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Abstract

The ion-acoustic double layer in a relativistic hot plasma is studied by considering the effect
of electron inertia. The critical region is analysed with the help of a combination of the KdV
and mKdV equations obtained via a reductive perturbation technique. The profiles of the
double layer are explicitly obtained for various values of the plasma parameters and of the
electron-ion mass ratio.

1. Introduction

In the last few years various authors have theoretically (Troven 1981, 1986;
Schamel 1983; Schamel and Bajurbarua 1983; Tajiri and Nishikawa 1985; Goswami
and Bajurbarua 1986; Radu and Chanteur 1986; Bharuthram and Shukla 1985)
and experimentally (Allen 1985; Sato et al. 1986; Nishida and Hosegawa 1986)
investigated double layers (DL) in plasmas. The DLs may be one of the important
sources of the accelerating particles in the plasmas of space and astrophysical
objects (Alfven 1986). It was also proposed that energy may be released in
solar flares due to the formation of DLs in a current-carrying loop in the
solar corona. There is already much evidence of the existence of DLs in the
auroral zones (Temerin et al. 1982; Kellog et al. 1984; Khoskinen et al. 1988).
Recently, Sutradhar and Bajurbarua (1988), Verheest (1989), Baboolal et al.
(1988a, 1988b, 1990), and Hellberg et al. (1992) have theoretically investigated
DLs under different situations in a plasma and shown that the characteristics of
DLs are very interesting in the presence of two-temperature electrons, negative
ions, drifting electrons and ions, etc. However, all of these studies are essentially
nonrelativistic, but the recent work of Das and Paul (1985), Nejoh (1987a,
1987b, 1988) Roy Chowdhury et al. (1989, 1990a, 1990b), Salauddin (1990),
Chakraborty et al. (1992) has shown that the relativistic mass correction effect has
a significant contribution to the formation of solitons, shocks, double-layers etc.
Consideration of electron streaming has also been observed to be very significant
for the study of nonlinear wave propagation in a plasma (Gold 1965: Clemmow
and Dougherty 1969; Paul and Bandyopadhyay 1974; Khalil 1988; Paul et al.
1994; Mukhopadhyay et al. 1993), but in many of the situations noted above, the
electrons form the background and are not treated dynamically. In this paper
our motivation is to study the formation of a double layer in the presence of
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both electrons and ions streaming in a hot relativistic plasma by taking account
of electron inertia.

2. Formulation

We consider a collisionless unmagnetised plasma consisting of warm isothermal
electrons and ions. We assume that the electron velocity is relativistic but the
ions are nonrelativistic. Moreover, the electrons and ions have constant streaming
velocities in the equilibrium state. We consider the electron dynamics in full detail
to study the effect of electron inertia. Assuming that the usual hydrodynamic
description is possible, we observe that the plasma can be described by the
following equations:
Equation of continuity

Momentum equation

Pressure equation

for the ions,

nt + (nu)x = 0

a-
Ut + UUx + -Px + cPx = 0

n

Pt + upx + 3pu x = 0

net + (ne ve)x = 0

(1)

(2)

(3)

(4)

as the continuity equation for the electrons, and the momentum equation for the
electrons,

nne 1
-(veoJt + ve(veoJx + -nex - cPx = 0,
m, ne

(5)

which takes account of the electron inertia. Finally we have the Poisson equation,

where

cPxx = ne - n,

Vex = (1 - v;/c2 )- k .

(6)

In the above expressions u and V e are the velocities of the ions and electrons, m
and me their respective masses, nand n e the number densities, P the thermal
pressure of the ions and cP the electrostatic potential.

In order to obtain the nonlinear evolution equation we have adopted the
reductive perturbation method and introduced the stretched variables

e= c~ (x - At),

T = c! t ,

(7a)

(7b)
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where A is to be the phase velocity of the wave. The physical quantities are
expanded as follows:

n == 1+ cn(1) + c2n(2) + ... ,

ne == 1+ cni1
) + e2n~2) + ... ,

v == v(O) + cv(1) + c2v(2) + ... ,

Ve = v~O) + cv~1) + c2v~2) + ... ,

¢ == e4/1) +c2¢ (2) + ... ,

P = Po + cp(1) + c2p(2) + .... (8)

We further assume that the basic equations are supplemented by the following
boundary conditions as Ixl---+ 00:

n -7 1, v ---+ Va, ne ---+ 1, Ve -7 VeO, ¢ ---+ 0 . (9)

Using equations (7) to (9) in (1) to (5), we obtain information about the first-,
second- and third-order perturbations of various physical quantities. From the
first-order equations, the dispersion relation is obtained as

(
2 me ( 2 me 3v;o 2

Vo-A) +-Veo-A) +--22(veO-A) =1+30-,
m m c

which we solve for the phase velocity and get

A = Vo + ')'VeO ± (uo + ')'VeO)2 - G(1 + ')')!
1+1' 1+1'

== me (1 3V';o)
l' + 2 2 'm c

G == v5 + 1'V;o - (1 + 30-).

From the higher order equation, the KdV equation is derived as

4>lt = Q P
R( Vo - A)2 _ 3apo 4>14>11:. + R 4>lt;f.f. = 0 ,

where

Q = - (VO - A)3 - 3(vo - A) + 270-p6 + me (vo - A)(VeO - A)2 ,
m

R==2(vo-A)2,

( )

2
me 2 3v~

P == 1 - -(veo - A) 1 - -2 (Va - A).
m 2c

(10)

(11)

(12)

(13)
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me 2 3veo 
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m 2c2 
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We note that the nonlinear term in (12) vanishes when Q = 0 and the KdV
soliton no longer exists. In order to consider ion waves under such a condition,
we scale the space-time variables in different manner. We set

e=c(X-At),

T = c3t .

(14a)

(14b)

Then, adopting the usual procedure (Nejoh 1987a, 1988) we arrive at the mKdV
equation,

where

B 2 1
¢It + 2N¢1 ¢le + 2N¢leee = 0,

1 1
B = -(Ra4 - aR) + ( \ [(,I3a1 - Vo - ..\)a2 + aa3]

(3 (3 Vo - A

_ ~ (_ 1800- _ 2. _~ 3me A(l - 2veo)

- ,13 ,134 Po ,133 2,133 + m 2c2,133

180-po 3 180- )
- ~ - 2,134 {,13+ (,13 + apo) + 3apo (,13 - 2apo)} + ,134 PO,l3+ ,

me 2 ( 3Veo)
o = -;;;:(Veo - A) 1 + 2c2 '

(3 = (vo - A)2 - 30-po ,

(3+ = (vo - A)2+ 30-po.

(15)

On the other hand, near the critical situation a combination of both the KdV
and mKdV equations will be valid, which we rewrite as

¢1 + a¢1¢1 + ~¢i¢1€ + ~¢1€€€ = o. (16)

3. Solution for the Double Layers

To obtain the solution of equation (16) we introduce a new variable TJ = ~ - UT

(in the stationary frame of the nonlinear wave, U being constant) so we get

(~~r +\[f(¢,a,,I3,u) = O.

Here tIt is regarded as a potential function

\[f = f!-¢2 (¢2 + 4a _ 12U)
0- (3 (3 .

(17)

(18)
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Fig. 1. Form of the shock wave in the relativistic situation for various values of VealC and a.
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Fig. 2. Form of the shock wave in the nonrelativistic case for two values of the electron-ion
mass ratio me/m.

We now use the boundary conditions

¢ -1- 0,
d¢
- -to,
d1]

d2¢
-2 -1- 0 as 1] -1- 00 .
d1]

(19)

For the formation of the double layers, the potential W should behave as follows:

w(¢, u) -t 0 as ¢ -1- 0 and ¢ --t ¢m ,

dl1i(4>, u) -+ 0 as 4> -+ 4>m,
d¢

d
2l1i(4),

u) -+ 0 as 4> -+ 0 and 4> -+ 4>m,
d¢2

(20)

(21)

(22)
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We now use the boundary conditions 
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where ¢m is the maximum value of ¢. A simple integration of equation (17)
leads to

<p(a, (3, <Pm) = ~<Pm(a, (3) [1 - tanh{ ~1- ~<Pm(a, (3)I(1] - 1]0) } ] · (23)

Now in practice two types of double layers can be formed. For compressive double
layers ¢m(a, (3) is positive. From the above equations we see that this is only
possible when {3 < 0, because a > o. A rarefactive double layer is formed when
¢m(a, (3) is negative, that is, when (3 > o. It therefore seems that in a relativistic
plasma with streaming, both of these kinds of double layers are possible. To have
an explicit idea we take recourse to numerical computation. Here we evaluate
the form of the shock wave for various values of the parameters such as the
temperature a, veale, and melm, the ratio of electron and ion masses.

me/m = 1/1836

v
"ffi
E
Q.)

o
a..

11-110

Fig. 3. Form of the shock wave in the nonrelativistic case for me/m = 18
136 at an (arbitrary)

increased scale.

We have considered three possible values of the mass ratio, namely 1~' 3
16

and 18~6. Although the first two ratios are unphysical, these help to simulate
the situations where the heavier particle is not a proton. In Figs 1a and 1b
we show the form of the shock wave for medium values of Veal C with a = 4
and a = 2. On the other hand in Fig. 1c the forms are plotted for a = 1 .5. In
each case it is seen that the nonrelativistic situation appears as a straight line,
because on the same scale its order of magnitude is much less. Hence in Fig. 2
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we have plotted the nonrelativistic situation separately for melm = 3~ and 18
136'

One clearly visible feature of these diagrams is the increase in magnitude of the
shock wave maxima with an increase in the value of melm. It may also be noted
that the case of me/m = 18~6 again appears as a straight line when plotted on
the same scale as that of me Im = 3

16' The reason for this is again that the
magnitude of the shock wave is much reduced in this case (see Fig. 3).

4. Conclusion

In the above analysis we have considered in detail the effects of relativity and
inertia on the shape of the shock wave. Since in many of the plasma theories
we usually take the electrons to form the background, we never encounter the
inertia effect. Only when one considers the proper dynamics does it appear. Our
computation clearly demonstrates why it is difficult to detect experimentally a
shock or double-layer phenomenon in a plasma.
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