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Experiments are under way at the University of New England to measure the optical absorption 
of excited gas particles in a pre-breakdown discharge. Such measurements can be used to 
deduce the number density of electrons in the discharge. By comparing this experimental 
density map with the predictions of theory, electron transport parameters may be determined. 
In this paper, new theoretical expressions are derived for the number density distributions 
of electrons in a uniform electric field. These are found by solving the electron diffusion 
equation in a plane parallel electrode geometry with a radially symmetric cathodic current 
source. The contribution of ion-induced secondary current is included, and problems posed by 
non-equilibrium conditions near the electrodes are addressed. Techniques of data reduction 
are discussed with a particular emphasis on the avoidance of these problems. 

1. Introduction 
Electron transport parameters have been determined with success by measuring 

the light emitted by excited atoms or molecules in a pre-breakdown discharge 
(Blevin and Fletcher 1992). The rate of excitation of these gaseous particles has 
been shown to be approximately proportional to the number density distribution 
of electrons in the discharge. A disadvantage of this 'luminous flux' method is the 
time delay between the excitation of a state and its fluorescent decay (Fletcher 
and Reid 1980). At the University of New England experiments are under way 
that seek to avoid this problem by the direct measurement of number densities of 
excited particles in a pre-breakdown discharge. It is hoped that by mapping the 
optical absorption of the discharge at selected transition frequencies, the rates of 
excitation, and therefore the distribution of electrons, may be more accurately 
deduced. 

In order to analyse these measurements, theoretical electron distributions must 
first be calculated. Previous authors (e.g. Lucas 1964) have calculated number 
density profiles of electrons in a one-dimensional discharge; three-dimensional 
density distributions have also been published for electron swarms and streams 
between finite plane electrodes in geometries that include a point source of electrons 
(Huxley 1972) and an array of guard rings between cathode and anode (Lucas 
1965). However, discharge chambers in use at the University of New England 
have been designed to examine changes in the current passed by the discharge as 
the electrode separation is varied (see e.g. Folkard and Haydon 1971). In order to 
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preserve the uniformity of the electric field at small electrode separations, it has 
been found necessary to generate the primary current photoelectrically by the 
external illumination of a conducting but transparent window in the centre of the 
cathode. Because the current density available from a photoelectric source is low, 
the window must occupy a significant fraction of the cathode in order to maximise 
the total primary current. Huxley's theory becomes a poor approximation in this 
case. Guard rings have not been used in these chambers because of the difficulty 
of maintaining the spacing between rings as the electrodes are moved. As far 
as the author knows, there is no published work on the spatial distribution of 
electrons that is appropriate to our chamber geometries. The purpose of the 
present paper is to calculate such distributions. 

The theory as given below represents a compromise between two conflicting 
aims: to make the theory as complete as possible while retaining a degree of 
mathematical simplicity. Many approximations have been made, for example, in 
the treatment of the secondary current. This approach is justified in the final 
section, where it is shown that useful information about the transport parameters 
can be gained from an analysis that is independent of the distribution and size 
of the cathode current. 

2. Discharge Geometry and Processes 

The geometry of the discharge volume is depicted in Fig. 1. The discussion 
in this paper will be restricted to gases which are ionisable but non-attaching. 
Electron-ion pairs are generated in such a discharge by collisions between drifting 
electrons and gas molecules at a rate equal to WD:j n, where W is the electron 
drift velocity, D:j is Townsend's primary ionisation coefficient and n( r, z) is 
the number of electrons per unit volume. Secondary electrons may be ejected 
from the cathode by the incidence of ions and also by excited gas particles or 
resonant photons. Excited particles can be divided into short- and long-lived 
(Le. metastable) types, depending on whether a significant fraction decay to the 
ground state before diffusing to the cathode. In this paper the contribution of 
excited states and photons will be neglected, for reasons given below. 

The typical efficiency 'Y of ejection of a secondary electron by an energetic photon 
is low. A simple experiment performed by the author showed that approximately 
100 jt W of 254 nm light incident on a clean copper cathode produced 150 pA of 
photocurrent, giving a 'Y value of about 10-5 for these photons. In contrast, 
Haydon and Williams (1973b, 1976) determined the total efficiency of ejection of 
secondaries from a clean gold electrode by molecular nitrogen ions plus resonant 
photons to be about 2xl0-3 . Fletcher and Blevin (1981) found that atomic ions 
in nitrogen and hydrogen discharges were several times more efficient at ejecting 
electrons from the cathode than were resonant photons [although the molecular 
ion Ht, the dominant species in a hydrogen discharge at low values of E / N (the 
applied electric field divided by the gas number density), was found to be a less 
efficient producer of secondaries than hydrogen-resonant photons]. 

The number densities of short-lived states, and therefore the flux of these 
particles into the cathode, can, by definition, be expected to be negligible. The 
exception to this rule arises in the case of a strong radiative coupling between 
the excited and ground states. The effective lifetime of these states may then 
be kept artificially high by the phenomenon of radiation trapping. The problem 
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of finding the distributions of resonant states under these circumstances is an 
intractable one (Holstein 1947) and will not be attempted here. However, the 
difficulty may be avoided if the effective lifetime of the excited state is significantly 
longer than the time required for ions to drift between the electrodes. Amies 
and Fletcher (1983) found this to be true in helium, for example. In this case 
the respective contributions to the secondary current of ions and excited states 
may be distinguished by the technique described in the following paragraph. 

x 

y 

Cathode 

.. z 

Anode 

Fig. 1. The discharge 
geometry and coordinate axes . 

Metastable excited states may be present in large numbers and may have a 
significant probability of ejecting an electron upon striking the cathode. Their 
contribution is, however, separable from that of the ions. This is because 
ions and electrons drift much faster than the speed of diffusion of neutral gas 
particles. An experiment using a 'chopped' source of primary current therefore 
exhibits phenomena upon two different timescales (see e.g. Haydon and Williams 
1976). The electron distribution attains a quasi-equilibrium state within a few 
microseconds of each activation of the primary source. Nearly all the electrons 
leaving the cathode at this time have come either from the primary source or from 
the impact of ions on the cathode; there has not been sufficient time for significant 
numbers of metastable particles to diffuse back to the cathode. The rise in 
current due to metastable-induced secondaries is typically slower by two to three 
orders of magnitude. Therefore the distribution of electrons immediately after 
turn-on may be calculated to a good approximation by solving the steady-state 
electron diffusion equation without including the effect of metastable particles. 

3. Validity and Boundary Conditions 

The Boltzmann equation for the density of electron states can be approximated 
by a second-order continuity equation in the electron density n( r) (e.g. Skullerud 
1974): 
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where D is the electron diffusion tensor. In cylindrical polar coordinates, the 
steady state form of this becomes 

( a2n 1 an) a2n an 
D -+-- +DL--w-+wain=O, 

ar2 r ar az2 az 
(1) 

where the notation D = Dxx = Dyy and DL = Dzz has been used to conform with 
previous work (Huxley and Crompton 1974). The radial diffusion coefficient D 
has been distinguished from DL as it is well established that they are unequal (e.g. 
Wagner et ai. 1967). The usual route to equation (1) has been via an expansion 
of the electron distribution function f ( v, r) in spherical harmonics within velocity 
space. Generally only the first two terms are kept. Lowke et al. (1977) used this 
approach without any further approximations to derive a continuity equation in 
one spatial dimension, similar in form to equation (1) except that the coefficients 
D and w were found to be functions of r through a dependence on the first 
term in the expansion of f. These authors concluded that the use of constant 
values of these coefficients was an acceptable approximation only where "Vn was 
small; in particular, the approximation was shown to fail badly near an absorbing 
boundary. The thickness of this non-equilibrium boundary layer was found to be 
r:::::,D/w. Skullerud (1974) reached similar conclusions. 

At first sight it seems that equation (1) is not likely to be of any use in 
predicting the variation in electron number density throughout a discharge because 
sensible boundary conditions cannot be imposed. However, it has been found that 
solutions of equation (1) conform closely in shape to experimentally determined 
electron distributions away from the electrode boundary layers (see e.g. Blevin 
et ai. 1976a, 1976b, 1978). It therefore seems likely that the main effect of these 
layers is to make it impossible to use equation (1) to determine with accuracy 
the amplitude of the number density function. The emphasis in this paper has 
therefore been placed upon the determination of transport parameters by the use 
of ratios in, rather than absolute values of, the electron number density. 

The next problem to address is the selection of physically reasonable boundary 
conditions. This paper will follow the practice of previous authors (Huxley 1972; 
Lucas 1965) in adopting, at the anode, the boundary condition n( d) = 0 (where 
d is the electrode separation). Whereas the anode might be expected to exert a 
purely local perturbation upon the electron distribution, the effect of the cathode 
is more fundamental. This is because the streaming of electrons from cathode 
to anode ensures that a large fraction of the electrons making up the bulk of 
the discharge have come straight from the cathode. The electron distribution 
throughout the entire discharge volume thus depends crucially on the distribution 
of current leaving the cathode. These electrons are ejected from the cathode 
surface with a highly non-thermal velocity distribution, their average energy being 
generally lower than the equilibrium value (Haydon and Williams 1973b). The 
lower energy of the electrons in the cathode layer results in a variation in the 
ionisation rate ai within this layer. A method of accounting for this variation 
will be examined in Section 4b. 
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Another problem at the cathode is that the current at a small distance from 
this electrode is less than the current of electrons actually ejected from its surface. 
This is because some of the ejected electrons are immediately reflected by gas 
molecules back to the surface, where they are resorbed. The total current density 
j (r, z) in the equilibrium region far from the electrodes is 

j(r, z) = e[wn(r, z) - DL ~:] , (2) 

where e is the electronic charge. It is tempting to identify the backscattered 
electrons with the diffusive part of the current density defined in equation (2) 
and therefore to equate the ejected current density to the drift current density 
ewn(r,O). This was essentially the approach adopted by Huxley (1972), who used 
a dipole source of electrons at the centre of the cathode. This type of source 
ensures that n( r, 0) = 0 for r> o. This approach cannot be used if the current 
source is extended across the cathode, however, because there may then be places 
on the cathode where (8nj8z)lz=o is negative; equation (2) then predicts a local 
current density near the cathode which is larger than the amount ejected from 
the adjacent surface. To avoid this impossibility, the cathode boundary condition 
adopted throughout the present work is that j (r, 0) given by equation (2) is 
equal to some constant fraction of the flux of electrons ejected from the cathode. 
In other words, let 

j(r, 0) = q[juv(r) + eri cPJr, 0)], (3) 

where q is the constant of proportionality, j uv ( r) is the primary (photo-) current 
density and l'i and cPi (r, 0) are respectively the electron ejection efficiency and 
cathodic flux of the ions. 

4. Results 

(4a) Solution of the Diffusion Equation 

For discharge regimes where the electron number density at the electrode edges 
is negligible, the discharge may be modelled by a space bounded by infinite plane 
electrodes but with the primary current restricted to a circularly symmetrical 
region in the centre of the cathode. Solutions using this model have been found 
for a point source of primary current (Huxley 1972), but none have been proposed 
for an extended current source. Such a solution is developed in this section. 

The above geometry lends itself to use of the zero-order Hankel transform 
(Sneddon 1972): 

H[J(r) :r-+1J] = 100 f(r) Jo(1Jr )rdr 

to solve equation (1). [In(x) is the Bessel function of order n.] Although 
it is generally difficult to back-transform the solutions analytically to obtain 
closed-form expressions for n( r, z), this can be done numerically if desired. 

One advantage in using the Hankel transform arises from the identity 

H[f(r): r-+1J] = Fc{A[f(r): r-+x]: x-+1J}, (4) 
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where Fc{ } and A[ 1 are the Fourier cosine and Abel transforms respectively. 
Many techniques for measuring the densities of molecular species in a cylindrically 
symmetrical space return Abel-transformed data; in these cases, the application 
of a Fourier cosine inversion to the Hankel transformed solutions presented below 
enables the comparison with experiment to be made without the necessity for 
smoothing and Abel inversion of the data values. 

The transformed steady-state electron distribution N(ry, z) = 1i[n(r, z): r ----- ryl 
obeys the differential equation 

82N _2>..8N + [>..2-u2(ry)lN =0, 
8z2 8z 

(5) 

where 

>.. = w/2DL 

and 

u 2(ry) = >..2 - 2>..aj + "12 D/ DL . (6) 

There are two cases to consider: either u 2(0) > 0 or u 2 (0) ::::: O. The first case 
only will be considered here, since >.. » 2aj in most discharge regimes of interest. 
In this case the general solution to equation (5) is 

N(ry, z) = A(ry) exp[(>.. - u)zl + B(ry) exp[(>.. + u)zl. 

Application of the electrode boundary conditions described in Section 3 gives the 
particular solution 

(("I, 0) 
N(ry, z) = ({exp [(>.. - u)zl- exp[(>.. + u)z - 2ud]} , (7) 

eDLf3 "I) 

where 

(("1,0) = 1i[j(r, 0) : r ----- ryl 

and 

(3("1) = >.. + u - (>.. - u) exp( -2ud). 

The electron distribution can be found by back-transforming, I.e. 

n(r, z) = 100 
N(ry, z) Jo(w) "I dry . (8) 

In the pre-breakdown regime most of the cathode current j ( r, 0) will be 
concentrated within the window area of radius Rw. This is because the current 
within this area arises from both primary and secondary contributions whereas 
the current density at greater radius is due only to secondary sources. The 



-----------------------
Electrons in a Uniform Field 95 

function j (r, 0) may therefore be expected to have a shape that is peaked at r = 0, 
decreasing asymptotically to zero as r -4 00. The width of this function at half 
maximum will be of the order of Rw. Recall that the space-bandwidth product, 
found by multiplying the respective half-maximum widths of a function and its 
Fourier transform, is approximately equal to 27r. Because the Hankel-transformed 
cathode current «(r/, 0) represents a radial 'slice' through the two-dimensional 
Fourier transform of j(r,O) (Sneddon 1972), one might expect the amplitude 
of «("l, 0) to be negligible at values of"l much greater than 27r/Rw • A good 
approximation to the solution n(r, z) may therefore be obtained by truncating 
the integral in equation (8) at some value "l' > 27r/Rw . Equation (8) could 
then be integrated numerically using a discrete Hankel transform. An example 
solution calculated using the discrete transform algorithm of Siegman (1977) is 
displayed in Fig. 2. The form used for j(r,O) was 

Ui' .-g 
::J 

-e 
~ 

j(r, 0) = qjUy(r) = {qjUY' 
0, 

r < Rw 
r> Rw. 

0.4 rl -------------------------------------------, 

'" 

0.3 I- """" , 
< • • • 

-~ 0.2 
c: 
Ql 

""0 

E 
~ 
:; 
o 0.1 

O! --- I 
o Rw RE 

Radius 

Fig. 2. Distributions of current across the anode. The solid curve is the exact 
solution obtained by the Hankel inversion of equation (7); the dashed curve is the 
approximate solution given by equation (17). The small gap in the solid curve 
near the vertical axis is an artefact of the Hankel transform algorithm. 

(9) 

The transport parameters used to calculate the curves in Fig. 2 are similar 
to those measured by Purdie and Fletcher (1989) for a discharge in nitrogen 
at a reduced electric field E / N of 100 Td (1 Td = 10-21 V m2 ). An electrode 
separation of 25 mm and a gas number density of 1·609x1022 m-3 (=0·5 Torr 
at 300 K) were assumed. The values used for Rw and RE were, respectively, 10 
and 30 mm. For the sake of the example secondary processes were neglected. 

It is possible to further manipulate equation (7) so that only the distribution 
of primary current need be known a priori. The first step in this procedure is to 
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consider the flux of ions onto the cathode. This is easy to calculate if the radial 
diffusion of the ions can be neglected. Consider a cloud of ions originating at a 
point source on the anode. The radial spread of this cloud may be estimated by 
calculating the mean radial displacement I T I of the ions. McDaniel (1964) gave 
as the ratio between I T I and the electrode separation d, 

I T I 0 ·172 
d= v'v ' 

where V is the potential difference between the electrodes. Clearly the sideways 
diffusion of ions can be neglected for values of V larger than about 5 V. Hence 
we may write 

<I>i(1],O) 
d 

WCYi 1 N(1], z) dz 

2..\CYi ((1],0) {2U exp[(..\ _ u)d]- 1} , 
e(..\2_u2) f3 (10) 

where <I>i is the transformed cathodic ion flux density. Equation (10), when 
inserted into the Hankel transform of equation (3), allows the reformulation of 
equation (7) as 

N(1], z) = q5(uv(1], 0) {exp[(..\ - u)z]- exp[(..\ + u)z - 2ud]} , (11) 
eDL f3 

where 

_1 = {1- 2q..\CYi'i [2U ]} 5(1]) ..\2 _ u2 73 exp[(..\ - u)d] - 1 . (12) 

If u(1]) = ..\ for any 1], 5(1]) becomes, for that value of 1], 

1 { qcy',' 
5(1]) = 1 - 2~ 1 [(2..\d + 1) exp( -2..\d) - 1]} . 

In the case that the primary current is generated by the backlighting of a circular 
window, as described in Section 1, juv(r) will have the form given in equation 
(9). The Hankel transform of this function is 

(uv(1], 0) =juv Rw J l(1]Rw )/1]. (13) 

Note that S as given by equation (12) is singular if 

2~..\CYi "0 {~ exp[(..\ - u)d]- I} = 1. 

It can be shown that S is nonsingular for all 1] at electrode separations d less 
than some value dbd; at this separation, the singularity occurs at 1] = O. No 
solution exists at this separation because the inverse transform in equation (8) 
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does not converge in this case. This singularity corresponds to the electrical 
breakdown of the gas. 

(4b) Effects of the Variation of D:i near the Cathode 

As mentioned in Section 3, the effective ionisation coefficient may vary in the 
cathode non-equilibrium layer. The above analysis could be amended to include 
this effect by allowing D:i in equation (5) to vary with z. This dependence of D:i 
on z can be approximated, in many discharge regimes, by the step function 

{ 0 z < do 
D:i(Z) = ;i' Z > do 

without significant error (Haydon and Williams 1973a, 1973b). An analytical 
solution is possible in this approximation, albeit at the expense of greater 
mathematical complexity. The solution N becomes 

where 

{ 
B(TJ) exp[(A - u')z] + C(TJ) exp[(A + u')z], 

N(TJ, z) = A(TJ) 
exp[(A - u)z]- exp[(A + u)z - 2ud], 

(U')2 = A2 + TJ2 Dj DL , 

z < do 

z > do, 

The coefficients A, Band C can be evaluated by appropriate use of the boundary 
conditions at z = 0, do and d. When secondary current is included, an expression 
similar to equation (11) is obtained. The parameter 5' that has the same role 
as the 5 in equation (11) is given by 

5'( ) = [1 _ 2qAD:i Ii W( )]-1 
TJ ~'(~ TJ , 

where 

~'(TJ) = B(TJ)(A + u') + C(TJ)(A - u'), 

W(TJ) = 2u exp[(A - u)d] 

-{(A + u) - (A - u) exp[-2u(d - do)]} exp[(A - u)do]. 

In Fig. 3 three distributions of anode current are plotted. The transport 
parameters used here are similar to those measured by Blevin et ai. (1976b, 1978) 
for a discharge in hydrogen at 200 Td and 1· 609x 1022 m-3 (=0·5 Torr at 300 K). 
Folkard and Haydon (1971) measured the thickness ofthe cathode non-equilibrium 
layer to be about 16 mm at this field and pressure. An electrode separation of 
25 mm has been used in the present example, the secondary ionisation coefficient 
Ii being arbitrarily set to one half of the value required to produce electrical 
breakdown of the gas at this distance. All the other parameters are the same as 
those used to calculate the current distributions displayed in Fig. 2. 
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Fig. 3. The effect of the variation of ai in the cathode non-equilibrium layer 
upon the anode current distribution. The solid curve represents the distribution 
calculated using the step-function approximation for ai, with do = d/4. The 
dashed curve is the current distribution in the approximation do = O. The dotted 
curve was calculated using the same approximation, but with an effective value 
of 'Yi' given by equation (15). 

The solid curve in Fig. 3 represents the distribution of anode current calculated 
using the step-function approximation for (ti, with a value for do of d/4. The 
dashed curve is the solution obtained using the cruder approximation that do = O. 
The two curves have been normalised to the same total anode current but are 
clearly different in shape. However, most of this difference arises from the spread 
of the discharge across the cathode as the proportion of secondary to primary 
current increases in the approach to breakdown. In fact the error in the shape 
of the do = 0 solution can be largely corrected by using an effective value of I'i 
scaled so that the ratio between the total primary cathode current and the total 
secondary cathode current is the same for the two cases. This can be achieved 
by setting 8(0) equal to 8'(0). A fair approximation to this condition can be 
obtained by neglecting the influence of longitudinal diffusion, giving a value for 
the effective coefficient 1'1 of 

, exp( (ti d - (ti do) - 1 
I'i = I'i () . exp (ti d -1 

(14) 

A third solution was calculated, using the (simpler) do = 0 analysis, but with an 
effective I'i calculated using equation (14). When the resulting current density 
is plotted, normalised again to the same value of total anode current as the 
do = d / 4 solution, these two curves vary by less than 2%. 

Note that the parameters necessary to apply equation (14) can be independently 
calculated by measurements of the total current passed by the discharge at 
varying d (see e.g. Haydon and Williams 1976). 
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(4c) Approximate Solutions 

Equation (6) can be rewritten as 

( T}2 D ) 
u2 (T}) = u6 1 + u6 DL ' 

99 

where the shorthand Uo = u(O) has been used. Expanding u(T}) in terms of T} 
gives 

2D 
u(T}) = Uo + ~D + O(T}4). 

2uo L 

This series converges provided that 

~ T} < uoy D· 

The transformed number density N given by equation (7) may therefore be 
approximated at small values of T} by 

((T},O) (T}2 Dz ) N(T}, z) ~ --Zo(z) exp - -- , 
eDL (30 2uo DL 

(15) 

where 

Zo(z) = exp[(A - uo)z]- exp[(A + uo)z - 2uo d]. 

In Section 4a it was shown that N becomes negligible at values of T} greater than 
27r / Rw. Equation (15) can, therefore, be used in place of equation (7), provided 
that 

27r ~ 
Rw <uoYD· 

Use of the assumption made in Section 4a that Uo ~ A changes this condition to 

wRw > 47rVDDL. 

This condition is satisfied by many monatomic and diatomic gases at values of Rw 
of around 10 mm, if the gas number density is greater than about 3x1022 m-3 

(equivalent to roughly 1 Torr at 300 K). The solution of equation (15) is obtained 
formally by a reverse transform: 

n(r, z) ~ Zo(z) roo ((T}, 0) exp ( _ T}2 Dz ) Jo(W) T}dT}. (16) 
eDL (30 ) 0 2uo DL 

In the small-signal limit, j( r, 0) has the step function form described by 
equation (9). The Hankel transform of this current distribution is given in 
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equation (13). If «(TJ,O) has this form, the right-hand side of equation (16) 
can be expressed in terms of a tabulated function. Inserting equation (13) into 
equation (16) and using the replacements 

and 

produces 

x2 = UODL R2 
2zD w' 

2 _ Uo DLr2 
y - 2zD 

t 2 = zD 2 

2uo DL TJ 

n(r, z) ~ qjuvZo(z) [2X ['Xl exp(-t 2 )Jo(2yt)Jl(2xt)dt]. 
eDL f30 Jo 

(17) 

The term in square brackets is the function x2V1fF(x, y) described by Luke 
(1962) and references therein. It is tabulated as P(xy'2, yy'2) in Masters (1955). 

A plot of the anode current obtained using equation (17) is compared in Fig. 2 
with the exact solution derived in Section 4a. The same transport parameters 
were used. The two curves agree well, indicating that the approximation given 
in equation (16) is a valid one. 

5. Data Reduction 
The proposed experiment uses a 'chopped' ultraviolet light source to generate 

bursts of primary current. Changes in the number density of excited states 
will be monitored by measuring the optical absorption integrated along a path 
through the discharge. The number density nj of an excited state obeys a 
diffusion equation of the form 

anj at = wO'.j(r, t) n(r) + D j \i' 2nj _ nj 
Tj 

where O'.j is the total rate of electronic excitation, D j is the diffusion coefficient 
and T j the lifetime of the state. The time dependence of the excitation rate 
arises from the cascaded contributions from states of higher energy (Fletcher and 
Reid 1 9S0). Provided that the maximum lifetime T of these states is significantly 
shorter than T j, an intermediate time scale T < t < Tj can be defined. Within 
this timescale the rate of increase of nj may be expected to be approximately 
constant and given by 

anj 
at ~ wO'.j(r) n(r). 

The initial rate of rise k(x, z) of the total optical absorption along a line parallel 
to the y axis will therefore be given, for T < t < Tj, by 
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1 dI 100 

i£(x, z) = -- = WIJ aj(r) n(r) dy, 
I dt -00 

where IJ is the absorption cross section. In deriving this expression it has been 
assumed that the total absorption is small and that the light is monochromatic 
and tuned to a tram,ition of the jth excited ~tate. The value of aj depend~ on the 
mean energy of the electrons. The conditions under which this is approximately 
spatially invariant have been discussed in Section 3. Where this invariance holds, 
it follows that 

i£(x, z) ex 1: n(r) dy. 

From the identity given in equation (4), 

Fc[i£(x, z): x~ryl ex N(ry, z) = 'H[n(r, z): r~ryl. 

The Hankel-transformed electron number density N can therefore be approximated 
by sampling 1£ at several values of x and then applying a discrete Fourier transform. 
Let the function G be defined as 

G(ry) = Fc[~(x, zd: x~ryl 
Fc[K(X, Z2): x~ryl 

N(ry, zI) 
N(ry, Z2) 

Use of the approximation in equation (15) shows that 

G(ry)~exp[(.\-uo- Dry2 )(Zl-Z2)]' 
2DL Uo 

The parameters .\-uo and D / DL Uo can therefore be determined by evaluating 
G from measurements of 1£ at two values of z and then fitting a Gaussian to the 
result. These parameters can be cast in a more familiar form by use of equation 
(6). This gives 

.\ - Uo = .\ (1 - vII - 4ai DL/ w) ; 

for aiDL « w this reduces to 

.\ - Uo ~ aJ1 + ai DL/W), 

In the same limit 

~ ~ 2D (1 + 2ai DL) . 
DLUO W W 

Note that 

1£(0, z) = 2wai IJ 100 N(ry, z) dry. 
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The parameter Uo can be estimated by fitting the integral in this equation to 
samples of k taken near the anode. 

The techniques described above permit the determination of O!j and the ratios 
w / DL and D / DL. It does not appear to be possible to deduce the value of 
w using steady-state measurements. A more complete experimental technique 
would require the use of a short, intense source of primary current such as the 
excimer laser used by Purdie and Fletcher (1989). 
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