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Abstract

We have analysed the phenomenon of self-focusing of nonlinear waves in a relativistic plasma
consisting of both positive and negative ions, which are assumed to be hot. We also consider
the effect of the inertia of the relativistic electron by treating it dynamically. A modified form
of reductive perturbation is used to deduce a nonlinear Schrodinger equation describing the
purely spatial variation of the nonlinear wave. Self-focusing of the wave can be ascertained by
analysing the transversal stability of the solitary wave. It is shown that the zones of stability
of the wave may become wider due to the mutual influence of various factors present in the
plasma, thus favouring the process of self-focusing.

1. Introduction

Studies of nonlinear processes occupy a central role in the theoretical research on
plasmas. One of the most important phenomena is the formation and propagation
of nonlinear waves in plasmas called solitons. The whole story started with the
pioneering paper by Washimi and Taniuti (1966). Afterwards, people started to
take into account more and more physical effects. These included the effects of
two-temperature electrons (Murphy et ale 1984), ion temperature (Nejoh 1987),
external magnetic fields (Kawahara 1970; Kakutani et ale 1968), relativistic mass
variation and streaming (Das and Paul 1985; Roychowdhury et ale 1988). Also
to be noted is the discovery of solitons in more than two dimensions (those
described by the Kadomstev-Petviashville equation). Several authors applied
the approach of Washimi et ale (1966) to multidimensional systems (e.g. Tagare
1977) and obtained encouraging results. In this communication we analyse a new
phenomenon that has drawn attention very recently. We refer to the phenomenon
of self-focusing of nonlinear waves in a plasma. Analysis of such events requires
application of a different form of perturbation technique in more than one space
and one time dimension. Such a framework has been set up by Sato et ale
(1990), who considered the phenomenon of ion wave self-focusing in the presence
of negative ions. We have studied the self-focusing of nonlinear waves in a
relativistic plasma containing both positive and negative ions, considering the
ions to be hot. Another important feature of the present analysis is the inclusion
of electron inertia. There has already been some important indication that the
role of electron inertia is very significant in the study of solitons (Zhang and
Kuehl 1992).
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2. Formulation

We consider a relativistic plasma consisting of electrons and two kinds of
ion (positive and negative) assumed to be hot. Here the electron is treated
relativistically and we have taken into account the full dynamics of the electron
component to analyse the effect of its inertia. Furthermore, we have assumed that
the usual hydrodynamic description is possible, so that the dynamical equations
governing the plasma can be written as follows.

Positive ions

Continuity equation:

ana a a- + -(naUa) + -(naVa) == o.at ax ay
Momentum equations:

(
aUa u aUa V aUa) _ _ acjJ _T. ana _ apa

n", at + '" ax + '" oy - n",ax '" ax a '" ax '

n (aVa+ u aVa+V aVa) == -n acjJ _T. ana _ a apa..a at a ax a ay aay a ay a ay

Pressure equation:

apa u apa V apa 3 aua 3 aVa - 0
at + a ax + a ay + Pa ax + Pa ay - .

Negative ions

Continuity equation:

an~ a a- + -(n~U~) + -(n~V~) == o.at ax ay
Momentum equations:

(
au~ au~ au~) 1 acjJ 1 an~ ap~

n~ - +U~- +V~- == -n~- - -T~- - a~- ,at ax ay Q ax Q ax ax

(
av~ av~ av~) 1 acjJ 1 an~ ap~

n~ - +U~- +V~- == -n~- - -T~- - a~-.at ax ay Q ay Q ay ay
Pressure equation:

ap~ ap~ ap~ oti; av~
- + U~- + V~- + 3p~- + 3p~- == o.at ax ay ax ay

Electrons

Continuity equation:

ane a a
at + ax (neUe) + oy(ne~) = O.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Momentum equations:

( eo; u. OUe.' T T OU~) O¢,.,., one
n e at + e ax + Ve ay = -ene ax + e.Le ax '

(
OV: u. oV: TT OV:) O¢,.,., onene - + e- + Ve- = -ene- + e.Le- ·
ot ox oy oy oy

Poisson's equation:

02-J,. a2¢ _ + n{3 _ nO. .lfJ+~_ne
~ 0 2ox2 Y
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(10)

(11)

(12)

Here the subscripts a, {3 and e stand for the positive ion, negative ion and
electron respectively. The symbols n, U, V, T, a and p respectively denote
the density, the x and y component of velocity, the ion temperature, the ratio
of ion temperature to electron temperature, and the pressure. Since the ions
are nonrelativistic and the electrons are assumed to be relativistic, U0., Va' U{3,

V{3 are nonrelativistic quantities and the electron velocity U~ along the x-axis is
relativistic and is given as

U~ = Ue/ (1 - U; /c 2)! ~ Ue(1 + U; /2c 2
) , (13)

whereas ~, the electron velocity along the y-axis, is nonrelativistic. We have
considered here a three-dimensional form of the plasma equations because for
the analysis of self-focusing we need to study a purely spatial variation of the
nonlinear wave. In the above equations we have normalised all distances by the
Debye length ADe = (EoTe/neoe2)!, time by w~/ = (nee

2/EOmo.)-!, velocity by
ADeWpi = (Te/mo.)!, density by neO, temperature by Te and electrostatic potential
by kBTe/e. In these expressionss EO, kBand e denote the dielectric constant,
Boltzmann constant and electron charge, respectively.

The computation starts with the expansion of the physical variables (no., Uo.,
Va' Po., n{3, U{3, V{3, P{3, ne, u; ~, ¢) in the form

where

0. 0.

U=Uo + L Em L U/m)(~,rJ)exp[il(kx-wt)],
m=l l=-o.

U = (no., Uo., Va' v«. n{3,U{3, V{3, P{3, ne, Ue, ~, ¢)t,

Uo = (no.o, 0, 0, 1, n(3o, 0,0, 1, 1, UeO, 0, O)t,

U(m) _ ( (m) U(m) V(m) (m) (m) U(m) Vern) (m)
l - no.,l' o.,l' o.,l' Po.,l , n{3,l' {3,l' ei » P{3,l ,

(m). U(m) V(m) ,j..(m»)t
ne,l' e,l' e,l 'lfJl ,

(14)
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Momentum equations: 

(10) 

(11) 

Poisson's equation: 

(12) 

Here the subscripts a, {3 and e stand for the positive ion, negative ion and 
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are nonrelativistic and the electrons are assumed to be relativistic, Ua, Va, U(3, 
V(3 are nonrelativistic quantities and the electron velocity U~ along the x-axis is 
relativistic and is given as 

(13) 

whereas v;, , the electron velocity along the y-axis, is nonrelativistic. We have 
considered here a three-dimensional form of the plasma equations because for 
the analysis of self-focusing we need to study a purely spatial variation of the 
nonlinear wave. In the above equations we have normalised all distances by the 
Debye length ADe = (eoTe/neoe2)!, time by w;/ = (nee2/eOma)-t, velocity by 
ADeWpi = (Te/ma)t, density by neo, temperature by Te and electrostatic potential 
by kBTe/e. In these expressionss eo, kB and e denote the dielectric constant, 
Boltzmann constant and electron charge, respectively. 

The computation starts with the expansion of the physical variables (na, Ua, 
Va, Pol., n(3, U(3, V(3, P(3, ne, Ue, v;, , ¢) in the form 

a a 

U=Uo+ L em L Ul(m)(~,1J)exp[il(kx-wt)], (14) 
m=l 1=-01. 

where 

Uo = (naO, 0, 0, 1, n(3o, 0,0, 1, 1, UeO , 0, O)t, 

u(m) _ ( (m) U(m) V(m) (m) (m) U(m) v:(m) (m) 
I - na,l' 01.,1' 01.,1' Pa,l , n(3,I' (3,1' (3,1' P(3,1 , 

(m) U(m) V(m) ..I.(m»)t 
ne,l' e,l' e,l ,'1'1 , 
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so that U, Uo, U/m
) are each column vectors with twelve components. We

also have naO == 1 + nf30 from the normalised charge neutrality condition. All
quantities satisfy the reality condition, e.g. n~~) == n~~)*, where the asterisk
denotes the complex conjugate. In equations (1)-(12) ~e have also introduced
the scaling variables

e== €2 X , 'TJ == €y . (15)

Now substituting these expansions in equations (1)-(12), and collecting terms of
the order of €, we get

w'" U(l) - 0l l - ,

where Wl is a 12x12 matrix with components aij as follows:

all == -ilw, a12 == naoilk , a21 == Tailk ,

a22 == -naoilw , a24 == G'ailk ,

a2,12 == naoilk , a33 == -naoilw,

a42 == 3ilk, a44 == -ilw, a55 == -ilw,

a56 == nf30ilk , a65 == Tf3ilk/Q ,

a66 == -nf3oilw , a68 == G'f3ilk,

a6,12 == -nf3oilk/Q , a77 == -nf3oilw,

a86 == 3ilk, a88 == -ilw,

agg = Ueo(ilk - ilw) ( 1 + ~f~),

(16)

(
3U

2
)a9 10 == 1 +~ ilk

, 2c2 '
alO,9 == eTeilk ,

(
3U;0) ( ..

alO,lO = 1 + 2c2 -llw + Ueoilk) ,

a10,12 == eilk, al1,11 == -ilw + Ueoilk,

a12,1 == 1 , a12,9 == -1 , a12,12 - _l2k2 ,

with all other aij == O. The vector U/ 1
) is given as

(1) (1) (1) (1))
(na,l' Ua,l' Va,l , ... , cPl .

(17)
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The components of this vector for 1= ± 1 are

2 k2
(1) _ naO A-. (1)

na,±l - ---n:-~±1 ,

U(l) _ n~okw -1,(1)
a,±l - -n~±1 ,

a

V ( l ) - 0 . V(l) - 0a,±l-, ,a,±1 - ,

(1) _ 3naok2A-.(1)
Pa ,±l - {}a ~±1'
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(1) _
P,a,±l -

2 k2n (1) __ n,ao A-.(1)
,a,±1 - {},a ~±1'

U(l) __ n,aokwA-.(1)
,a,±1 - {},a ~±1'

3n,aok2A-.(1)
{},a ~±1'

(1) _ ek2A-.(1)
ne,±l - {}e ~±1 ,

U(l) _ {}ce ek A-.(1)
e,±l - ---:a:-~±1 ,

The dispersion relation is given by

(1)
~,±1 = o. (18)

det Wj, = 0,

with

{}a = naow2 - Tanaok2 - 30'ak2 ,

{},a = n,aow2Q - T,an,aok
2 - 30',ak2Q ,

{}e = (w - Ueok){w - (1+ ~~/2C2)kUeo} + eTek2 ,

n _ w - (1+ U;o/2c2)kUeo
ce - 1 + 3U;o/2c2 .

Next we proceed to terms of second order in E, for 1= 1, whence we get

(19)

(20)

(21)

2 k2
(2) _ ~A-.(2)

n a , l - {}a ~1 ,

U(2) = n~o kw -1,(2)
a,l D

a
~1 ,

2 k2
(2) _ n,ao (2)

n,l3,l - ---n;;-¢1 ,

U(2) _ n~o kw (2)
,13,1 - ---n;;-¢1 ,
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The components of this vector for 1 = ± 1 are 

2 k2 (1) naO -1,(1) 
n a ,±l = n:-'I-'±1 , 

U(1) _ n~okw -1,(1) 
a,±l - flo. 'I-'±1' 

V(l) - o· a,±l - , 
(1) 

V,a,±l = 0, 

2 k2 
(1) _ n,ao (1) 

n,a,±l - - n;;-¢±1 , 

(1) _ n,aokw -1,(1) 
U,a,±l - - -n;;-'I-'±1 , 

(1) _ 
P,a,±1 -

(1) ek2 -1,(1) 
ne ,±l = fle 'I-'±1 , 

U(l) = flce ek -1,(1) 
e,±l fle 'I-'±1' 

(1) 
~,±1 = o. 

The dispersion relation is given by 

with 

detW±l = 0, 

fl,a = n,aow2Q - T,an,aok2 - 317,ak2Q , 

fle = (w - Ueok){w - (1 + ~t/2C2)kUeo} + eTek2, 

fl _ w - (1 + U;o/2c2)kUeo 
ce - 1 + 3U;o/2c2 

Next we proceed to terms of second order in E, for 1 = 1, whence we get 

2 k2 
(2) _ ~-I,(2) 

na ,l - flo. '1-'1 , 
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(19) 

(20) 

(21) 
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V~~{ = -inao w {)<pi
l

)

a; 81]'

(2) _ 3no.o k2
,;..(2)

Po.,1 - {}o. vi ,

(2) _ ek2
,;..(2)

ne ,1 - {}e \f"12 ,
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v:(2) _ • nf'JO W {)A"<l)
{3,1 - 1-- _\f"_1_

{}(3 81]'

P
(2) _ 3n{3o k2

(
(3,1 - - ¢ 2)

{}(3 l'

U(2) = {}ee ke ,;..(2)
e,1 {}e \f"1 ,

V
(2) • ( 3U2

) {} a (1)
e,l = -le 1+~ ~ <Pl2c2 n -a-·e 1]

Also, from the l = 2 components of €2 terms,

u.(2) _ U(2){,;..(1)}2
2 - 20 \f"1 ,

where

(22)

u.(2) - (N(2) U(2) V(2) p(2) N(2) U(2) V(2) p(2) N(2) V(2) i.P(2))t
20 - 0.,2' 0.,2' 0.,2 , 0.,2' {3,2' {3,2' {3,2 , (3,2' e,2 , e,2' 2

represents a vector whose components are functions of plasma parameters only:

N(2) _ no.o k (2n~0 k
3

w
2

6a0. n~o k
5

n~o k
3

) k
2
n~o ijJ(2)

0.,2 - 2{} {}2 + {}2 + {} + {} 2'
0. a a a 0.

U~2~ =~N(2) _ n~o k
3

W
, naO k a,2 {}2'

0.

P (2) _ 3k U(2) 6n 2 k4

a2 - - + aO
, W a,2 {}2'

0.

(

2 3 2 k3 6k 5 2 k3 2) 2 k2
N(2) _ kQ{3o n{30w a{3n{30 _~ _~ (2)

{3,2 - 2fl n2 + fl2 Qfl n i.P2 ,
{3 Jt{3 {3 (3 Jt{3

U~2~ =~N(2) _ n~o k
3

w
2

, kn{3o {3,2 fl2'
(3

p(2) _ 3k U(2) 6n~0 k
4

{3 2 - - {3 +---, w,2 fl2'
(3

V(2) = v:(2) - V(2) 0
a,2 {3,2 - e,2 == ,
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(1) 
V(2) __ • nOlO w 84>1 

01,1 - I fla &q' 

(2) _ 3nOlo k2 ,/.(2) 
POI ,l - fla '1'1 , 

(2) _ ek2 ,/.(2) 
ne ,l - fle '1'12 , 

8 ,/.(1) 
v:(2) _ . n{3o w _'1'_1_ 

(3,1 - I fl{3 8TJ' 

P(2) _ 3n{30 k2 ,/.(2) 
(3,1 - fl{3 '1'1 , 

U(2) _ flce ke ,/.(2) 
e,l - fle '1'1 , 

V (2) = _. (1 + 3U;0) flce 84>P) 
e,l Ie 2c2 fle &q . (22) 

Also, from the l = 2 components of €2 terms, 

U (2) _ u.(2){,/.(1)}2 
2 - 20 '1'1 , 

where 

U(2) _ (N(2) U(2) V(2) p(2) N(2) U(2) v:(2) p(2) N(2) V(2) 4>(2»)t 
20 - 01,2' 01,2' 01,2' 01,2' {3,2' {3,2' {3,2' (3,2' e,2' e,2' 2 

represents a vector whose components are functions of plasma parameters only: 

2 k3 
U(2) _ ~ N(2) _ nOlO W 

01,2 - k 01,2 n2 
nOlO J&OI 
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N(2) == .s:{k
3

e
2(kU

eO - w)(l + 3Ue~/2c2)flce (kU. _ w) 3Ueo
e,2 2ne n; + eO C2

_ (9U;0 k _ 3Ueow) fl;e e
2

k
2

_ e
2

k
3

} _ k
2

e cf>~2)
2c2 c2 fl2 {} {} ,e e e

<lJ(2) == .!.. [_ no:O k (2k
3

w
2
n~o 60-0: n;o k

5
n;o k

3
)

2 A 2il fl2 + D2 + fl
0: 0: 0: 0:

kQn{30(2k2w2n~0 6k50-{3n~0 n~ok3)

+ 2nf3 n~ + n~ - nf3 Q_~r e
2(kUeo - w)(l + 3U;0/2c

2
)ilce (kU. _ w) 3Ueo

2n n; + eO c2

(
9U2 ) il2

e
2

k
3

3U wn
2

e
2

k
2

e
2

k
3

}]_ 1 +~ ce + eO ce _

2c2 n 2 c2 n 2 n'e e e

where we have set

A = ~ [k2 n~ nO. ne- k2 enf3 no< + k2 n~ nf3 ne- 4k2 nf3 no< ne] .
Do: (3 De

The 1== 0 components in the terms of order E2 yield
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(23)

(2) _ N(2) 1--+.(1) 12
no:,o - 0:,0 \fI1 ,

(2) _ N(2) 1--+.(1) 12
n{3,O - (3,0 \fI1 ,

n(2) == N(2) 14>(1)1 2
e,O e,O 1 ,

4>62
) == P62

) l4>i1) 1
2

,

U(2) == V(2) == p(2) == U(2) == V(2) == p(2) == U(2) == V(2) == 0 . (24)
0:,0 0:,0 0:,0 {3,0 {3,0 (3,0 e,O e,O

In equations (24) the coefficients are as follows:

p~2) == -k2(n;0 t; a, T{3 D{3 - n~o t: a; To: flo: + k2eTo: flo: T{3 fl(3)L1- 1
,

L\ == flo: n{3 fle(no:oTeT{3 + n{3oTeTo: + To:T(3) ,

2 k2N(2) __ no:o p(2) _~
0:,0 - To: 0 no: To: '

2 k2
N(26== n{30 P62) _~

(3, T{3 fl{3 T{3 ,

,fi(2) k2
N(2) __~O_ ss:

e,O - T. + T. n '
e e Jte
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where we have set 

A = ~ [k2 n~ Da De - k2 eD{3 Do + k2 n~ D{3 De - 4k2 D{3 Do De]. 
Da (3 De 

The l = 0 components in the terms of order €2 yield 

n(2) = N(2) 1cf>(1)12 
0,0 a,O 1 , 

(2) _ N(2) 1.+.(1) 12 
n{3,O - (3,0 '1'1 , 

n (2) = N(2) 1.+.(1) 12 
e,O e,O '1'1 , 

cf>~2) = p~2) Icf>P) 12 , 

U(2) = V(2) = (2) = U(2) = VP) = (2) = U(2) = V(2) = 0 a,O a,O Pa,O {3,0 (3,0 P{3,O e,O e,O . 

In equations (24) the coefficients are as follows: 

p~2) = -k2(n~0 Te De T{3 D{3 - n~o Te De Ta Da + k2 eTa Da T{3 D(3)..1- 1 , 

..1 = Da D{3 De(naoTeT{3 + n{3oTeTa + TaT(3) , 

2 k2 N(2) __ naO p(2) _ ~ 
0,0 - Ta 0 Da To ' 
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so that eliminating all the variables in favour of ¢~l) in the equations with l = 1,
we obtain

a¢(ll) B a2¢~1) + C I~(l) 12~(1) = 0-- + - --2- - ~l ~l ,ae al a~ al
(25)

which is the nonlinear Schrodinger equation describing the space variation of
the envelope soliton. Note that both e and ~ are scaled space variables. The
coefficients B, C and al are very long expressions and are given in the Appendix.
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Fig. 1. Positive nature of the dispersion coefficient Bfa; in equation (25) throughout the
wave number range for Ueolc == 0·8, To. == 0·1, Tf3 == 0·1, T« == 0·1,0'0. == 0·1, 0'f3 == 0·1,
w == 0·5, Q == 0·476 and (a) nf3olno.o == 0·15, (b) nf3olno.o == 0·55.
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3. Self-focusing of the Nonlinear Waves

In the previous section we have derived a new type of nonlinear Schrodinger
equation (25), which depends only on space variables. One of these represents
the longitudinal direction and the other one gives the direction transverse to it.
We now proceed to extract the condition under which the self-focusing of the
nonlinear wave may take place, using equation (25). In equation (25), Bfa; is
called the dispersion coefficient and CIa1 is called the nonlinear coefficient. The
phenomenon of self-focusing is studied by analysing the transversal stability of the
system. To determine the transversal stability, we have to consider the system
under perturbations perpendicular to the propagation direction. It can be shown
that if the sign of the product of the dispersion and the nonlinear coefficients in
equation (25) is positive, then the ion wave becomes unstable with respect to
such transverse perturbation. In the present case the dispersion coefficient B Ia1

in (25) is positive in the whole wave number range which we have displayed in
Fig. 1 corresponding to different plasma parameters. Hence the analysis of stable
and unstable zones depends solely on the nature of the nonlinear coefficient CIa1

in (25). The stability and instability zones are depicted in Fig. 2. In each case
the figure shows the variation of the wave number against the ion density ratio
nf3olnao for different values of the ion temperature and electron-ion temperature
ratio and a fixed value of Q. Fig. 2a depicts the nonrelativistic region, that is,
Ueolc == 0·05, while for the others Ueolc == 0·8. It should be noted that the
region of stability changes drastically due to this change in the streaming velocity:
while Fig. 2b shows a resemblance to that of Sato et ale (1990), the relativistic
situation is totally different from their result. Also, these regions have a quite
different nature when (J'a == (J'f3 == 0, and decrease in number with increasing Ti,
and Tf3.

We conclude by discussing some points about the necessity of the negative
ions for the whole process of self-focusing. In fact this is a consequence of the
ponderomotive force, which is proportional to grad ( (<pi1))2), with () denoting
the time average. The force drives the plasma out of the wave potential. The
electrons hardly respond to this force because of their high pressure, whereas the
ions, whose temperature is lower than that of the electrons, are easily subjected to
it. It should be pointed out that in the absence of negative ions the self-focusing
cannot take place, because the ions cannot move out of the wave potential as then
charge neutrality would be violated. In the presence of negative ions, however,
the ions can move outwards from the wave potential without violating charge
neutrality, because not only the positively charged ions but also the negatively
charged ones move together outwards. As a result, the ion plasma frequency is
lower and the dielectric constant is higher inside the potential than outside. The
plasma itself then acts as a convex lens, and makes the ion wave focused. When
the ion temperature of the ions rises, their response to the ponderomotive force
changes and hence the region of stability changes also.
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Appendix

Here we give the detailed forms of the nonlinear and dispersion coefficients
appearing in the nonlinear Schrodinger equation (25). These expressions have
been used in our stability analysis.
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