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Abstract

A partial wave expansion of three-particle continuum states has been developed using
hyperspherical coordinates. An approximate three-particle continuum state appears which
may be useful in electron-hydrogen atom ionisation studies. Further improvement in the
result is also possible. The analysis may be easily extended for application to other three-body
ionisation problems.

1. Introduction

Correlation of the two electrons in the final channel is very important in
the description 'of electron-hydrogen atom ionisation collisions. In most earlier
calculations this correlation has not been properly handled. The calculation by
Brauner et ale (1989) took into account the correlation effect quite satisfactorily.
As a consequence, qualitatively, they produced very good cross section results.
Recently Das and Seal (1993) have also taken into account the correlation in
a piecewise manner. However, possibly the best way of taking this effect into
account is to use hyperspherical coordinates, as suggested by analysis of H- and
He systems with two electrons in the excited states (see Fano 1983; Fano and
Rau 1986). Hyperspherical coordinates have been used by Delves (1959, 1960),
Peterkop (1960), Rudge and Seaton (1965) and others in ionisation calculations
but possibly the usefulness of hyperspherical coordinates in studies of ionisation
problems has not been fully appreciated. We believe its use will greatly simplify
the ionisation calculation, if the problem is taken seriously. With this view we
present here a partial wave analysis of the three-particle continuum states in this
coordinate system. A simple three-particle continuum state also results in this
analysis, which may be useful in ionisation studies of hydrogen atoms. More
accurate wavefunctions may also be calculated in this framework. We present
the analysis in a somewhat more general setting so that it may be useful or
further generalised in other three-body ionisation problems.

2. Ionisation Calculation

The scattering amplitude for ionisation problems may be conveniently expressed
in terms of the full three-particle continuum wavefunction in the final channel,
so we begin with a discussion of the three-particle continuum wavefunction.
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(2a) Three-particle Continuum Wavefunction

First we consider three distinct nonrelativistic particles which interact by
two-body spin-independent regular short-range forces. To be specific, we consider
the collision of particle 2 with a bound system of particles 1 and 3. After the
collision three free particles result. The initial unperturbed state is described
by <Pi and the interaction in the ini tial channel is Vi, If Wf<- ) is the final
three-particle continuum state with incoming wave boundary condition, then the
(direct) ionisation amplitude is formally given by

f = -(21r)2(wf<- )IVi I<pi) . (1)

The exchange amplitude may be similarly expressed.
Now the main problem here is to find a reliable and accurate result for tVi-) .

For this we proceed to solve the corresponding Schrodinger equation:

(H - E)tV
f
<- ) = o. (2)

Here we use hyperspherical coordinates and make a decomposition of the full
wave Wf<- ) in terms of angular eigenfunctions, as in the case of the two-body
problem (Newton 1966), but with more complicated angular functions and with
a more complicated result. Finally, the full wave has to be constructed from the
partial waves determining fully the expansion coefficients.

(2b) Hyperspherical Coordinate System: Radial Wave Equations

With reference to a centre-of-mass coordinate frame, the coordinates and
momenta of the three particles are R l , R 2, R 3 and Pl, P2, P 3 respectively.
Considering the centre of mass to be at rest, we have

P; + P 2 + P 3 = 0 . (3)

Then we have two independent coordinates and momenta. Let the masses of
the three particles be ml, m2 and m3, while I-t is a representative mass, say that
of an electron when we consider an ionisation problem in atomic physics, or that
of a proton when we consider a problem in nuclear physics. We introduce the
following independent coordinates and momenta:

rl = jF!(Rl - R 3 ) , r2 = ([!i(R2 _ ml R 1 + m3 R3 )

V I-t ml +m3
(4a)

drl
v, = Vl-tl-tl---;It'

dr2
P2 = Vl-tl-t2 dt ' (4b)

which are canonically conjugate and where

m2(ml + m3)
I-tl = ,

ml +m2 +m3

mlm3 .
1-t2 = ml +m3
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The energy of the ionised system is then

2 2
E = PI + P2 .

2p 2p

The corresponding three-particle Schrodinger equation is

(
- \7i \7~ ) IT,(-) 0-- - - + V(rl,r2) - E ~f = ,
2p 2p

745

(5)

(6)

where V is the total interaction potential.
Next we introduce the hyperspherical coordinates (R, a, rl, r2), related to

(rl,r2,rl,r2) by rl = Rcoe a, r2 = Rsina. In this coordinate system the
Schrodinger equation takes the form (Morse and Feshbach 1953; Fano and Rau
19S6, p. 313)

[ - R-5/2(a~2 ) R5/2+ A
2

; ¥ + 2p,v - 2P,E]wi-) = 0, (7a)

where

1 ( 8
2

) L
2

L
2

A2 = _ __ sin a cos a + __1_ + __2_ - 4.
sin a cos a 80.2 cos2 a cos2 a

(7b)

Eigenstates of A2 are ¢)..(a,rl,r2) = P~ll2(a)Yf;Z2(rl,r2)' with eigenvalues given
by

A2¢ ).. = -X(-X + 4)¢).. ,

where

-X = 2n + II + l2 .

Here P~ll2 is a (normalised) Jacobi polynomial given by

(Sa)

(Sb)

phl2(a) = (2T(n + l2+~) T(n + II + l2 + 2)(2n + II + l2 + 2))!
n T(n + 1)T(n + II + ~)[T(l2 + ~)]2

x coshasinl2a2FI(-n,n+ll+l2+2,l2+~,sin2a), (9a)

and

yf;l2(rl,r2) = L C(ll l2l; mlm2m)Yllml(rl)Yl2m2(r2). (9b)
mlm2

We set PI = P cos 0.0 and P2 = P sin 0.0; then the scattering state may be expanded
as

IT,(-)(R A A) L A (F)..(PR)),.J... ( A A)
~f ,a,rl,r2 = ).. 5 0/).. a,rl,r2 ,

x (PR)2
(10)
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where AA are expansion coefficients and the radial wavefunctions FA satisfy the
equation

( - d22 -1+ v(vt
1

) ) AAFA +2P-1 L (AI2JlVIA')AA,FA, =0,
dp p A'

(11)

where II = A+~. Equation (11) is a coupled system of equations for the radial
waves which may be solved numerically, similar to those for close coupling
calculations (see e.g. Burke and Seaton 1971).

For short-range regular potentials we have

FA (p) rv CAPv+1
, p ---70

rv sin(p - lI7r /2 + 1]A) , p ---7 00 .

The AA are still unknown in equation (10). To determine these we next consider
a partial wave decomposition of plane waves which results in the absence of any
interaction.

(2c) Resolution of Three-particle Plane Waves in Partial Waves

Plane waves may be expanded as

2
(27r)-3 exp(ipl . Tl + iP2 . T2) = - L (2l1+ 1)(2l2+ l)ilt+l2 n, (PI rl) il 2(P2 r2)

7r lt l 2 m l m 2

x Yl:ml (PI) Yl;m2 (P2) l'llml (rl) l'l2m2 (r2). (12)

Since we have

rl = Rcosa,

PI = Pcosao,

rz = Rsina,

P2 = Psinao (13)

the two spherical Bessel functions in equation (12) may be expressed in terms
of a single such function in view of the identity

jh (pcos a cos ao) j l2(psin a sin ao) = q:- ;/2 f (-ltj2n+h+12+!(p)V2 p n=O

X p~ll2 (0'.0) p~ll2 (a) , (14)

which is easily derived from equation (8) of Erdelyi (1953).
Then equation (12) takes the form

If .(PR)
-3·· ·A Jv ld2 lll2(21T) exp(lPl.rl+lP2· r2)= - L 1 3/2 Pn (ao)Pn (a)

7r (PR)lll2mlm2 n

x Yl:ml (PI) Yl;m2(P2) l'llml (rl) l'l2m2(r2).
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It can be shown that

L Yi7m t(PI) Yi;m2 (P2) ¥lt m ! (Tl) ¥l2 m2 (T2) = L yf;;2*(PI,P2) yf;;2(TI,T2) .
mlm2 lm

So we have finally

f; ~ .,\ jv(PR)
(27l")-3 exp(ip l · r l + ip 2 · r 2) = :; c: 1 (PR)3/2

lt l 2 lmn

X <p~(ao,PI,P2) <p,\(a,TI,T2), (15)

which appears to be an interesting result.

(2d) Three-particle Scattering State

Now after obtaining the partial wave expansion of plane waves, it is a relatively
easy matter to write a formal expression for the full wave, which has only
incoming converging waves and outgoing plane waves, as

lTrC-)(R '" "') f; ~ .,\ -i1]>. F,\(PR) ~ ( '" "')~ ( '" "')( 6)~f , a, rl, r2 = - L..J 1 e 5/2 0/,\ aO,PI,P2 0/,\ a, rl, r2 1
1r (PR)ltl2 lmn

Since F,\(p) f',J sin(p - V1r /2 + 1],\) as p~ 00, one may easily verify that in the
asymptotic region the wave (16) has only incoming converging waves, the outgoing
diverging waves combining into a plane wave because of the identity (15).

The result (16) may easily be extended to cases when the particles have spin,
when two or more particles are identical and when the two-body forces are
spin-dependent.

We next consider the case of ionisation of hydrogen atoms by electrons when
long-range forces make the problem a little more complicated.

Electron-Hydrogen Atom Ionisation Collision

If the atomic nucleus is considered infinitely heavy, the centre-of-mass and
laboratory frames coincide and TI, T2 become simply the coordinates of the atomic
electron and the incident electron and PI' P2 become their canonical momenta.
Then we have

1
V(rb r 2) = - rl

where

1 1 1 G( '" "')- + - = - a, rl, r2 ,
r2 rI2 R

(17a)

1
G(a, Tl' T2) = - cosa

and the equation for F,\ becomes

1

sin a

1
+ I'" '" . I'rl cos a - r2SIna

(17b)

(
d2 v(v + 1)) 2P-1

I
-2 + 1- 2 A,\ F,\ +-- L (,XIGI,X ) A,\, F,\, = o.
dp p p ,\,

(18)
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1 1 

(17b) 
sin (X 

+ --------------
Irl cos (X - r2 sin (XI ' 
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( d2 v(v + 1)) 2P-1 f 
-2 + 1 - 2 AA FA + -- L (AIGJA ) AA' FA' = o. 
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Now the off-diagonal elements CAA, == (AICIA') (A i= A') are known (Lin 1974)
to be generally small compared with the diagonal elements so, as a good
approximation, one may choose FA to satisfy the equation

(
d2 v(v + 1) 2aA ) F ( ) _ 0-2+ 1 - 2 + AP-,
dp P P

(19)

where a A == P-1CAA . The solution FlO) of (19) is nothing but a Coulomb wave
with a variable charge CAA. This appears to be an interesting and reasonable
result, since different partial waves see different nuclear charges. The accuracy
of the actual computed results remains to be seen. Even if the corresponding
full wave

ITA- ) (R ,1\,1\) _ ~ '""" •A - i 11x ~* ( ,1\ "') ~ ( ,1\ ,1\)
POf ,a,Tl,T2 - -; L..J 1 e ~A aO,Pl,P2 ~A a,Tl,T2

h l 2 lm n

X FlO) (PR)/(PR)5/2 , (20a)

where

F(O) (PR) = e!1ra.\ IF(1I + 1 + ia>.) I2V (PRt+1 e- iP R

A T(2v + 2)

x IF1(ia A + v + 1, 2v + 2, 2iPR) ,

with the asymptotic form

FlO) (PR) rv sin(PR - V1r /2 + a A ln2PR + TJA) ,

(20b)

(20c)

fails to give satisfactory results for the scattering amplitude in conjunction with
equation (1), one may adjust the a A suitably (a few of them) and proceed to
represent the scattering amplitude analytically [consider in this connection the
attempt by Bransden et ale (1978) with their distorted wave calculation].

The now symmetrised state corresponding to waf) is

wJ;) (R, a, "'1, "'2) == J!{waf) (R, a,"'I, "'2) + (-1)Swaf) (R, tt/2 - a, "'2, "'1)} , (21)

where S == 0 corresponds to the singlet and S == 1 to the triplet state for ionisation
of hydrogen atoms. The corresponding scattering amplitudes are given by

f(S) == _(21r)2 (wJ;) IVi Iq>i ) .

The differential cross section for the unpolarised beam is then given by

do- PIP
dil

1dil2dE1
= Pi2(~lf(1)12+~lf(O)12).

(22)

(23)
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The result may possibly be further improved by solving a large number of the
coupled equations in (18) numerically (see Burke and Seaton 1971) and then
using the resultant radial waves in equation (16) to represent the final scattering
state. A numerical study is now in progress and the results will be reported
later.

3. Conclusions

We have succeeded in representing a three-particle continuum state in partial waves
in hyperspherical coordinates. From the analysis it appears that hyperspherical
coordinates are suitable for ionisation studies of three-body problems. Moreover,
here we have a simple approximate result (equation 20) for the three-particle
continuum state. How well it gives cross section results remains to be seen.
Various extensions of the results are possible.
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