is defined by (C27) and 

Ao == [(m+ M)VV/(1 + 3Miiv)]Mv2, 
4mvm 4mvm 

(65a) 

Al == (1- 3iiv + (m + M) VV)/(1 + 3Miiv ) . (65b) 
4vm 4mvm 4mvm 

If now we take electrons, for which m « M, and also assume that 

then 

Miiv »1, 
mVm 

I == lAo ~ Al ~ 3 Vv VV , 

and (64a, b) then show once more that 

-

Miiv »1, 
mVm 

u ~ Vv Ivv, 

kTIl ~ kT.J.. ~ kT.J..' ~ ~v [kTg + i(Mv2 - 20)], 
Vv 

i.e. the temperature tensor is a scalar. 

(66) 

(67) 

Either one of the inequalities (66) may be violated, perhaps over a range of 
mean energies, and the temperature tensor elements consequently unequal, for 
two different reasons: firstly, if there is strong backward scattering, Vv (and 
hence iiv, vv) may be small compared with V m , as discussed previously, but the 
picture is by no means as clear cut as for the case where only elastic collisions 
occur. Secondly, even without such anisotropic scattering, iiv or vv could still be 
small if inelastic collisions dominate. To see this, approximate (14) for electrons 
(m« M) by 

vv = vv (1 -18), Vv = vv(1 - 8) , (68) 

where 

8 = L Ei[(V: (E)} - (Vi(E)}] 
i (E}Vv«(E}) 

(69) 

is a measure of the average inelastic energy exchange in time v;l relative to 
the mean energy (E) of the electron swarm. If the mean energy is such that 8 is 
near 1 or 3, then iiv '" 0 or Vv '" 0 respectively and the isotropy conditions (66) 
may not hold, leading to a significant difference between kTIl and kT.J... Such 
a situation occurs in methane, for example, where the elastic scattering cross 
section has a pronounced Ramsauer minimum for energies in the neighbourhood 
of the threshold for the first inelastic process (Ness 1985; Ness and Robson 
1986). For values of E I N such that the mean energy falls in this critical 
region, significant anisotropy is observed. For energies well above the Ramsauer 
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mInImUm, the parameter becomes very small and the isotropy condition (66) 
holds. This explains why anisotropy, as reflected in the failure of the two-term 
approximation, is often found to occur only over a localised range of E / N (Ness 
1985; Ness and Robson 1986). 

We now consider the case where B > 0, for which equations (C23)-(C26) give 
the complete expressions for kTII' kT.L, kT.L' and kT'H' In the exceptional cases 
described above (that is, strong backward and/or dominant inelastic scattering), 
we might expect all these elements to be nonzero and to differ significantly from 
each other. If, however, inequalities (66) hold then we have (64c) and (67) once 
again, correct to order m/ M. That is, the temperature tensor is effectively a 
scalar for electron swarms even for B =1= o. 

(e) Tonks' Theorem, Equivalent Field Concept, Magnetic Deflection Coefficient 

Heylen (1980) has reviewed the concept of equivalent electric field Ee (or what 
is virtually the same, since transport properties scale with E / N, the equivalent 
density / gas pressure concept), which can be summarised by the statement 

feE, B) = f(Ee, 0) . (70) 

That is, Ee is the electric field for B = 0 required to keep the mean swarm energy 
at the same value as in the actual situation, where the electric fields are E and 
B respectively. It can be shown that (70) is consistent with momentum-transfer 
theory, with 

Ee = Ecoscp. (71) 

When (70) is extended to include other transport properties, e.g. drift velocity, 

veE, B) = v(Ee, 0) , (72) 

it is sometimes called Tonks' theorem (Tonks 1937; Tonks and Allis 1937). At 
the present level of discussion, based on momentum-transfer theory, it is readily 
shown that Tonks' theorem holds. The practical application of these ideas is 
now briefly discussed. 

We have from (22) that 

Ee = E/[1 + (KB)2]! , (73) 

where K(f) is defined by (19d), and equation (23) for drift velocity can be written 
as 

v=KEe' (74) 

Upon substitution of this into (17), we find 

Ee = _1_ ( 2 [ O() 3 ) 1 K(f) M f+H f - 2kTg] (75) 
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A scheme of computation based on these formulas is as follows:

(i) specify the mean energy E;
(ii) calculate K(E) from (19d) and E; from (75);

(iii) find the drift velocity from (74);
(iv) equation (73) then gives the relationship between E and B for this value

of E e ; and
(v) calculate other transport coefficients.

The magnetic deflection factor 'ljJ was introduced by Frost and Phelps (1962).
It is defined by

'I/J = (E IB tano)
v . (76)

In the momentum-transfer theory approximation we have from (22) and (23) that

'ljJ = (1+K2B2 )! , (77)

which for magnetic fields such that KB = qBI J-ll/m < 1 gives 'ljJ ~ 1. This is the
expected result for formulas based on the Maxwell model (Huxley and Crompton
1974, Ch. 8).

3. Discussion of Formulae

(a) Calculations of Drift Velocity for Some Simple Models

In the first, most straightforward application of the results of the previous
section we take a cold gas (Tg = 0), neglect inelastic processes (n = 0) and
assume a momentum-transfer cross section with a power-law energy dependence

Qm(E) f".J Ef./2 , (78)

where /!, is an arbitrary constant. Hence the momentum-transfer collision frequency
is

(2E)!Vm(E) = N -; Qm(E) rv E(Hl)/2

and by (19d)

K f".J E-(f.+l)/2

Equation (17) reduces to

E = !Mv2

for the cold gas-elastic collision model and, together with (80), this yields

K f".J v-(f.+l).

(79)

(80)

(81)

(82)
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In what follows, we are primarily interested in the way transport properties scale
with E and B.

Weak magnetic field. If the magnetic field is weak, then

qB
rm = K B = - - « l ,

J-lVm

and (19) and (23) reduce to

(83)

VII ~v~KE,

Combining (82) and (84a) yields

VJ.. ~ K 2EB ~ KBv. (84a, b)

VII ~ v rv E 1/(£+2) ,

while (82) and (84b) together give

VJ.. rv Blv£ rv BIE£/(£+2).

We note the following derivative for future use:

(85a)

(85b)

8fnvII

afnE

1

f+2'

afnv,L f
afnE = - f+2·

(86)

The Lorentz angle (22) in this case is given by

tancp rv B I E(£+1)/(£+2) .

Strong magnetic fields. If the inequality (83) is reversed, i.e,

KB» 1,

then (19) and (23) become

(87)

(88)

V..L~V~EIB,

Combining (82) with (89b) gives

VII ~ EIKB2 ~ vIKB. (89a, b)

VII rv v£+2IB

and together with (89a) this gives

vII rv E£+2 I B£+3 .

The strong-field logarithmic derivative are thus

(90)

ot'nvil = t' + 2,
afnE

ot'nv..L = 1,
afnE

(91)
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while the Lorentz angle (22) is given by

tan<p~ B i +2 / E i +1 •

R. E. Robson

(92)

(b) Simple Model Calculations: Electron Diffusion Coefficients

Although the expressions contained in Section 2 are, for the greater part,
applicable to charged particles of arbitrary mass, we choose to perform actual
computations at present for electrons, for which m« M. In that case, we
have already established in Section 2d that the temperature tensor is effectively
isotropic, i.e,

[

1 . . ]
T~T • 1 . ,

. . 1

(93)

apart from certain special circumstances. This observation allows us to greatly
simplify the generalised Einstein relations (S2)-(S6) to

kT
D.l ~ KII-'

q

- kT ( 8inK.!. )D1-{, ~ - K.l - 1+ (1 + ~II)
q BinE '

D ' I"J K
kT

.1 I"J -,

q

kT
D1-{, ~ K.l-,

q

kT ( OinK)DII ~ K II- 1+(1+~")-_" .
q BinE

It is of interest to form the ratios

(94a)

(94b)

(94c)

(94d)

(94e)

DII
D.l

D1-{,
D1-{,

D.l
D'.l

BinKII
1 + (1 + ~II) oinE '

_ (1 + (1 + ~ )OinK.!.. )
II BinE '

K II 1
_:= 2
K 1 + K 2B 2 := cos ip ,

(9Sa)

(9Sb)

(9Sc)

294 R. E. Robson 

while the Lorentz angle (22) is given by 

(92) 

(b) Simple Model Calculations: Electron Diffusion Coefficients 

Although the expressions contained in Section 2 are, for the greater part, 
applicable to charged particles of arbitrary mass, we choose to perform actual 
computations at present for electrons, for which m« M. In that case, we 
have already established in Section 2d that the temperature tensor is effectively 
isotropic, i.e. 

(93) 

apart from certain special circumstances. This observation allows us to greatly 
simplify the generalised Einstein relations (52)-(56) to 

Dl. ~ 
kT 

KII-' q 
(94a) 

fht ~ -K kT (1 (1 ~ ) ()CnKl. ) 
.1. q + + II {)CnE ' (94b) 

Dl.' ~ KkT , (94c) 
q 

D'H. ~ Kl. kT (94d) 
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DII ~ 
kT ( ()CnKII ) 
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DII {)CnKIl 

Dl. 1 + (1 + ~II) {)CnE ' (95a) 
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D'H. 

- 1+(1+~1I) {)fnE ' (95b) 

Dl. KII 1 = cos2cp 
D'l. K 1 + K2B2 ' 

(95c) 
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the first two of which simplify further if the heat flux term .6.11, defined by (51),
is negligible:

DII afnvlI
D-L ~ afnE'

D1-l afnv-L-=----
D1-l afnE

(96a, b)

These equations yield particularly simple results for the model cross section (78)
above. Thus (81), (86) and (91) together yield for the cold gas model

DillD-L = 1/(£ + 2), weak magnetic field (97a)

= f + 2, strong magnetic field; (97b)

D1-l1D1-l = fl ie+ 2), weak magnetic field (97c)

= -1, strong magnetic field. (97d)

These formulas generalise results obtained over twenty years ago for diffusion in
electric fields on the basis of nonequilibrium thermodynamics [Robson (1972);
equation (17) of that paper is identical to (97a) above]. Many refinements have
been developed in the interim [see Mason and McDaniel (1988) for a summary of
the generalised Einstein relations and also Uribe and Mason (1989) and Koutsalos
and Mason (1991)].

Notice that the ratio DulD-L 'flips over' in the progression from a weak to a
strong magnetic field, as evidenced by equations (97a) and (97b) respectively. For
example, for a constant cross section, f = 0 and equation (97a) gives the famous
result DII/D-L = 0·5 at B = 0 which becomes DII/D-L = 2·0 for high BIN. These
results are confirmed by an accurate multi-term solution of Boltzmann's equation
(Ness and Robson 1994).

v

ElN

Fig. 2. Schematic diagram showing the BIN dependence in
the NDC region. Calculations from the Ness (1994)· multi-term
code confirm these predictions.

(c) NDe: Variation with B

Ness (1994) also observes another interesting variation with B, specifically, the
influence of BIN upon NDC, which we may understand in terms of the formulas
developed above.
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Upon differentiation of (17) w.r.t. B, we find

o« Mvov/oB
oB = 1 + 0'

R. E. Robson

(98)

The factor in the denominator also controls the NDC region (8v!oE< oy, as
explained in Section 2b above. In what follows, it is assumed that € is always a
monotonically decreasing function ofB, i.e,

o.to» < 0, (99)

regardless of the type of interaction. Thus, from (30), (98) and (99), it is
clear that ov!oB > 0 and v actually increases with B inside the NDC region
(1+0' < 0). Outside the NDC region (1+0' > 0), however, ov!oB < o and v
always decreases with B. The crossover point occurs when 1+0' = 0, when

ov
oE = 0,

ov
oB = o. (100)

Fig. 2 gives a schematic portrayal of the dual effects of electric and magnetic
field variation.

4. Concluding Remarks

We have developed approximate formulas for relationships between the transport
properties of ion and electron swarms in a gas in crossed electric and magnetic
fields, based upon momentum-transfer theory. Elastic and non-elastic collisions
have been considered, but non-particle-conserving collisions, such as ionisation,
have been excluded. Proper accounting of these latter effects involves treatment
of second-order density gradient terms; this will be done in a subsequent paper.
Based upon accurate numerical solution of the Boltzmann equation (Nees and
Robson 1994; Ness 1994), we believe our formulas are at least qualitatively
correct, but no comprehensive testing has been carried out. However, if the
electric field-only formulas are any guide, the expressions obtained in the present
paper will have accuracies of around 10%, more or less.

Acknowledgment

The author gratefully acknowledges many fruitful hours discussing the topic
with Dr Kevin Ness, who kindly consented to making available prior to publication
the results of his extensive numerical calculations.

References

Allis, W. P. (1956). In 'Handbuch der Physik', Vol. 21 (Springer: Berlin).
Biagi, S. F. (1988). Nucl. Instrum. Methods A 273, 533.
Biagi, S. F. (1989). Nucl. Instrum. Methods A 283, 716.
Blevin, H. A., and Brennan, M. J. (1983). Aust. J. Phys. 36, 859.
Braglia, G. L., and Ferrari, L. (1973a). Physica 67, 249.
Braglia, G. L., and Ferrari, L. (1973b). Physica 67, 274.
Brennan, M. J., and Garvie, A. M. (1990). Aust. J. Phys. 43, 765.
Brennan, M. J., Garvie, A. M., and KeUy, L. J. (1990). Aust. J. Phys. 43, 27.

296 R. E. Robson 

Upon differentiation of (17) w.r.t. B, we find 

OE Mv ov/oB 
= oB 1 + 0' 

(98) 

The factor in the denominator also controls the NDC region (ov/oE < 0), as 
explained in Section 2b above. In what follows, it is assumed that E is always a 
monotonically decreasing function of B, i.e. 

oE/oB < 0, (99) 

regardless of the type of interaction. Thus, from (30), (98) and (99), it is 
clear that ov/oB > 0 and v actually increases with B inside the NDC region 
(1+0' < 0). Outside the NDC region (1+0' > 0), however, ov/oB < 0 and v 
always decreases with B. The crossover point occurs when 1+0' = 0, when 

ov = 0 
oE ' 

ov = 0 
oB . (100) 

Fig. 2 gives a schematic portrayal of the dual effects of electric and magnetic 
field variation. 

4. Concluding Remarks 

We have developed approximate formulas for relationships between the transport 
properties of ion and electron swarms in a gas in crossed electric and magnetic 
fields, based upon momentum-transfer theory. Elastic and non-elastic collisions 
have been considered, but non-particle-conserving collisions, such as ionisation, 
have been excluded. Proper accounting of these latter effects involves treatment 
of second-order density gradient terms; this will be done in a subsequent paper. 
Based upon accurate numerical solution of the Boltzmann equation (Ness and 
Robson 1994; Ness 1994), we believe our formulas are at least qualitatively 
correct, but no comprehensive testing has been carried out. However, if the 
electric field-only formulas are any guide, the expressions obtained in the present 
paper will have accuracies of around 10%, more or less. 

Acknowledgment 

The author gratefully acknowledges many fruitful hours discussing the topic 
with Dr Kevin Ness, who kindly consented to making available prior to publication 
the results of his extensive numerical calculations. 

References 

Allis, W. P. (1956). In 'Handbuch der Physik', Vol. 21 (Springer: Berlin). 
Biagi, S. F. (1988). Nucl. Instrum. Methods A 273, 533. 
Biagi, S. F. (1989). Nucl. Instrum. Methods A 283, 716. 
Blevin, H. A., and Brennan, M. J. (1983). Aust. J. Phys. 36, 859. 
Braglia, G. L., and Ferrari, L. (1973a). Physica 67, 249. 
Braglia, G. L., and Ferrari, L. (1973b). Physica 67, 274. 
Brennan, M. J., and Garvie, A. M. (1990). Aust. J. Phys. 43, 765. 
Brennan, M. J., Garvie, A. M., and Kelly, L. J. (1990). Aust. J. Phys. 43, 27. 



Approximate Formulas 297

Frost, L. S., and Phelps, A. V. (1962). Phys. Rev. 127, 1621.
Garvie, A. M., and Brennan, M. J. (1990). Aust. J. Phys. 43, 779.
Hargrove, C. K., et al. (1984). Nucl. Instrum. Methods Phys. Res. 219, 461.
Heylen, A. E. D. (1980). Proc. lEE 127, 221.
Heintze, J. (1978). Nucl. Instrum. Methods 156, 227.
Heintze, J. (1982). Nucl. Instrum. Methods 196, 293.
Huxley, L. G. H., and Crompton, R. W. (1974). 'Diffusion and Drift of Electrons in Gases'

(Wiley: New York).
Ikuta, N., and Sugai, Y. (1989). J. Phys. Soc. Jpn 58, 1228.
Koutsalos, A. D., and Mason, E. A. (1991). Chem. Phys. 153, 351.
Kunst, T. (1992). Ph.D. Dissertation, Univ. Heidelberg.
Kunst, T., Cotz, B., and Schmidt, B. (1993). Nucl. Instrum. Methods A 324, 127.
Lin, S. L., Robson, R. E., and Mason, E. A. (1979). J. Chem. Phys. 71, 3483.
Lin, S. L., Haddard, G. N., and Robson, R. E. (1981). Aust. J. Phys. 34, 243.
Mason, E. A., and McDaniel, E. W. (1988). 'Transport Properties of Ions in Gases' (Wiley:

New York).
Ness, K. F. (1985). Ph.D. Thesis, James Cook University.
Ness, K. F. (1993). Phys. Rev. E 47, 327.
Ness, K. F. (1994). J. Phys. D (submitted).
Ness, K. F., and Robson, R. E. (1994). Phys. Scripta (in press).
Ness, K. F., and Robson, R. E. (1986). Phys. Rev. A 34, 2185.
Ness, K. F., and Robson, R. E. (1988). Phys. Rev. A 38, 1446.
Robson, R. E. (1972). Aust. J. Phys. 25, 685.
Robson, R. E. (1984). Aust. J. Phys. 37, 35.
Robson, R. E. (1986). J. Chem. Phys. 85, 4486.
Robson, R. E. (1991). Aust. J. Phys. 44, 685.
Robson, R. E., and Ness, K. F. (1986). Phys. Rev. A 33, 2068.
Robson, R. E., and Ness, K. F. (1988). J. Chem. Phys. 89, 4815.
Schmidt, B. (1986). Nucl. Instrum. Methods A 252, 579.
Schmidt, B. (1991). J. Phys. B 24, 4809.
Schmidt, B. (1992). Aust. J. Phys. 45, 351.
Schmidt, B. (1993). Commun. Atom. Mol. Phys. 28, 279.
Schmidt, B., and Polenz, S. (1988). Nucl. Instrum. Methods A 273, 488.
Skullerud, H. R. (1973). J. Phys. B 2, 696.
Tonks, L. (1937). Phys. Rev. 51, 744.
Tonks, L., and Allis, W. P. (1937). Phys. Rev. 52, 710.
Uribe, F. J., and Mason, E. A. (1989). Chem. Phys. 133, 335.
Viehland, L. A. (1992). In 'Status and Future Development in Transport Properties' (Ed. W.

A. Wakeham), p. 189 (Kluwer: Dordrecht).
Wannier, G. H. (1953). Bell Syst. Tech. J. 32, 170.

Appendix A: Collision Frequencies and Cross Sections

In what follows, we consider a collision in the centre-of-mass frame whereby
the relative velocities before and after a collision are g and g' respectively and i,
k denote initial and final internal states of the neutral molecule respectively. If
a(jk Ig, X) denotes the differential scattering cross section for a scattering angle,
then we define the partial cross sections

Ql(jk Ig) = 211" J[l - (g' /g)l cos1x]a(jk Ig, X) sinv dX, (AI)

where g' is given in terms of 9 by conservation of energy

1 ( ')2 1 22J.-tg +€k=2J.-tg +€j, (A2)

Approximate Formulas 

Frost, L. S., and Phelps, A. V. (1962). Phys. Rev. 127, 1621. 
Garvie, A. M., and Brennan, M. J. (1990). Aust. J. Phys. 43, 779. 
Hargrove, C. K., et al. (1984). Nucl. lnstrum. Methods Phys. Res. 219, 461. 
Heylen, A. E. D. (1980). Proc. lEE 127, 221. 
Heintze, J. (1978). Nucl. lnstrum. Methods 156, 227. 
Heintze, J. (1982). Nucl. lnstrum. Methods 196, 293. 

297 

Huxley, L. G. H., and Crompton, R. W. (1974). 'Diffusion and Drift of Electrons in Gases' 
(Wiley: New York). 

Ikuta, N., and Sugai, Y. (1989). J. Phys. Soc. Jpn 58, 1228. 
Koutsalos, A. D., and Mason, E. A. (1991). Chem. Phys. 153, 351. 
Kunst, T. (1992). Ph.D. Dissertation, Univ. Heidelberg. 
Kunst, T., G6tz, B., and Schmidt, B. (1993). Nucl. lnstrum. Methods A 324, 127. 
Lin, S. L., Robson, R. E., and Mason, E. A. (1979). J. Chem. Phys. 71, 3483. 
Lin, S. L., Haddard, G. N., and Robson, R. E. (1981). Aust. J. Phys. 34, 243. 
Mason, E. A., and McDaniel, E. W. (1988). 'Transport Properties of Ions in Gases' (Wiley: 

New York). 
Ness, K. F. (1985). Ph.D. Thesis, James Cook University. 
Ness, K. F. (1993). Phys. Rev. E 47, 327. 
Ness, K. F. (1994). J. Phys. D (submitted). 
Ness, K. F., and Robson, R. E. (1994). Phys. Scripta (in press). 
Ness, K. F., and Robson, R. E. (1986). Phys. Rev. A 34, 2185. 
Ness, K. F., and Robson, R. E. (1988). Phys. Rev. A 38, 1446. 
Robson, R. E. (1972). Aust. J. Phys. 25, 685. 
Robson, R. E. (1984). Aust. J. Phys. 37, 35. 
Robson, R. E. (1986). J. Chem. Phys. 85, 4486. 
Robson, R. E. (1991). Aust. J. Phys. 44, 685. 
Robson, R. E., and Ness, K. F. (1986). Phys. Rev. A 33, 2068. 
Robson, R. E., and Ness, K. F. (1988). J. Chem. Phys. 89, 4815. 
Schmidt, B. (1986). Nucl. lnstrum. Methods A 252, 579. 
Schmidt, B. (1991). J. Phys. B 24, 4809. 
Schmidt, B. (1992). Aust. J. Phys. 45, 351. 
Schmidt, B. (1993). Commun. Atom. Mol. Phys. 28, 279. 
Schmidt, B., and J?olenz, S. (1988). Nucl. lnstrum. Methods A 273, 488. 
Skullerud, H. R. (1973). J. Phys. B 2, 696. 
Tonks, L. (1937). Phys. Rev. 51, 744. 
Tonks, L., and Allis, W. P. (1937). Phys. Rev. 52, 710. 
Uribe, F. J., and Mason, E. A. (1989). Chem. Phys. 133, 335. 
Viehland, L. A. (1992). In 'Status and Future Development in Transport Properties' (Ed. W. 

A. Wakeham), p. 189 (Kluwer: Dordrecht). 
Wannier, G. H. (1953). Bell Syst. Tech. J. 32, 170. 
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In what follows, we consider a collision in the centre-of-mass frame whereby 
the relative velocities before and after a collision are 9 and g' respectively and j, 
k denote initial and final internal states of the neutral molecule respectively. If 
a(jk Ig, X) denotes the differential scattering cross section for a scattering angle, 
then we define the partial cross sections 

where g' is given in terms of 9 by conservation of energy 

~f.L(g')2 + Ek = ~f.Lg2 + Ej , (A2) 
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with Ej, Ek denoting the initial and final internal energies respectively of the
neutral molecule.

Thus we have the total momentum-transfer collision frequency,

l/m(g) == L N j 9 Ql(jk Ig),
j,k

(A3)

where N j is the population of the neutral molecules in the initial state j (usually
taken as a Maxwell-Boltzmann distribution of states at temperature T g). The
total collision frequency for viscosity is defined by

l/v(g) == L N j 9 Q2(jkl g).
j,k

(A4)

In the text, we designated the process j --+ k as the ith inelastic process if j < k,
and the ith superelastic process if j > k. The corresponding collision frequencies
appearing in Section 2a are given by

N j gQo(jk Ig) == ;;;(g), j < k

~(g), j > k,

and the threshold energy is

E; == IEj - Ek I.

(A5)

(A6)

We have written collision frequencies above as a function of relative speed 9, but
in view of the relation

1 2
E == 2J-l9 , (A7)

we can also write them as functions of energy when it is convenient to do so.

Appendix B: Differential Identities

We give below a derivation of equations (26) and (31), which are central to
establishing NDC criteria and the GER. With v == (-vJ..' 0, vII), equation (16)
can be written in component form:

VII B == avJ..,

where for convenience we have defined

E - VJ.. B == aVII ' (Bla, b)

1
a(E) == - == J-ll/m(E)lq.

K

In what follows we write

a' == daldE.

(B2)

298 R. E. Robson 

with Ej, Ek denoting the initial and final internal energies respectively of the 
neutral molecule. 

Thus we have the total momentum-transfer collision frequency, 

lIm(g) = L N j 9 Ql(jk I g), (A3) 
j,k 

where N j is the population of the neutral molecules in the initial state j (usually 
taken as a Maxwell-Boltzmann distribution of states at temperature T g). The 
total collision frequency for viscosity is defined by 

lIv(g) = L N j 9 Q2(jk I g). (A4) 
j,k 

In the text, we designated the process j -+ k as the ith inelastic process if j < k, 
and the ith superelastic process if j > k. The corresponding collision frequencies 
appearing in Section 2a are given by 

= ~(g), j>k, (A5) 

and the threshold energy is 

(A6) 

We have written collision frequencies above as a function of relative speed g, but 
in view of the relation 

_ 1 2 
E- "2l1-g , (A7) 

we can also write them as functions of energy when it is convenient to do so. 

Appendix B: Differential Identities 

We give below a derivation of equations (26) and (31), which are central to 
establishing NDC criteria and the GER. With v=(-Vl.,O,vlI), equation (16) 
can be written in component form: 

VII B = o-Vl., E - Vl. B = o-vlI, (B1a, b) 

where for convenience we have defined 

(B2) 

In what follows we write 

0-' = do-IdE. 
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If equations (Bl ) are differentiated w.r.t, E, we get

B
8vII , 8E 8.vJ..--. == a --vJ..+a-·,-
8E oE oE '

OVJ.. , OE oVII
1-B- == a -vlI+a-

8E 8E 8E'

respectively. On the other hand, differentiation of (17) w.r.t. E gives

8E M (OVII OVJ..)
oE == 1+0' vII 8E +vJ.. BE .

Equations (B3a, b) and (B4) can be solved simultaneously to give
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(B3a)

(B3b)

(B4)

OVII
a oE

OVJ..
a 8E

2 OE
a-

oE

(
1 Mvial/a)/(l B2 Mv2al/a)
+ 1 + 0' + a2 + 1 + 0' ,

B ( _ Mvrr aI/a) / ( B
2

MV
2a'la )

a 1 1 + 0' 1 + a2 + 1 + 0' ,

ME

(1 + B 2
/ (

2 )(1+ 0') + Mv2a'/ a .

(B5)

(B6)

(B7)

The following interrelations then follow by (B5) and (B7):

OVII 1 + 0' + M vi a' Ia OE
8E =='. ··MKE 8E ;

from (B6) and (B7),

8v J.. B ( , 2 'I ) OE-0· == -.- 1 + 0 - M VII a a -;
E ME oe

and from (B6) and (B5),

8vJ.. == [B/a(l- Mvrra
l/a)/(l MVI aI/a)] oVII .

8E 1 + 0' + 1 + 0' oE

On the other hand, (B5) can be arranged to give

M a' Ia == [(1 + B2
) aoVII _ 1] / (VI _av2 8vll ) .

1 + 0' a 2 'BE BE

(B8)

(B9)

(BID)

(BIl)

Approximate Formulas 

If equations (BI) are differentiated w.r.t. E, we get 

1 _ B OV.L , Of OVII = IJ -VII +IJ-
oE oE oE' 

respectively. On the other hand, differentiation of (17) w.r.t. E gives 

Of M (OVII OV.L) 
oE = I+n' VII oE +V.L oE . 

Equations (B3a, b) and (B4) can be solved simultaneously to give 

OVII 
IJ

oE 

The following interrelations then follow by (B5) and (B7): 

OVII 1 + n' + Mvi IJ' /IJ Of 
oE = MKE oE; 

from (B6) and (B7), 

and from (B6) and (B5), 

OV.L = [B/IJ(I _ MVIT IJ' /IJ) / (1 Mvi IJ'/IJ)] oVIl . 
oE 1 + n' + 1 + n' oE 

On the other hand, (B5) can be arranged to give 

_M IJ-,-:-' / IJ = [(1 + _B2) IJ _ovil _ 1] / (vi _ IJV2 _ovil ) . 
1 + n' 1J2 oE oE 
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(B4) 

(B5) 

(B6) 

(B7) 

(BS) 

(B9) 

(BID) 

(Bll) 
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By (B2), (19a) and (23), we have

av2 = E
2

KE
2

rr{I +B2 / ( 2 ) = 1+K2B2 = EVil ,

(1 + B2/(2)a = 1 + K
2
B

2
_ E

K -~.

Hence (B11) becomes

Ma'Ia == (E BVII _ 1) / (V2 _Ev aVII).
1 + 0' vII BE 1.. II BE

Similarly, rearrangement of (B6) gives

R. E. Robson

(B12)

(B13)

(B14)

_M_a-..--'t: == [B _a (1 + _B2 ) _BV_1..] / (V2\\ B+ av2 _Bv_1.. )
1 + 0' a a2 BE a BE'

which, with (B12) and (B13) reduces to

Ma'ia = (B _EBV1..)/(v2 B+ Ev avJ.).
1 + 0' a vII BE. \I a \I BE

Finally, since by (19b),

B
v1.. == K BVII == - vII '

a

we have

_M-..--a_'I_~ = B (1 __E _BV_1..) / (VII V..L + EVil _BV_1..) .
1 +0 a V1.. BE BE

Equations (B8) and (B9) are identical with (26a, b) if we note that

a'ia == lIm'lvm

(B15a)

(B15b)

(B16)

(B17)

by virtue of equation (B2). In addition, equations (31) follow immediately from
(B14) and (B15), again by using (B17).

Appendix C: Temperature Tensor

The temperature tensor T i j is defined by (11) and is obtained by solving the
balance equation (12), which we write here as

kT X B-B X kT==akT-f3Mvv-l'l, (C1)
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E2 KE2 
av2 = - EVil 
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K vII 
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where

a == (
3MDY ) /1+ _ .. - re ,
4Mvm

301

(C2)

( 3Dv)(3 == 1 - -- /re ,
4vm

(C3)

7= ( MlJv € + /3kTg) Ire.
2J.-tvm

(C4)

The notational simplification (15) has been employed for convenience. Upon
contraction of tensor indices, (Cl) yields (17), as required. The components of
(Cl) for the coordinate system of Fig. 1 are

xx

-kTx z - kTzx = akTx x - (3Mv; - 7, (C5)

xy

-kTzy = akTx y , (C6)

xz

kTx x - kTz z = akTx z - {3Mvx V z , (C7)

yx

-kTy z = akTy x , (C8)

yy

o = akTy y -7, (C9)

yz

kTy x = akTy z , (ClO)

zx

-kTz z + kTx x = akTzx - f3Mvx V z , (Cll)

zy

kTx y = akTzy , (C12)
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where 

a == (1 3Miiy )/ + 4Mvm re , (C2) 

f3 - (1- :~:)/re, (C3) 

,= (MVy )/ --€+f3kT g reo 
2J.wm 

(C4) 

The notational simplification (15) has been employed for convenience. Upon 
contraction of tensor indices, (Cl) yields (17), as required. The components of 
(Cl) for the coordinate system of Fig. 1 are 

xx 

-kTxz - kTzx = akTxx - f3Mv; -" (C5) 

xy 

-kTzy akTxy , (C6) 

xz 

kTxx - kTzz = akTxz - f3Mvxvz, (C7) 

yx 

-kTyz = akTyx , (C8) 

yy 

0 akTyy -I' (Cg) 

yz 

kTyx = akTyz , (CI0) 

zx 

-kTzz +kTxx = akTzx - f3Mvxvz, (Cll) 

zy 

kTxy = akTzy , (CI2) 
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zz

kTzx + kTx z = akTz z - (Jv; -.... 'Y .

R. E. Robson

(C13)

Notice that T i j is symmetric in the indices, i,e. T xz = T zx, etc. Equations (C6),
(C8), (C10) and (C12) together imply that

Tx y = Ty z = Tz y = Ty x =.0.

The remaining four independent elements, i.e,

(C14)

T.l.. =Tx x , T11, == r.. = Tzx , T.l..' == Ty y , Til == r: (C15)

are given by solution of (C5), (C7), (C9) and (C13) [note that (C11) is identical
with (C7)]. Thus, we have immediately

kT.l..' = 'Yla,

and the remaining three components are obtained as the solutions of

(C16)

[

a 0

1 -1

o a

- 2] [kT
II]

[ l' + fJMvIT ]
a kT.l.. == -,BMvIIV.l..

2. kT11, 'Y + ,BMvl

tC17)

Solution of (C17) is straightforward and yields

kTII

kT.l..

kT11,

(, + ,BMvrr)10. + 2kT11,la,

== (, + ,BMvlJ/a - 2kT11,la,

fJM (vi - vrr - aVIl v.d.0.2 +4

(C19)

(C20)

(C21)

With (C3) and (17), equation (C4) becomes

l' = [1 + 4~m (vv - v; + ~ I/v)]n;

(m+M)vvM. 2 (m+M)vv("")+ v - ~G.
4mvm 2mvm

Hence (C16) reduces to

kT.l..' = ukTg+ AoMv2
- 2Aon,

(C22)

(C23)
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zz 

kTzx + kTxz = exkTzz - f3v; - 'Y . (CI3) 

Notice that Tij is symmetric in the indices, i.e. T xz = T zx, etc. Equations (C6), 
(C8), (ClO) and (CI2) together imply that 

(CI4) 

The remaining four independent elements, i.e. 

are given by solution of (C5), (C7), (C9) and (CI3) [note that (Cll) is identical 
with (C7)]. Thus, we have immediately 

(CI6) 

and the remaining three components are obtained as the solutions of 

[
ex 0 -2] [kTII] ['Y+f3MVIT] 
1 -1 ex kTl. = -f3Mvllvl. 

o ex 2 kT'H 'Y + f3Mvl 

tC17) 

Solution of (CI7) is straightforward and yields 

(CI9) 

(C20) 

(C21) 

With (C3) and (17), equation (C4) becomes 

'Y = [1 + 4~rn (vv - Dv + ~ vv)] kTg 

+ (m+M)vv Mv2 _ (m+M)vv n. 
4mvrn 2mvrn 

(C22) 

Hence (CI6) reduces to 

(C23) 
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while (CI9, 20, 21) can be written as

303

kTII = ukTg+ Al Mvrr + A2 MVI - CMvlI VJ.. - 2Ao0, (C24)

kTJ.. = ukTg+AIMvl +A2MvIT+CMvll vJ.. -2AoO, (C25)

2 2kT1i. = A1i.(MvJ..-MvlI)-C1i.MVIIV..L,

respectively, where

(C26)

u == (1 + 3M
Vv)-1 [1 +~ (M v. + v; - vv) ] , (C27)

4mvm 4vm m

Ao (
1 + 3MVv) -1 (m+ M)vv l

4mvm 4mvm
(C28)

Al = (1 + _3M_V_v)-I{I _ _3ii_v.. + _(m_+_M_)v_v
4mvm 4vm 4mvm

- 2r; (1 - :~:) / [4r; + (1+ ~~:~rJ}, (C29)

A2

A?-l

C1i.

C

(
1 + 3M.Vv )-l{(m + M)vv

4mvm 4mvm

2r2 (1 _3V3Vv) / [4r2 (1. 3Mvv ) 2] }+ e 44 e+ +4 'V V m mVm

(
3iiv ) / [ 2 ( 3Miiv) 2]= re 1 - 4v

m
4re + 1 + 4mv

m
.'

(1_3iiv) (1 + 3M
Vv)

/ [4r; + (1 + 3M
Vv) 2] ,

4vm 4mvm 4mvm

( s», ) / [ . 2 ( 3MVv)2]2re 1 - 4v
m

4re + 1 + 4mv
m

..

(C30)

(C3I)

(C32)

(C33)

These are the expressions used in Section 2d in the discussion of anisotropy
effects. Notice that the magnetic field appears explicitly in these expressions
through the ratio (13), which for light ions (m« M) becomes

re = ~ / (Z;; Vm ) . (C34)
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while (CI9, 20, 21) can be written as 

kTIl = ukTg + Al MVIT + A2 Mvi - CMVII V..L - 2Ao n, (C24) 

(C26) 

respectively, where 

u == ( 1 + 3Mvv)-1 [1 + _3 (M Vv + Vv - vv)] , 
4mllm 4l1m m 

(C27) 

Ao (C28) 

Al = (1+ 3MVv)-I{I_ 3vv + (m+M)vv 
4mllm 4l1m 4mllm 

(C29) 

( 1+ 3MVv)-I{(m+M)lJv 
4mllm 4mllm 

+ 2r; (1 _ 3V3Vv ) / [4r; + (1 + 3MVv ) 2] } , (C30) 
4114l1m 4mllm 

( 3vv ) / [ 2 ( 3MVv ) 2] reI - 4l1m 4r e + 1 + 4mllm ' (C31) 

= (1 _ 3Vv ) (1 + 3MVv ) / [4r; + (1 + 3MVv) 2] , 
4l1m 4mllm 4mllm 

(C32) 

C ( 3vv ) / [ . 2 ( 3Mvv ) 2] 2re 1 - 4l1m 4re + 1 + 4mllm . (C33) 

These are the expressions used in Section 2d in the discussion of anisotropy 
effects. Notice that the magnetic field appears explicitly in these expressions 
through the ratio (13), which for light ions (m« M) becomes 

(C34) 
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In contrast, the magnetic field enters the expressions (19) for drift velocity through
the ratio

r
m

= qB 2m
mV

rn
= M· re « re r (C35)

suggesting that the temperature tensor is influenced by much weaker fields than
directed properties, such as drift velocity, at least in the case of light ions.
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