
Aust. J. Phys., 1995, 48, 19-37

Computational Aspects of the Calculation of the
Leading Divergence of a Particle-Particle Ladder

R. Sinclair

HG G32.1, D-MATH, Eidgeniissische Technische Hochschule,
CH-8092 Zurich, Switzerland.

Abstract

In order to isolate the leading divergence of a particle-particle ladder graph, we wish to study
the most positive eigenvalue, and its eigenfunction, of the operator describing the addition
of one rung. We discuss issues of computational efficiency associated with the setting up
and solving of the resulting eigenvalue problem, with an emphasis on the use of inherent
symmetries to reduce the size of the problem, and the choice of machine and algorithms
appropriate for the calculation. In particular, we compare various load-balancing techniques
for a problem involving a large number of independent integrals, requiring greatly differing
amounts of computer time, which we have implemented on an Intel Paragon massively parallel
supercomputer. We find that a stack-based parallel adaptive integration algorithm performs
significantly better than a more natural recursive implementation when load-balancing is a
priority.

1. Introduction

In this paper we describe the development of a program used for studying
the leading divergence of a particle-particle ladder in a (2+1)-dimensional
nonrelativistic many-body problem. The numerical results obtained are part
of a detailed mathematical analysis of a long-range many-electron system [in
collaboration with E. Trubowitz (my Ph.D. supervisor, ETH Zurich), J. Feldman
(University of British Columbia), J. Magnen and V. Rivasseau (Ecole Poly technique,
France)]. The motivation for this work is that it has been shown (Khveshchenko
et al. 1993; Bares and Wen 1993; Halperin et al. 1993) that the presence of
long-range interactions can result in non-Fermi-liquid behaviour in two dimensions.
The algorithms described here have been developed with the expectation that
the exact form of the interaction studied may change as the detailed analysis
proceeds.

The appropriate energy dispersion is

e(k) = Ikl 2
- J1.

2m
(1)

Here m is the particle mass, J1 is the chemical potential, and kF = yl2mJ1 is the
Fermi radius. In all of our calculations we have set 1i = 1, m = 1 and J1 = 1/2
(kF = 1). The zero-temperature noninteracting fermion Green's function is given
by (Fetter and Walecka 1971, chapter 3)

0004-9506/95/010019$10.00

20
R. Sinclair

iGO(x, t; x', t/) = (27r)-2 J d2k exp{ ik. (x - x')} exp{ -ie(k)(t - t/)}

x [8(t - t /)8(lkl - kF) - 8(t' - t)8(kF - Ikl)]. (2)

Making use of the fact that 8(1kl - kF) = 8(e(k)), we can rewrite this as

iGo(x, t; x', t/) = i(27r)-3 J d2k exp{ik. (x - x')}

x J dko exp{ -iko(t - t/)}. 1) , (3)
zko - e(k

from which the momentum-space propagator can be read off immediately. It is

-iko-e(":'k')

1\
()
V

1
iko - e(k) .

i(ko+q~)-=etk+q)

(4)

Fig. 1. The random phase bubble.

Its value, 7l"(qo, q), is obtained by

integrating over ko and k.

We take -A/lkI2 as the long-range interaction. It can be renormalised using

the ring approximation (Fig. 1) to the effective two-body interaction (Fetter and

Walecka 1971, chapter 12). The random phase bubble (Fig. 2), which appears

in the ring approximation, can be approximated by

J d2q dqo 1 __ 1

7r(ko, k) = - 2 (27r)3 i(ko + qo) - e(k + q) - iko - e(k)

= ~ (1 - Ikol) + O(lkl2 + k6). (5)

7r j41kl2 + k6

We formally sum up the ring approximation

-A ~ (-A7r(ko, k))i _ -A

Ikl 2 0 Ikl 2 - Ikl 2 + A7r(ko, k)
,,-0

(6)

Leading Divergence of a Particle-Particle Ladder

+ + +

Fig. 2. Ring approximation to the effective two-body interaction. The
dashed lines represent the original interaction (- AI IkI2), the loops are random
phase bubbles, and the curved line represents the effective, renormalised
interaction.

and, absorbing the factor 1/11" into ..\, take

-..\

Ikl2 + ..\(1 -Ikoll V41kl2 + k6)

as our effective interaction.

21

(7)

We wish to study ladders created by the repeated addition of rungs of the type
depicted in Fig. 3. The operation of adding a rung is given by integration over
the newly-created momentum loop, which includes the existing graph (represented
by the function Vj) and the new segment

j, ~

x 1 d2t dt
t6 + e(t)2 + M 2j Vj(to, t) (211"/' (8)

where M2j acts as a regulariser. Here M > 1 and j E Z-. Taking j to -00

corresponds to removal of the cutoff.

22 R. Sinclair

1

ito-e(t)

S

-A

(\so-to\)
Is - tl 2 + A 1 -)4\8 t\2+\sO to\2 1

-ito - e(-t)
, '- t

Fig. 3. One rung of the particle-particle ladder.

The dominant properties of a long ladder produced by repeated addition of
such rungs can be obtained from the largest eigenvalues, and their eigenfunctions,
of the operator in (1). We write the eigenvalue problem as follows:

l Ak lAO j7r
Aj '0(so, Isl,Bs) = fj(so, lsi, Bs; to, Itl, Bt) gj(ltol, Itl)

o 0 -7r
x '0(to,ltl,Bt)dBtdtodltl, (9)

where Ak is an ultraviolet cutoff and Ao plays a similar role. We are in fact
only interested in the most positive eigenvalue Aj and its eigenfunction Vj*. The
interaction

fj(so, lsi, Bs; to, Itl, (It) = -AI [lsI2+ltI2-2Islltl cos(Bs-Bt)

+ A(l-lso -toll vi 41s12 +41t 12 -8lsll t l cos(Bs -Bt)+ Iso -toI2+M2j)] (10)

and the function

It I
gj(ltol, Itl) = (t6 + e(t)2 + M 2j) (271')3 (11)

have several symmetries, which we will use to reduce the size of the problem
before attempting to discretise:

fj (so, lsi, Bs; to, It I , Bt) gj (Itol, Itl) = fj (-so, lsi, Bs; -to, It I ,Bt) gj (I - to I, Itl) (12)

= fj(80, lsi, -Bs; to, Itl, -Bt) gj(ltol, Itl) (13)

= fj(so, lsi, Bs + ¢; to, Itl, Bt + ¢) gj(ltol, Itl). (14)

Leading Divergence of a Particle-Particle Ladder 23

The symmetries (12) and (14) imply that the eigenfunctions of (2) take the
following form:

Vj(to, Itl, Ot) = C~:I) p vJ,R(ltol, Itl) exp(iCOt), (15)

where p E {I, 2} and C E Z. We find that the eigenvalue problem (2) splits up
into infinitely many lower-dimensional eigenvalue problems, indexed by p and C.
In real, symmetric form these are

Af,e y'g(lsol, lsi) VJ'e(lsol, lsi) = J .1"),e(l sol, lsi; Itol, Itl) ,/ g(lsol, lsi) gj(ltol, It!)

x ,lgj(ltol,ltl) VJ,e(ltol,Itl)dltoldltl, (16)

where

Ff,e(isol, lsi; Itol, Itl) = (17)

J {lj (Iso I, lsi, 0; Itol, Itl, et) + (-I)P fj (Isol, lsi, 0; -Itol, Itl, et)} exp(iCet) dOt.

2. Discretisation

We now have a set of eigenvalue problems of the form

rAk rAo
Af,c xf,R(lsol, lsi) = Jo Jo Af,R(lsol, lsi; Itol, It I) xf'C(ltol, Itl) dltol dltl· (18)

We divide up the domain of integration into cells Dm,n (m, n E {I, ... , N}) such
that

Dm,n n Dm',n' = e for (m,n) =I- (m',n') (19)

and

U D(m,n) = [0, AkJ X [0, AoJ. (20)
(m,n)

We choose to define the Dm,n in such a way that Itol and e(t) take on values
from geometric series with the factor Ml/ndiv (to allow an adjustment of the
fineness of the grid), and starting values proportional to Mj (the regularisation
only ensures that fj and gj are effectively constant for values of e(t) and to much
smaller than Mj, so Mj is a natural 'unit length' to use in constructing the
mesh). The point of discretising in this way is to attempt to construct cells in
which fj and gj are approximately constant, so that integration over any given
cell will be as simple as possible. We have set M = 2, Ao = 1 and Ak = V2 for
the calculations to be described here. Now

24 R. Sinclair

Dm,n = 1m X I n , (21)

where

VI - 2(1/ndiv+j-3) (m = 1)

Vl-- 2(m/ndiv+j-3) Vl- 2«m-l)/ndiv+j -3)] (1 < m ~ ndiv. (3-j))

1m = ~ r V2(1/ndiv+j-3) + 1 (m = ndiv. (3-j)+1)

[V2«m-l)/ndiv+2(j-3» + 1, V2(m/ndiv+2(j-3» + 1

(ndiv. (3-j))+1 < m ~ 2. ndiv. (3-j) (22)

and

J. ~ I o 2(1/ndiv+j-3) (n = 1)

2«n-l)/ndiv+j -3) 2(n/ndiv+j-3)
(23)

(1 < n ~ ndiv. (3-j)).

Defining

N = ndiv. (3 - j), (24)

we have m E {1, ... , 2N} and n E {1, ... , N}. An example of such cells Dm,n is
depicted in Fig. 4.

Ikol

Ao

Ikl
o kF Ak

Fig. 4. An example of the division of [0, Ak] x [0, Ao] into cells Dm,n (j = -6, ndi V = 2
and e = 0).

Leading Divergence of a Particle-Particle Ladder 25

The matrix elements are given by

- R. J J e A~' (m', n'; m, n) = A~' (Isol, lsi; Itol, It!) dlsol dlsl dltol dltl (25)

Dm',n' Dm,n

- A-P,f("') - j m,n,m ,n . (26)

3. Evaluation of Individual Matrix Elements

The 4N4 matrix elements, in terms of the functions (10) and (11), are

- R. , ,
AP' (m n' m n) =

J '"

2 J J 17r {iJ(lsol, lsi, 0; Itol, Itl, Bt} + (-1)P iJ(lsol, lsi, Bs; -Itol, Itl, Bt)}

Dm/,nl Drn,'n

x cos(CBt) dBt \/ g(lsol, Is!) gj(ltol, It!) dlsol dlsl dltol dltl· (27)

They are real due to the symmetry (6). We need only consider nonnegative C.
These are five-dimensional integrals.

We first consider the integral over Bt , making the following approximation:

-~ (~)
iJ(lsol, lsi, 0; ±Itol, Itl, Bt) ~ a(lsol, lsi; ±Itol, It!) + b(lsol, lsi; ±Itol, Itl) B; ,

where

a(lsol, lsi; ±Itol, It!) = Isl2 + Itl2 - 21sllt l

+ ~ (1 _ Ilsol- (±ltol)1) (29)
V41s12 + 41tl2 - 81slltl + Ilsol- (±ltol)12 + 22j

and

b(lsol, lsi; ± Itol, Itl) = Islltl

T • -" I· " • . 3' (30)
(41s12 + 41tl2 - 81slltl + Ilsol- (±lto!)12 + 22))2

2~ Ilsol- (±ltnl)1 lsi It I

This approximation is attractive because it allows one to exploit the results

17r -~ -~ (t) 2 dBt = jJ"arctan 7r -
o a + bBt vab a

(31)

26 R. Sinclair

and

rOO _--:-A::C;-2 cos(eot) dOt = -~ exp (- ~be).
Jo a+bOt 2vab Vb

(32)

For e = 0, we add a numerical approximation (using Simpson's rule) of

r {Jj(lsol, lsi, 0; ±Itol, Itl, Ot) - -A 2} dOt
Jo a± + b±Ot

(33)

to (31) for the approximate value of the integral, and also use the numerical

approximation of (33) as the error estimate.

For l #- 0, (32) suffices as an approximation to the required integral. The

error estimate is composed of two parts. One is due to the use of the original

approximation (28), which can be estimated using the absolute value of the

numerical approximation to (33). The other contribution is from the extension

of the domain of integration from [0,7r] to [0,00]. An analytical estimate of this

source of error can be obtained using the inequality

1100 cos(eOt) dOt I = I roo cos(eot) dOt I I roo cos(eot) dOt I
7r a+bO; Jo a+b(Ot+7r)2 ::; Jo (a+b7r2)+bO;

(34)

and the result in (11) (where a is replaced by a + b7r2). Both sources of error

are summed.
The remaining integrals are four-dimensional. We choose an adaptive grid

technique based on a formula we derive by demanding that polynomials of the

form

h() 2 2 2 2 4 4 4 4

X, y, u, w = Cl + C2X + C3Y + C4U + C5W + C6X + C7Y + csu + CgW

+ clOx2y2 + Cl1x2u2 + C12X2w2 + c13y2u 2 + c14y2w2 + C15U2W2

(35)

(odd powers are irrelevant here) be integrated exactly by

1 1 1 1 J2). J: J: J: h(x,y,u,w)dxdydudw
2 2 2 2

= ah(O,O,O,O)

+f3 L L L L h(Zl' o"x, Zl. O"y, Zl. O"u, Zl. O"w)

O'xE{ -l,l} O'yE{ -l,l} O'uE{ -l,l} O'wE{ -l,l}

+ t5 L {J(Z2' 0", 0, 0, 0) + J(O, Z2 .0",0,0) + J(O, 0, Z2 .0",0)

O'E{-l,l}

+ J(0,0,0,Z2'0")}' (36)

Leading Divergence of a Particle-Particle Ladder

Zl

Z2

a:

f3
8

Table 1. Parameters for integration

0·33709993123162104312
0·5
0·10666666666666666667
0·33611111111111111111
0·04444444444444444444

0·5
0·3162277660168379332
-1·333333333333333333
0·0069444444444444444
0·2777777777777777778

27

We solve equation (36) for Z1, Z2, a, {3 and o. The solution set is one-dimensional.
We use two different solutions of (13) (see Table 1). The mean of the two
approximations to the integral is used as the value, half of the absolute value
of their difference as an error estimate. The presence of a negative weight (one
of the a values), although in general undesirable (Stroud 1971, section 1.5), is
necessary since we want reliable error estimates for functions with peaks which
behave as

C1 C2
) - + 2 ' e(x,y,u,w - (x-u)2+ exp 'Y (y-w) +exp'Y (37)

so that the behaviour of fj for So R::: to or lsi R::: It I is well covered. In Fig. 5
we compare the actual error incurred by (36) (the function (37) can also be
integrated over [-1/2,1/2]4 analytically) with the error estimate discussed above.
The error estimate is reliable in the sense that it is consistently larger than
(roughly double) the actual error for the functions (37).

Error
Error est

, , , , y

20 -15 -10 -5 r
Fig. 5. Ratio of actual error to estimated error (should be less than or equal to one) of the
numerical estimate of J 1/((x - u)2 + exp,) dx dy du dw as a function of ,.

The estimates of error from the analytical approximations of the integral over
Ot are integrated over simultaneously with the function values. This integrated
error is added to the estimate from the adaptive grid integration.

28 R. Sinclair

4. Preliminary Calculations

We implemented the approximations discussed above, with a fixed, coarse grid
(i.e. no recursion and ndiv = 1) on a SUNlO workstation, using the QR method
(Wilkinson 1978, chapter 8) to find all eigenvalues of certain matrices A~,e. Error
estimates were not calculated to save time. We report on consistency checks
below, in which we used the final version of the program to confirm assumptions
made in this preliminary stage. The results of this first calculation (see Figs 6
and 7) were surprising for three reasons:

.\1,0

t J

2

1

0
-2 J -10 -8 -6 -4

-1

-2

Fig. 6. All eigenvalues for p = 1 and C = 0 from preliminary calculations. The spectrum is
discrete for each j .

.\2,0

t J

2

1

0
-2 J -4

-1

-2

Fig. 7. All eigenvalues for p = 2 and I! = 0 from preliminary calculations.

Leading Divergence of a Particle-Particle Ladder

J
-16 -14 -12 -10 -8 -6 -4

).. 2,0,*/).. 2.0,*
J J-1

2

1.75

1.5

1.25

1

0.75

0.5

0.25

-2 o

29

Fig. 8. Ratio of the most positive eigenvalue for a given j to the most positive eigenvalue
at j - 1 from preliminary calculations. Exponential behaviour is apparent for j < -10.

(i) The most positive eigenvalue for a given j already scales exponentially
with j for j < -10 (see Fig. 8). This permits one to assume that the
trends visible in these results apply to all j «-10. On the basis of this
assumption, and the other preliminary data, one is justified in no longer
considering the eigenvalues for p = 1 as candidates for the most positive
eigenvalue. This immediately halves the size of the computation.

(ii) The most positive eigenvalue is well isolated from all the others. This allows
one to use the shifted power method (Wilkinson 1978, chapter 9, section 4)
to find the most positive eigenvalue and its associated eigenvector.

(iii) The evaluation of the matrix elements dominated the computing time,
even allowing for the fact that the symmetry of the matrix means that
only 2(N4 + N 2) of the 4N4 elements need actually be calculated.

5. Parallel Implementation

The preliminary calculations also made it apparent that a workstation would
not suffice for more serious computations. The time required to calculate the
eigenvalues to a low accuracy for only one value of j was of the order of a
few days. The problem lends itself to a massively parallel computer with nodes
capable of running independently (a MIMD machine, see Akl 1989, section 1.2.4),
since the most computationally intensive part is the evaluation of the very many
independent integrals. It was therefore natural to make use of the Intel Paragon
(Gates and Peterson 1994) at the ETH Zurich. This is a MIMD machine with
96 computing nodes (processors), based on the i860 microprocessor. Each
processor has a local memory of 32 Mbytes, and is connected to a two-dimensional
communication mesh. Message-passing routines are provided (for an introduction,
see Intel 1993).

30 R. Sinclair

Three restrictions dominated the choice of algorithms:

(i) A large calculation (j = -20, ndiv = 2) would involve 9 x 106 matrix
elements (70 Mbyte, when working to double precision). Since no single
processor has enough local memory to store the full matrix, the algorithm
will need to work with a matrix distributed amongst the available
processors.

(ii) Calculating all integrals to a given accuracy using an adaptive method will
typically result in widely varying completion times. A second preliminary
calculation using a recursive algorithm similar to the one presented in
Fig. 9 confirmed this in our case. The algorithm will therefore need
some load-balancing heuristics to provide an even distribution of the work
amongst the processors.

(iii) Despite the presence of the communication mesh, interprocessor communi
cation is expensive compared to floating-point operations. The algorithm
must avoid communication where possible.

procedure r-integrate(a,b):

approximate the integral by t r:::i J: f(x)dx;
if the estimated error is tolerable then return t;
else return integrate(a,(a + b)/2)+integrate«(a + b)/2,b).

Fig. 9. A recursive algorithm for evaluating the one-dimensional integral J: f(x} dx.

The four-dimensional extension of the procedure Lintegrate (Fig. 9) subdivides
the domain of integration into 24 subdomains rather than 2, but is otherwise
identical. It is termed recursive because, unless the integral is trivial, it does not
immediately return an answer, rather it calls (creates copies of) itself again (24
times), giving each copy of itself a subdomain of integration. These copies may
also reproduce themselves, producing a tree structure in memory. The process
continues until a copy actually has a trivial (the estimated error is tolerable,
see Fig. 9) integral. It does not reproduce itself, rather it returns its result to
the routine which called it, and is deleted from memory. Our implementation
of Lintegrate is based closely on the discussion of adaptive Newton-Cotes
integration in Davis and Rabinowitz (1975, section 6.2.3).

Taking the above considerations into account, an outline of the general strategy
for the entire calculation can be given. The central idea is a gradual shift from
coarse-grained parallelism (where each processor treats only its assigned integrals)
to ever finer-grained parallelism (the sharing of integrals or subdomains of
integration), such that a reasonable compromise between reducing communication
and load-balancing is achieved. To ensure that memory requirements be met,
the matrix elements are assigned evenly over the available processors. All
communication is to be through a specified 'master' processor, which keeps track
of the states of individual processors. The general strategy is as follows:

(1) All integrals that meet the prescribed error tolerance without recursion
are evaluated and stored.

(2) Each processor begins evaluating the remaining, nontrivial integrals
assigned to it.

Leading Divergence of a Particle-Particle Ladder 31

(3) Any processor which finishes early can ask for a further integral. When
completed, the result is sent back to the processor it was originally
assigned to for storage.

(4) If some processors are idle, but the others are already evaluating their
last integral, these integrals are spread over a number of processors
(by dividing up the domain of integration). Partial results are always
returned to the processor to which the integral was originally assigned.

(5) If all processors are finished, and all partial results have been returned,
calculation of the most positive eigenvalue and its eigenvector can
commence, using the shifted power method.

In step 4, load-balancing is implemented by dividing up domains of integration
rather than cells (Om,n)' This is necessary, since an increase in the number
of cells would effectively increase the size of the matrix .iI, requiring still more
memory. What remains to be specified is how the domains of integration should
be divided up to avoid unnecessary communication. The master processor will
receive only one request at a time for work from an idle processor. It will then
send this request on to a processor which it knows is still active. This active
processor must give up some subdomain of integration it has not yet worked
on. An obvious extension to the procedure Lintegrate (Fig. 9) which allows
for this is pLintegrate (Fig. 10). Having been given an interval to process,
a previously idle processor will apply this same recursive procedure to it until
completely finished.

procedure pr _integrate (a" b) :

approximate the integml by t ~ f: f(x)dx;
if the estimated error is tolemble then return t;
else if another processor needs 'Work then

give the other processor integrate(a,(a+b)/2) to do;
return integrate«(a + b)/2 ,b);

else return integrate (a" (a + b)/2)+integrate«(a + b)/2,b).

Fig. 10. A recursive algorithm for evaluating the one-dimensional integral J: f(x) dx, adapted
to allow subdivision of the domain of integration amongst many processors.

Some runs were made to compare the routines r _integr a te and pr _in tegra te,
against each other, and against some more primitive algorithms, where either
step 4 or both steps 3 and 4 as described above were not implemented. The
time (T) required to tackle a relatively trivial problem (j = -2, ndiv = 1 and
fl. = 0) was measured as a function of the number of processors (n). We define
the computational 'efficiency' (see Akl 1989, section 1.3.3) to be

E(n) = T(l)/n. T(n) . (38)

[The condition E(n) :::; 1 is almost always satisfied in a real calculation, as
T(l)/n :::; T(n) is usually true. Exceptions, known as 'superlinear speedup', are
most often due to the fact that a single processor can work at its fastest if all
the necessary data are to be found in a very small area of memory. Since the
amount of data to be handled by each processor can be inversely proportional

32 R. Sinclair

to n, it is possible that T(n) < T(l)jn. The programs we are comparing have,
however, a large ratio of floating-point calculations to memory accesses, so this
effect does not appear in our plots.] The results are plotted in Fig. 11. The large
spread of the data points is due to the fact that the need for any redistribution
of work (load-balancing), involving communication, is entirely determined by the
original assignment of integTals over the available processors. This is in turn
determined by the number of processors.

E(n)

1 1-1

0.8

0.6

0.4

0.2

• A

•

• .,
'0

A

A •
A

A A
A

::'.,
~.

• A

A •
A 11 !J A A •

o A •
A A

A • A

• o I " , I

10 20 30 40 50 60 70

Fig. 11. Computational efficiency as a function of the number of processors n for a small
calculation. Filled dots are the efficiencies of a program in which all communication between
processors is forbidden. Downward-pointing triangles are for a program in which only entire
integrals may be passed between processors. Upward-pointing triangles are for a program which
implements all steps of the proposed algorithm, using a routine similar to pr _integrate
to integrate.

It is apparent that, while the use of the procedure pLintegrate (i.e. an
implementation of step 4 described above) can improve the efficiency of the
computation by almost a factor of two, the actual computational efficiency reached
is still very small, and drops rapidly as more processors are used together. The
reason for this poor performance is that most of the integration sub domains
passed on to idle processors are so small that these processors finish and return
their result too quickly, causing a high volume of communication and slowing
the computation down.

The cause of the problem is actually the naive recursive implementation of
pLintegrate. A processor spends most of its time at the lower levels (where
the subintervals are smaller) of the recursion tree, where there are more branches,
and so, when asked to provide an interval, usually passes one from these low
levels on. One would like the routine to instead pass on an untreated interval

n

Leading Divergence of a Particle-Particle Ladder 33

from a higher level, but it has no access to these higher levels; it only knows
about the subinterval that was passed to it. The solution to this problem is to keep a list of intervals which must still be integrated over, such that the
largest one is easily found. This largest untreated interval can be passed on to
an otherwise idle processor. Having constructed such a list, however, it is only
natural to also use it to control the integration, making the mechanisms provided
by recursion redundant. The list can be implemented as a stack, upon which
subintervals are placed as subdivision occurs. One can mimic the operation of
Lintegrate by always taking intervals from the top of the stack until the stack is empty. The smallest untreated intervals are always at the top of the
stack, and the largest at the bottom (they were put there at an earlier stage
of the calculation, when the interval had not yet been subdivided so much). Individual processors can imitate Lintegrate internally, but are now able to
pass on the largest untreated interval to another processor on demand to achieve
load-balancing. We have implemented a stack-based version of pLintegrate.
See Fig. 12 for a sketch of the new algorithm (in the actual program, a processor
does not simply wait for results from others when it has nothing more to do,
rather it itself asks for more work). Note that it is not recursive.

procedure ps_integrate(a,b):
1+-0;
]Hlt the interval [a, b] on the .9tack;
while the stack is not empty:

take [a', b'] from the top of the stack;
approximate the integral by t ~ J:: f (x)d:z:;
if the estimated error is tolerable then I +- I + t;
else put [a', (a' + b') /2] and [(a' + b') /2, b'] on the top of the stack;
if the stack is not empty and another processor needs work then

give it an interval from the bottom of the stack;
wai t for those processor's which were given work, and add their results to I;
return I,

Fig. 12. A stack-based algorithm for evaluating the one-dimensional integral J: f{x) dx allowing efficient subdivision of the domain of integration amongst many processors.

Fig. 13 is a comparison of the efficiencies of all the implementations discussed
so far, applied to the same almost trivial problem as in Fig. 11. Curves have
been added as a guide to the eye, where the time required by n processors was parametrised by

1
T(n) ~ Ts + -Tp + nTc,

n (39)

where Ts represents the non-parallelisable part of the calculation, Tp the
parallelisable part, and Tc the part requiring communication. The stack-based routine ps_integrate does indeed bring a significant gain in performance. The
actual efficiency is still low. As is typical for parallel applications, an increase in
the problem size improves the situation. This is possible when Tp increases more
rapidly with problem size than Ts. Efficiencies for the various implementations

34
R. Sinclair

E{n)

0.8

0.6

0.4

o

o I
"'!,

10 20 30 40 50 60 70

Fig. 13. Computational efficiency for a small problem. Filled dots are for a program without

any interprocessor communication. Downward-pointing triangles are for a program in which

only entire integrals may be passed between processors. Upward-pointing triangles are for

a program which implements all steps of the proposed algorithm, using a routine similar to

pLintegrate to integrate. Squares are for a program which instead uses ps_integrate.

applied to a realistic problem (j = -12, ndiv = 1 and £ = 0) are presented

in Fig. 14. One can define a crossover point in an algorithm's performance as

the largest number of processors to which one more processor can be added

without slowing the calculation down. We can approximate this by taking the

parametrisation above, and taking the largest n for which dT(n)/dn < o. In the

case of ps_integrate, this crossover point is at 30 processors for the almost

trivial problem, and at 65 processors for the realistic problem. One sees that

ps_integrate performs significantly better than pLintegrate, and that its

efficiency is quite high even for large numbers of processors.

6. Consistency Checks

Having written a final version of the program for the Intel Paragon, we consider

it to be necessary to check that the assumptions made do actually hold. The

following comments are per definition all positive--the program would otherwise

have been corrected.
We concluded that the eigenvalue >..}O,* would scale exponentially with j for

j « -10 on the basis of preliminary calculations without error estimates. Fig. 15

compares the earlier data with results from the parallel version of the program

(where ndiv = 2).
We have to this point made no estimate of the errors due to discretisation

(only those incurred during integration). Fig. 16 shows the dependence of >..:~,*

on ndiv. The error from the discretisation is indeed neglegible compared to

that from integration. We also conclude that ndiv = 2 is a good working value.

n

Leading Divergence of a Particle-Particle Ladder 35

E(n)

0.8

0.6

00

o
0.4

0.2

0' ~ ~ ~ ~ ~ ~ ~

Fig. 14. Computational efficiency for a realistic problem. Downward-pointing triangles are for a program in which only entire integrals may be passed between processors. Upward-pointing triangles are for a program which implements all steps of the proposed algorithm, using a routine similar to pr_integrate to integrate. Squares are for a program which instead uses ps_integrate.

.\ 2,0,* / .\ 2.0,*
)-1)

2

1. 75

t ! ! ! ! Iff
1.5

1. 25

1

0.75

0.5

0.25
J . . .

-20 -15 -10 -5 0

Fig. 15. Ratios of eigenvalues plotted against j. The data points without error bars are from the preliminary calculations. Those with error bars were produced by the final version of the program.

n

36

).. 2.0.*
-6

0.084

0.082

0.08

0.078

0.076

0.074

0.072

I

1

R. Sinclair

111

2 3 4 5 6

ndiv

Fig. 16. Dependence of the eigenvalue .\:~,* on ndi v. The error bars represent only the

errors incurred during integration.

v2•O,*
-6

Fig. 17. The eigenvector V:g'*(ltol, It!) calculated with ndiv = 2.

Leading Divergence of a Particle-Particle Ladder 37

Fig. 17 depicts the eigenvector V=-'~'*(Itol, Itl) calculated with ndiv = 2. The
cells Dm,n do appear to be concentrated around regions of detail.

The largest calculation (j = -20, ndiv = 2, i.e. 9 x 106 matrix elements) took
three and a half hours of CPU time, using 66 nodes on the Paragon. Attempts to
perform the same computation with the recursive integration algorithms discussed
here were all aborted after four hours.

7. Conclusion

The most efficient computational approach to a given physical problem often
requires much exploratory programming applied to simpler problems. We have
made use of symmetries of our problem to reduce the amount of computation
required, and then tailored algorithms to the computer architecture chosen, with
an emphasis on efficiency. We have found, to our surprise, that the natural,
recursive way to code our adaptive integration routine is not suited to the
load-balancing demands of a parallel calculation. A stack-based algorithm was
found to perform best. We note here that it would be equally appropriate for
the parallel implementation of other adaptive integration schemes (such as those
described in Lepage 1978), or in fact for any calculation involving many matrix
elements expressed as integrals.

The program is available via E-mail tosinclair@math.ethz.ch.ltis
written in FORTRAN77, making use of the Intel nx message-passing library.

Acknowledgments

The author wishes to thank E. Trubowitz and J. Feldman for much good
advice and many helpful discussions.

References
Akl, S. G. (1989). 'The Design and Analysis of Parallel Algorithms' (Prentice-Hall: New

Jersey).
Bares, P.-A., and Wen, X.-G. (1993). Phys. Rev. B 48, 8636.
Davis, P. J., and Rabinowitz, P. (1975). 'Methods of Numerical Integration' (Academic Press:

London).
Fetter, A. L., and Walecka, J. D. (1971). 'Quantum Theory of Many-Particle Systems'

(McGraw-Hill: New York).
Gates, K. E., and Peterson, W. P. (1994). Int. J. High Speed Computing (in press).
Halperin, B. 1., Lee, P. A., and Read, N. (1993). Phys. Rev. B 47, 7312.
Intel (1993). 'Paragon User's Guide', Order No. 312489-002 (Intel Corporation: Santa Clara).
Khveshchenko, D. V., Hlubina, R., and Rice, T. M. (1993). Phys. Rev. B 48, 10766.
Lepage, G. P. (1978). J. Comput. Phys. 27, 192.
Stroud, A. H. (1971). 'Approximate Calculation of Multiple Integrals' (Prentice-Hall: New

Jersey).
Wilkinson, J. H. (1978). 'The Algebraic Eigenvalue Problem' (Clarendon: Oxford).

Manuscript received 21 June, accepted 4 October 1994

