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Abstract

We have analysed the formation of solitary magnetosonic waves propagating in a direction
perpendicular to the magnetic filed in a relativistic two component plasma..Our approach is
that of the effective potential. Variations of the effective potential and the solitary wave in
relation to the Mach number and other parameters are discussed.

1. Introduction

The study of nonlinear waves in both magnetised and unmagnetised plasmas
is an important topic which has made tremendous progress over the last two
decades. An initial attempt to analyse the characteristics of solitary waves in
a magnetised plasma was undertaken by Gardner and Morikawa (1968). Later,
Kakuntani et at. (1968) and Berezin and Karpman (1964) derived the KdV
equation for the magnetosonic wave for nonrelativistic plasmas with zero {3 value.
Nonlinear evaluation of the magnetosonic wave plays an important role in plasma
turbulence (Lacombe and Mangency 1969), the trapping of ions (Lewbege et al.
1983) and the development of shock structure (Jager 1985). Magnetosonic shock
waves are believed, to be responsible for the heating of the solar corona (Kuperns
et al. 1981). In some theoretical studies these magnetosonic waves have been
described by a KdV-like equation. For example Vito and Pantano (1984) have
shown that such a wave in a cold (nonrelativistic) plasma can be described by the
KdV equation. Recently it has been recognised that nonlinear fast magnetosonic
waves can strongly accelerate trapped ions by a V X B type acceleration in a
direction perpendicular to the magnetic field in a relativistic plasma (Ohsawa
1985). More recently, solitary waves in a relativistic plasma have been discussed
by Das and Paul (1985, 1987) and Roy Chowdhury et al. (1988).

On the other hand, it is known that a KdV-type equation describes only small
amplitude waves due to the approximations involved in the derivative via the
reductive perturbative scheme. So here in this paper we study the formation
and propagation of nonlinear magnetosonic waves which propagate in a direction
perpendicular to the magnetic field, in a relativistic plasma without assuming
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that the wave amplitude is small. Our approach is that of the effective potential
which is capable of treating both large and .small amplitude waves. It has been
demonstrated already by Sagdeev (1966), Schamel (1973) and Sochmel (1976) that
such an approach is very effective in the theoretical analysis of large amplitude
plasma waves.

2. Formulation

To start we make the usual assumption that the relativistic two fluid plasma
under consideration can be described by the two hydrodynamic equations

anj +div(njvj)at 0, (la)

(a ) q.m . - + v· . grad T' u: == q' E + .2..u • X B
J at J J J J C J ,

(lb)

where the subscript j == i for the ion and j == e for the electron, with Maxwell's
equations

curlB

curlE

divB

divE

(U;)2aE + 41fe(ni v i -neve),
c at c

1 aB
<;»:

0,

41re(ni - ne ) .

(2a)

(2b)

(2c)

(2d)

Here ni and ti; denote the ion and electron densities respectively, Vxi and
Vxe denote the x-component of the velocities, Tj is the Lorentz factor, B the
magnetic field and E the electric field. All quantities have been normalised with
respect to the characteristic number density no, the characteristic speed Un, the
characteristic length Loand the characteristic magnetic field Bo (Kakutani 1974).
Furthermore we assume that the magnetic field is in the z-direction and that the
wave is propagating in the x-direction. To simplify the ensuing computation we
have furthermore assumed the quasi-neutrality condition ni ~ n e == n, by virtue
of equation (2d). Then from (1) we get

ane a
at + ax(nevxe) 0,

ane {j
at + ax (neVxi) - 0.
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Subtracting we get

a
ax (ne vxe - neVxi) == 0,

759

whence Vxe == Vxi+kln.
On the other hand, from Maxwell's equations (2a)-(2d) with the assumptions

that the wave is propagating in the x-direction and that the magnetic field is in the
z-direction (constant in magnitude) we get aEylax == 0; so, By == constant == E Yl
(say). Thus, from the rest of the equation we get

dB == _ 47rn.e (v . _ v ) + (U:.~) 2 8Ey •
dx C y~ ye C at (2e)

Since we are concerned with hydromagnetic waves, for whichUo[c « 1, we can
neglect the displacement current in (2e) (Kakutani 1974), and then we get

dB 47rne (v . - vye) .- - yldx - c
(3)

Setting Vxi == Vx and Vxe == Vx +kln, we can simplify equations (1) and (2) as
follows:

an a
8t + 8x(nvx ) = 0,

a a e
m; -(ri vx) + m, -.-. (ri vx) == eEx + - Vyi B,

at ax c

a a e
m; -a (ri Vyi) + mivx -(ri Vyi) == eEyi - - Vz B,

t ax c

a a a
me-a (re vx) +me k -(rein) + me Vx -a (re vx) + me Vx k

t at x

a k a
x -a (rein) + me - -a (re vx)

x n x

(4)

(5)

(6)

k2 a e
+rne '-- -a (rein) == -eEx - - vye B, (7)

n x c
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ux n ax 
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a a mek a
me -a (re n ye ) + me Vx -a(re V ye) + _._.- -a(re V ye)

t x n x

e e k
== -eEy i + - V x B + - - B , (8)

c c n

where

1
rj = (1 -vJ/c2)!·

We now make a simple change of variable (x, t) ~ (~, r) defined by

e==x- Mt, T ==t,

and go to the moving frame of reference of the wave by setting the '7' derivative
of all quantities equal to zero.

Whence we get from (4)

(9)

where nI, VI are integration constants.
Now in the present calculations the Alfven speed is assumed to be smaller

than the speed of light. In the nonrelativistic situation (Adlam and Allen 1958)
it has been shown that the speed of the fluid electrons and trapped ions exceeds
c if the Alfven speed is fairly large and if the Alfven Mach number M A is
not too close to unity. Since the particle speed cannot exceed c this indicates
that we have to use a relativistic theory for a magnetosonic wave having an
Alfven speed VA comparable or greater than c(me/mi)!. In our case we are
interested in the situation where VA is of the order of c(me/mi)! and the
electron velocity is close to c, although the ions have a velocity much smaller
than c.

Now Vi == (V; + v~J! and Ve == (v;e + v;e)!. For computational simplicity we
take Vxi < V x e and Vyi« v ye. So we can take the value of k smaller than c.
From equations (6) and (8) and with the help of (9) we can write

[ ( k)] ek(V x - M)
-(M - v x) mi(ri Vyi) + me 1 + ( M) r; Vye = j(t;) (

nI VI - enI VI -
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or

me ( k) ek
Vyi = - -- 1 + Te vy e + !(e) ·

m, ri nl(vI - M) cnl m, ri
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(10)

Furthermore, we have to always ensure that the ion speed is much smaller than
c; so, Ti ~ 1. Since

and since V x « c, we get

ri ( V~) -! v~
1-2 ~1+-1

c2 2c2

1 2 2 )1 + --2 (vx + vyi ,
2c

ri ~ 1 + v~i/2c2 .

(11)

(12)

Then, substituting from equation (10) for Vyi we get

( k)2 V~e T;
2(rl - l)r? = 1 + nl(Vl _ M) c2(mdm

e n •

Again vy e is of the order of c, and so we get the condition

( k) m·1 + ( ) re «: _I for Ti ~ 1 .
nl VI - M me

Now from equations (5) and (7) we get

a a
--- m· M - (r· V ) + m· v - (r· v ) + (M ..... v )

1 ae 1 x 1 x ae 1 x . x

( k)2 a
x me 1 + ( ) -a· (rev x) + (M - vx)me

nI VI - M e

Mk ( k)x. 1+ .. are e
nl(vl - M) nl(vl - M) a~ = 2eEx + ~(VYi +vye)B,

(13)

(14)

(15)
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mj Tj nl(vi - M) enl mj Tj 
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and since Vx <t:: c, we get 

(12) 

Then, substituting from equation (10) for Vyj we get 

(13) 

Again Vye is of the order of c, and so we get the condition 

( k) m' 1 + ( ) T e <t:: _1 for Tj ~ 1 . 
nl VI- M me 

(14) 

Now from equations (5) and (7) we get 

Mk ( k) aTe e 
x ( M) 1 + ( M) ·~ac = 2eEx + -(vyj + vye)B, 

nl VI - nl VI -." C 
(15) 



762 J. Mukherjee and A. R. Chowdhury

)2]av a me k
- (M - Vx ) a; + (M - vx ) a~ [vx mj re(l+ nl(Vl _ M)

Mk a [( k) me ]+ (M - Vx ) . . --- 1 + - .. re
nl(vI - M) ae nl(vI - M) m,

= 2eEx + ~(Vyj + vye)B. (16)
mi em,

Now since [1+k/nl(vI-M)]re « mi/me we get

(V
x

M) 8vx ,....,ae ,....,

(Vx - M) avx

ae

whence (17) and (18) lead to

2eEx + __e v
ye

B ,
--;;;;- m; e

B dB
- 41rnmi de '

(17)

(18)

E
_ VyeB B dB

x----------·
2c 41fnm i de (19)

On the other hand, integrating (18) with the condition that B == bl when
v == VI, we get Vx == aVI, with a given as

B 2 -Br
a==I-. 2 .

81fmInl(VI-MvI)
(20)

Now going back to equation (3) we observe that under the approximation ri ~ 1
we can write

me ( k) . ek e dB-- 1 + ... re vye - -- f(~) + vye == -- -- ,
mi nl (VI - M) enl mi 41fne d~

from which we deduce

,...., e(a - M/VI) d
2

f ~ f(C)
V ye ,...., .. 2 + ~ .

41fmie(1 - M/VI) de cni m,

(21)

(22)
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2eEx e 
= -- + -(vyj + vye)B. (16) 

mj emj 

( V _ M)avX ~ 
x ae 

( _ M)Bvx 
Vx Be 

whence (17) and (18) lead to 

2eEx e B -- + -vye , 
mj mje 

B dB 
- 4rrnmj de ' 

E _ Vye B B dB x--------· 
2e 4rrnmj de 

(17) 

(18) 

(19) 

On the other hand, integrating (18) with the condition that B = bi when 
v = VI, we get Vx = avt, with a given as 

(20) 

Now going back to equation (3) we observe that under the approximation rj ~ 1 
we can write 

me ( k) ek e dB - 1 + reVye - --f(e) +Vye = -- --, 
mj ni (VI - M) eni mj 4rrne de (21) 

from which we deduce 

(22) 
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Now we compute explicitly the relativistic Lorentz factor for the electron,

(

v2 + 2 -.1

re = 1 - xec
2

Vye)
2

(
1 - (vx+;/n)2 _ V;e)-!

c c2

= [1-a2{1
2( VI + k(1-M/VIa))2+(pd2; + Qf)2}]-!

c nl(l - M/VI) de
where

763

(23)

p =. 1 - M / VI a . ,
41fnl e(l - M/VI)

ek
Q = c2anI m, ·

Since VI is of the order of the Alfven speed V A, which in turn is assumed to
be much smaller than c, then (VI/c)2 is much smaller than unity; finally, the
approximate expression for returns out to be

[ (
M)2{( k )2 [ 1 ( M)-IT ~ 1- a- - . + -- 1--

e VI nl(l - M/VI) 41fnl e VI

d
2f ek ]2}]-~x-2 + 2 . .. f .de c nl miCa - M/VI)

So, finally from equation (8) after using these approximations, we get

a ( V
y e

)me (41fnl e)vye 81;, (1 _ v~e/c2)~e

(24)

_ 1 [ 2 (1 _ kM. B _ CEy l )

- 2 (1 - M/VI) + k/nl VI nl vI(l - M/VI) VI

Using the identity

2(B
2

- Bi) dB]
- 2· 2 2B - .

161fm i nl VI (1 - M/VI) de (25)

f(x) ~ f(x)
dx

d 1
dx [1- f2(x)]~ ,
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So, finally from equation (8) after using these approximations, we get 

(25) 

Using the identity 

d f(x) . d 1 
f(x) dx [1- f2(X)]! = dx [1- f2(X)]! ' 
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we get after a series of algebraic manipulations

A(d
2f

) 2+ Bf d2f +Cf2
d~2 d~2

J. Mukherjee and A. R. Chowdhury

where

_1+{Wp
; [(E-l)S(T(.8+1)- 2CEYl)

2wee VI B I

(E
2

_ 1)2 ] [1 (a1wce d.8)2]-!}-2
4Ml(1 - M/Vl)2 + - wp e dXl

(26)

A
(0- - M/VI)2

[41ren l (1 -M/VI)]2'

B
2e2k2

c2ni mr ' C -~- ,
cnlmi

s (1- kM ) / (1 _M + _k)
ni vI(l - M/VI) VI nIVI'

T 1- kM
ni vl(1 - M/Vl)

(27)

Since the second and third terms on the left-hand side of (26) contain a 1/c2

factor, it is not difficult to establish that these terms are small compared with
the first. We neglect these terms and arrive at

1 (dE)22 dx +</>(.8)=0, (28)

which is similar to the energy equation for particle motion in a potential. In
equation (28), ¢(E) actually stands for the negative right-hand side of (26). Here
E and x are the normalised magnetic field and ~, respectively, defined as

E == B/Bl , x == ~(c/wpe) , (29)

where wpe == (41rnl e2/me)! and Wee == B1 c/41rni e.

3. Analysis of the Effective Potential

Equation (28) is known as the effective potential equation, where !(dB/dx)2
is similar to the kinetic energy of a particle of unit mass and ¢(B) is the potential
energy in which it is moving. From the form of equation (28) it· is clear that it
cannot be treated analytically so we take recourse to numerical methods. But
before that we proceed to discuss some important and salient features of the
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effective potential. The first and most important is that in the nonrelativistic
limit the function ¢(B) tends to

.... 1 [ .... ( .... 2cEy ) ( k) -1¢NR(B) == - 2" (B -1) B +1- __1 1 + - .. -
VI B 1 nl VI

2 .... 2

- :~ (13
2

_ 1)2+ (~=) ], (30)

when M/Vl == 0, which was actually deduced by Adlam and Allen (1958), Davis
et al. (1958) and Sagdeev (1966) in their original nonrelativistic analysis. Next
observe that where iJ attains its maximum value Bm , then dB/dx should vanish,
whence ¢(Bm ) == o. Also, using the expression for ¢, we get

MA == (1- M+ .E:)!/[2(1- M)
VI nl VI VI

x (1 kM )]- nlvl(1 -M/Vl) (B m + l ) .

Using this expression ¢ take the form

w2 (1 - M/v )2
¢(B) == P;. I? (-1 + Q-2) ,

2wce(a - M/Vl)

where

(31)

(32)

a
B 2 -Br

1- ----~~--
81rml nl(Vr - MVl)

1-2(iJ2-1)(1- M)(l __k_M_)2/
VI nl vl(l - M/Vl)

x [(1 - M + »:)(Bm + 1)2]. (33)
VI nl VI

On the other hand Q can be written as

Q w;e [( kM)2/( M k)-1+- 1- .... 1--+-·-
- 2w;e nl vl(l - M/Vl) VI nl VI

x (13 - 1)2(1 _ (~+ 1)2 )]
(B

m
+ 1)2' (34)

From the condition that a cannot be zero it follows that 1 < Em < 3. It may be
noted that we can obtain the nonrelativistic analogue of equation (28) by setting
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On the other hand Q can be written as 

x (13 - 1)2 (1 _ (~+ 1)2 )] . (34) 
(Bm + 1)2 
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M == 0, the corresponding expression being the same as that given by Adlam
and Allen (1958) and Davis et ale (1958).

Now from equation (28) it follows that the solitary wave solution will exist if
¢(B) < 0 and from equation (32) we see that ¢(B) is negative if 1 < B < B m •

Furthermore, we have for B ~ 1

[( )2/ ( )]- I . kM M k
¢(B) ~ - - 1 -. . 1 - - + -

2 nl vI(1 - M/VI) VI nl VI

x (B - 1)2 (1 _ (~+ 1)2 )
(Bm + l )2 '

and for B ~ is;

(35)

¢(B)

where

~ (1 - M/Vl)2
~ (0- - M/Vl)2

[ ( kM) / ( M k)]x 1- . 1--+-
nI vI(1 - M/VI) . VI nI VI

(13m - 1)2(13 - Bm )X _

B~ +1

[( M kM )2/( M k)]1----- 1--+--
VI nI VI VI nI VI

(13m + 1)(Bm - 1)2(B - 13m )
X-------------

[Bm(2A - 1 + M/VI) ~ (2A + 1 - M/V)]2 '
(36)

A== [(1- M)2 _ kM]2/(1_ M)(l_ M + _k).
VI nI VI VI VI nl VI

It is well known that in the nonrelativistic case the width of the magnetosonic
soliton is of the order of the electron inertial length divided by the square
root of the amplitude, i.e. ~ rv (c/w p )/ (8B )! , 813 rv (Bm-B I ) / B I . Similar
considerations can also be made in our case. On the other hand, for B-1 rv 0(1)
and B-Bm rv 0(1), that is for the region where the amplitude is not too small
and not too close to the peak value, we get

~ rv~ Wee 8B.
W p e W p e

(37)

In the highly relativistic case we get w~e/2w~e »1. The behaviour of the
relativistic soliton is quite different from the nonrelativistic situation.

In Fig. 1 we have plotted the effective potential ¢ as a function of the magnetic
field. An important event"to observe is that the form of ¢ is of the single well type,

766 J. Mukherjee and A. R. Chowdhury 

M = 0, the corresponding expression being the same as that given by Adlam 
and Allen (1958) and Davis et al. (1958). 

Now from equation (28) it follows that the solitary wave solution will exist if 
¢(B) < 0 and from equation (32) we see that ¢(B) is negative if 1 < B < Bm, 
FUrthermore, we have for B ~ 1 

- 2 
x (B - 1)2 (1 _ (~+ 1) ) 

(Em + 1)2 ' 

and for B ~ Bm 

x 1- 1--+--[ ( kM) / ( M k)] 
ni vI(l - M/VI) VI ni VI 

= [(1 _ M _ kM) 2/ (1 _ M + _k )] 
VI ni VI VI ni VI 

where 

A=[(1_M)2_ kM]2/(1_M)(1_M +_k). 
VI ni VI VI VI ni VI 

(35) 

(36) 

It is well known that in the nonrelativistic case the width of the magnetosonic 
soliton is of the order of the electron inertial length divided by the square 
root of the amplitude, i.e. 6. "-J (c/wp)/(8B)~, 8B"-J (Bm-BI)/BI. Similar 
considerations can also be made in our case. On the other hand, for B-1 "-J 0(1) 
and B-Bm "-J 0(1), that is for the region where the amplitude is not too small 
and not too close to the peak value, we get 

6. "-J ~ Wee 8B. (37) 
Wpe Wpe 

In the highly relativistic case we get w~e/2w;e »1. The behaviour of the 
relativistic soliton is quite different from the nonrelativistic situation. 

In Fig. 1 we have plotted the effective potential ¢ as a function of the magnetic 
field. An important event to observe is that the form of ¢ is of the single well type, 
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Fig. 1. Variation of the effective potential with magnetic field for different
values of (a) Wce/Wp e and (b) M/Vl.
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which shows the possibility of trapping the particles giving rise to the formation
of a solution. In Fig. 1a we show the variation of the potential with respect to
Wce/wpe and it may be noted that for small values of Wce/Wpe the probability of
trapping is greater. On the other hand, in Fig. Ib the variation with respect to
M/Vl is given, where M is the Mach number. In Fig. 2a an interesting situation
occurs for the variation with respect to y == cEyl/Vl Bi ; where values of y ~ 1·2
have been considered. The well structure of the potential completely disappears.
The same is also true for values of M/Vl > 1 (as displayed in Fig. 2b).

We then integrated equation (28) numerically and the solitary wave so obtained
is exhibited in Fig. 3 for various values of the parameters. It may be observed
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that the peak of the solitary wave increases with an increase in the value of
cEy1/vl B 1 (Fig. 3b), but on the other hand it becomes flatter for large values
of M/Vl and wce/wpe.

Lastly, in view of equation (20), we have

C(a - M/Vl) dB
vy e == .. -.

41rnle(l - M/Vl) de (38)
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that the peak of the solitary wave increases with an increase in the value of 
CEYI / VI BI (Fig. 3b), but on the other hand it becomes flatter for large values 
of M/VI and wce/wpe. 

Lastly, in view of equation (20), we have 

C(a - M/Vl) dB 
Vye = 

4nnl e(l - M/vI) d~ 
(38) 
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Fig. 4. Maximum electron velocity for different values of M / VI, with M a = 1 ·2.

So when the magnetic field shows a solitonic structure we can evaluate the
corresponding electron velocity. In Fig. 4 we show the behaviour of v ye for
various values of M IVI.

4. Discussion

In our analysis we have studied the formation of magnetosonic solitary waves
ina relativistic magnetised plasma, where both the ions and electrons have been
considered to be relativistic. Such a situation is usually seen to take place in
solar bursts or ionospheric plasmas. The phenomenon can be of great importance
in high energy laser-plasma interactions.
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