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Abstract

The transition to a periodic steady state for an ion swarm in a gas is investigated using the
BGK model kinetic equation. Exact expressions for transport coefficients and the velocity
distribution function are obtained and the latter is compared with experimental observations
of ions in their parerit gases undergoing predominantly charge-transfer collisions.

1. Introduction

The term 'hydrodynamic regime' is usually employed in the kinetic theory of
gaseous swarms (Kumar 1981, 1984; Kumar et al. 1980; Mason and McDaniel
1988) to describe the situation where the space-time dependence of the swarm
phase-space distribution function f (T, V, t) is carried by the number density

n(r, t) = Jdv f(r, v, t) , (1)

and all memory of initial conditions, save those for n(r,t) itself, is lost. This,
at least, is the case for swarms in d.c. fields, and a definitive study of the
transition from an arbitrary state to the hydrodynamic regime has been given
by Kumar (1981). He showed that the relaxation from the initial state to the
hydrodynamic regime is controlled by a single time constant, the same for all
transport quantities. In doing so, however, he made certain assumptions about
the spectral properties of the operator,

M == a.av + J,

which still await proof. In this equation, J denotes the swarm particle-neutral
molecule Boltzmann collision operator and a == eE/m is the acceleration undergone
by a swarm particle of mass m, charge e, in the presence of the electric field E.
The Boltzmann equation for the swarm phase-space distribution function is thus

(at + v. \7 + M)f = o. (2)
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In the present paper, we consider the situation where the field varies harmonically
in time,

E(t) == Eo cos wt,

and consider the transition to the 'periodic steady state', where all memory of
initial conditions has been lost. In this state, all transport properties oscillate at
the frequency w of the applied field (or at harmonics thereof) about respective
mean values which do not change in the course of time. Any spatial (but not
time) variation is carried entirely by the density n(r,t), but whether or not the
term 'hydrodynamic regime' should be applied is a moot point.

There are certain symmetry properties that can be deduced from (2), e.g. in
the absence of spatial variations

f(-v, t +7r/w) == f(v,t), f(v, t + 27r/w) == f(v, t), (3)

but otherwise the mathematical problems posed by time-varying fields are far
more onerous than for the d.c, case and hence a detailed investigation, along the
lines of Kumar (1981), seems out of the question at present. For this reason, we
have opted in the first instance to present the results of a model kinetic equation
calculation, based on the well-known BGK expression (Bhatnagar et ale 1954)
for J. The main advantage of this model lies in its mathematical tractability.
However, the BGK model also represents a reasonable description of ions and
their parent gas undergoing charge-transfer collisions (Kumar et ale 1980), an
important type of interaction in radio frequency plasmas. We show here that the
peculiar structure observed in the ion energy distribution (Kuypers and Hopman
1990; Lie et ale 1990; Manenschijn et ale 1991) can be understood, at least
qualitatively, on the basis of this model.

The format of this paper is as follows: in Section 2 we review briefly Kumar's
formal theory of time-dependent transport coefficients, and indicate how it can be
extended to include time-dependent fields. We then perform explicit calculations
using the BGK collision operator, showing the transition to the periodic steady
state and providing asymptotic expressions for transport coefficients. In Section 3,
we examine the ion velocity distribution function and, in particular, the positions
of peaks and other peculiar phenomena.

2. Transition to Periodic Steady State: Model Calculations

The theory of Kumar (1981) for time-dependent transport coefficients can be
taken over to a large extent even if the electric field is time-dependent. Thus
Kumar's equation (12) adapted to a.c. fields becomes

(at + ao cos wt . av + J) F(n) == v F(n-I) (n == 0,1,2, ...), (4)

where ao=eEo/m. This gives a hierarchy of equations for spatial moments,

f
rn

F(n)(v,t)= dr-f(r,v,t),
n!

(5)
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and generalised transport coefficients wen) (t) are defined by the equations

n

at N(n) == L w(r) (t) N(n-r) ,

r==O .

where

N(n)(t) s Jdv p(n)(v,t)

are found after the F(n) are calculated from (4).

In the limit of long times, t» TB (a timescale defined below),

w~)(t) == {w(n) (t)}t»TB
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(6)

(7)

(8)

determines conventional transport coefficients defined as coefficients of \lrn in
the density-gradient expansion of the phase-space distribution function (Kumar
et ale 1980) and, in particular,

QR

w

D

-w~)(t)

w~~? (t)

w~;? (t)

(net loss rate),

(drift velocity),

(diffusion tensor) . (9)

The proof for time-dependent fields follows along similar lines to that given in
Sections 2.2 and 3 of Kumar (1981), and will not be repeated here.

It is, however, a rather more difficult proposition to establish just how this
transition takes place. While Kumar (1981) was able to demonstrate for d.c.
fields that all transport properties will relax to their hydrodynamic values with
the same time constant, a similar result for a.c, fields would seem very difficult to
establish. For this reason, we have opted to use a BGK model collision operator
(Bhatnagar et ale 1954) as a first step in trying to understand the relaxation
process. As mentioned previously, this model perhaps best describes ion motion
in the parent gas, where charge-transfer collisions are dominant (Kumar et ale
1980), but it is nevertheless intended to offer a qualitative picture of other types
of swarms in gases.

To make things as simple as possible, we shall consider only particle-conserving
collisions and limit the discussion to one dimension, with variations in space only
along the z axis of a system of coordinates, which also defines the direction of
a. Integration of (4) over tranverse components vx,vy of velocity then furnishes
the one-dimensional BGK model equation

(at + aocos wt + v) pen) ==

«r»:» +vw(a,vz)I: dv'z p(n)(v'z,t) , (10)
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where 1/ is a constant, represenative of the ion-gas atom collision frequency,

(
0

2
) !w(a,vz ) = 21f exp(-a2v;j2)

is a Maxwellian distribution at gas temperature T g, and

0
2 == m/kTg •

It is convenient to take a Fourier transform in velocity space,

pn)(s,t) = i: dvz eis v• F(n)(vz,t),

and hence, by (7),

N(n)(t) e i: dvz F(n) (vz, t) = pn) (0, t).

The transform of (10) is thus

(11)

(12)

(13)

(14)

-z:1n) a -z:1n-l) ( )(at + isao cos wt + 1/) F: = i - F: + 1/w(o, s) N nas

where

w(O, s) = exp(_8
2 /202

) .

By setting s = 0 in (15) and using (14), we have

(n=0,1,2, ... ), (15)

(16)

and hence

£) N(n) _ (. £) -z:1n-l))
Ut - 1 Us b" s=O

at N(O) = o.

(n=0,1,2, ... ), (17)-

(18)

(19)

This last equation merely expresses the conservation of total swarm particle
number N(O), under the model conditions assumed. By (6) and (9) then

aR = _weD) == - N~D) at N(D) == 0 .
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Equation (15) can be integrated to give
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Fn
) (s, t) == Fn

)(s, 0) exp]-vt (isao/w)sinwt]

+ l t

dr exp[-vr - isvr(w, t)]

x [vw(a,s)NCn)(t-r)

where

-dn-I)
+i8s Jt" (s,t-r)] (n:=0,1,2, ...), (20)

Vr(w, t) == ao [sin wt - sinw(t - r)]
w

is an important quantity which we shall refer to as the 'spectral velocity'.
Notice that in the asymptotic limit vt» 1, equation (20) yields

F':)(s,t) = 100

drexp[-vr - isvr(w,t)]

x [vw(a, s)N~)(t - r )

(21)

. -;:in-I)
+lasJt~ (s,t-r)] (n:=0,1,2, ...). (22)

It is clear that all. distribution functions, and therefore all transport coefficients,
relax to the periodic steady state described by (22) with the same time constant,
rB == v-I. This is hardly surprising, since there is only a single relaxation time
in the BGK model: it is quite a different matter to establish that this situation
pertains for the full Boltzmann collision operator, as Kumar has done for d.c.
fields.

We now give explicit expressions for periodic steady-state transport coefficients
obtained from (22). Firstly, we set n == 0 in (22) and make use of the fact that
NCO) is a constant by (18), i.e.

NCO) == const. == NCO) .
00

Thus we obtain

-dO) roo
1"~ (s,t) = w(a,s)vN!f},) 1

0
drexp[-vr - isvr(w, t)].

(23)

(24)
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From this we have two results:

F(O) (v t) = -.!..joo ds eisv% If:.0) (s t)
00 z,· 21r . -00 . 00 ,

R. E. Robson and T. Makabe

= vN~)100

dTe-v r w(a, Iv, - vAw, t) I), (25)

a N(l) = i a If:.0) (0 t)t 00 s 00 ,

= vN~)100

dr e-v r vr(w, t)

= N(O) ao
00 (w2 + V2)~ cos (wt - </»,

where the phase lag ¢ is given by

tan ¢ = ia]»:

(26)

(27)

We shall examine the distribution function (25) in the cold gas limit in Section 3.
Next set n = 1 in (6) to get

a N(l) = w(O) N(l) +w(l) N(O)
too 00 00 00'

and hence with (19) and (9)

w = w(l)
00

From (26) it follows that

1
N(O) o. NJ;,)

oc

aO
(w2 + v 2 )! cos (wt - </». (28)

N(O)ao/w
NJ)(t)= 00. 1. sin (wt-¢),

(w2 + v 2
) 2

and by setting n = 1 in (22), we find

-dl) roo
.F~ (s, t) = 1

0
d'r exp[-VT - isvr(w, t)]

(29)

x [vN2)(t-T)w(a,s) +iasF~)(s,t-T)], (30)
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from which we can calculate

() (2) . a dl) ( )
t Nco = 1 s Jt~ 0, t ·

311

(31)

For simplicity in what follows, we take a cold gas, T g = O. Thus, by (16)
w(a, s) = 1 in the above formulas. It then follows by setting n = 2 in (6) and
using (9) that the longitudinal diffusion coefficient is given by

DII(t) = w(2) = -.l_[{)t N(2) - W(l) N(l)]
00 N(O) 00 00 00

00

where

_ (ao/V2v)2 (1 cos(2wt - <Po))
- v(l +W2j v2) + 1 +4w2j v2 '

<Po == 2cP+ 2'l/J

tan'¢ == 2w/v

(32)

We also note in passing that the ion mean random energy associated with motion
in the longitudinal direction has the form

n. (t) = m(aojV2v)2 (1 + cos(2wt - <Pe) )
II 1 + W

2 / v 2 (1 + 4w2/v2 )! . '

with

<Pe == 2<p + '¢.

Notice also that the useful identity,

100 kTi
DII(t) = e-V T

_" (t - r) dr ,
o m

(33)

(34)

(35)

may also be readily established.
For applied frequencies that are high compared with the collision frequency, i.e.

w » u, both D11 and Til are negligibly modulated and have values corresponding
to an effective d.c. field

E
eff

= EojV2
(1 + w 2/v2 )! .

(36)

High-frequency behaviour of this type is well-known. [For a recent discussion see
Loureiro (1993))]. For w < u, however, all quantities are significantly modulated,
with phase lags for drift velocity, diffusion coefficient and temperature of cP ~ w/v,
cPo ~ 6w/v and cPe ~ 4w/v respectively.
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The formulas (28), (32) and (33) for transport quantities are all relatively
straightforward expressions. In contrast, the velocity distribution function, from
which they derive, is surprisingly rich in structure, as well shall see.

3. Ion Velocity Distribution Function

The ion velocity distribution function (25) has a very peculiar structure in
the cold gas limit T g ---7 0 or a ---7 00, for then

w(a, IV z - v,(w, t) I) ---7 <5 (vz - v,(w, t)) ,

and (25) integrates to

N(O)v 00 . ( .)/. 2 .1
F~)(vz,t)=-- L e-VTjOTj [1-(smwt-wvz/ao)]2

ao j=-oo

for velocities satisfying

Isin wt - wvz/ ao I < 1 ,

(37)

(38)

while FJ2) (vz , t) = 0 otherwise. The times in the exponential are defined by

t (-v . -1(/ . t) j1r
Tj = + --SIn vzw ao - SIn w + - ,

w w
(39)

and only those values of j are considered for which T j 2: 0, as indicated by the
step function ()(Tj) in (37).

There is a resonance phenomenon for velocities V z for which the denominator
on the right side of (37) vanishes, i.e.

sin wt - wvz / ao = ± 1 , (40)

for then F~) becomes infinite. Similar sharply peaked structure has been observed
by Kuypers and Hopman (1990), Liu et al. (1990) and Manenschijn et ale (1991),
and is generally attributed to charge-exchange phenomena. Given that the BGK
kinetic equation follows from the full Boltzmann equation for the case of idealised
charge-transfer collisions (Kumar et al. 1980), we should expect to gain at least
good qualitative agreement with the other works cited above.

We have plotted F~) (vz, t) as a function of vz for several values of w / v and
at various times through the cycle in Fig. 1. Notice that the general symmetry
properties (3) must also apply to F~) and, indeed, these can be established
directly from (37) by using the following identities:

Ti(- V z, t + 1r / W ) == Tj+1 (V z, t), Tj(Vz, t + 21r/w) = Tj+2(Vz, t). (41)

These in turn follow from the definition (39).
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good qualitative agreement with the other works cited above. 

We have plotted F~) (vz, t) as a function of V z for several values of w/v and 
at various times through the cycle in Fig. 1. Notice that the general symmetry 
properties (3) must also apply to F~) and, indeed, these can be established 
directly from (37) by using the following identities: 

These in turn follow from the definition (39). 
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Fig. 1. Asymptotic homogeneous velocity distribution function F~) (v z , t) obtained from
exact solution of the BGK model kinetic equation assuming a cold gas. Resonance phenomena
occur for velocities satisfying (40): (a) w/v = 0·5, (b) w/v = 1·0, and (c) w/v = 2·0.
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4. Concluding Remarks

We have extended Kumar's (1981) analysis for a d.c. field to an ion swarm in a
radio-frequency field, showing how the relaxation to the periodic steady state takes
place by solving exactly the BGK model kinetic equation. This model is best suited
to describing ions in their parent gas undergoing predominantly charge-transfer
collisions. The velocity distribution function is indeed qualitatively similar to
observations reported in the literature, where the charge-transfer collisions are
significant.

A more general investigation of the transition to the periodic steady state
is warranted, but the mathematical difficulties associated with solving the full
Boltzmann equation with a radio-frequency field are daunting, not least because
crucial spectral properties of the operators concerned remain largely unexplored.
An alternative approach using well-known momentum-transfer theory is currently
under investigation.
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