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Abstract

Starting from the general momentum and energy balance equations for charged particle
swarms in a gas, as furnished by momentum-transfer theory, we obtain expressions for mean
velocity and mean energy of an electron swarm in an r.f. electric field under spatially uniform
conditions, in the frequency range WTe > 1, where Te is the energy collisional relaxation time.
If Te is a decreasing function of energy, it is shown that the cycle-averaged mean energy reaches
a maximum at a certain frequency. Physical arguments are provided to support this result
and the prediction is verified for a constant elastic cross section model by direct numerical
solution of Boltzmann's equation.

1. Introduction

Periodic steady state plasmas driven by radio frequency and/or micro waves
are widely used in microelectronic device fabrication and in gas laser excitation
(see for example Makabe et at. 1994). In these new technological applications,
the frequency covers the range 100 kHz to 2·45 GHz. Most plasmas are sustained
between capacitively coupled parallel plates or in an inductively coupled cylinder,
both in a collision dominated or in a collisionless regime. Radio-frequency
electron transport in a collision dominated plasma, where binary scattering
between an electron and neutral molecules is significant, is of key importance to
understanding collective properties and behaviour of r.f. or microwave plasmas.
In these circumstances, systematic theoretical investigation of an r.f. electron
(swarm) transport is highly desirable.

The topic dealt with in this paper is the maximal property of the cycle-averaged
mean energy of an electron swarm in an r.f. field, with respect to the frequency
of this field. Fig. 1 below shows the typical frequency dependence, as obtained
from numerical solution of Boltzmann's equation (Makabe 1991). Clearly the
cycle-averaged energy increases with frequency at first, attains a maximum and
then decreases monotonically with a further increase of frequency. Notice for H2

that the velocity modulation also has maximum amplitude when the cycle-averaged
energy has a maximum. However in CH4 , although the maximal property for the
cycle average energy is evident, the distinct maximum in the velocity modulation
occurs at higher frequencies for reasons to be discussed subsequently. This
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Fig. 1. Time modulation of the electron swarm parameters in H2 (solid curve) and CH4
(dashed curve) for different values of w / N at E / N == 50 Td: (a) ensemble averaged energy
and (b) drift velocity.

maximal property in the cycle-averaged mean energy has also been observed by
Yamanashi et ale (1991) and Loureiro (1993). We explain this phenomenon in
Section 3 through an approximate, analytic solution of certain momentum and
energy balance equations (Section 2). The results are augmented by a physical
discussion in Section 4.

But first, a word about the philosophy of our approach and a caution. While
there has been a. great deal of activity in recent times in developing numerical
solutions of Boltzmann's equation for r.f. swarms (Winkler et ale 1987; Capitelli
et ale 1988; Ferreira et ale 1991; Makabe and Goto 1988; Goto and Makabe 1990;
Makabe 1991; White 1993; Loureiro 1993), very little progress seems to have
been made in developing analytic solutions, in stark contrast to the case for d.c.
fields. The situation in the mid-1960s was reviewed by McDaniel (1964), while
Loureiro (1993) provided a more modern perspective, particularly with regard to
the 'effective field' concept, of direct relevance to the present paper. We feel that
there is an identifiable need at this time to try to fill the gap in the understanding
of r.f. swarms through provision of simplified arguments and mathematics, and
the vehicle we use for this purpose is momentum transfer theory, well known
in the theory of d.c. transport (Mason and McDaniel 1988). The equations
furnished by this theory, which form the basis for almost the entire discussion,
are reviewed in Section 2. The cautionary note is that the reader should be
careful to distinguish between the two averaging processes referred to here: The
'mean energy' for example refers to the instantaneous average of energy over the
electron swarm, which can be further averaged in time, e.g. over one cycle of
the oscillating field. The latter process is designated 'cycle-averaging' in what
follows.



Frequency Variation of Mean Energy 337

2. R.F. Swarm Model Equations

(2a) Momentum-transfer Theory, Balance Equations

In this paper we shall adapt the balance equation of momentum-transfer theory
to charged-particle swarms in a.c. electric fields. This theory is well known for
providing physical insight and good semi-quantitative results (typical accuracies
f'.J 10%) for transport properties of ions, electrons and positrons in electrostatic
fields (Robson 1984, 1986; Robson and Ness 1988; Ness and Robson 1988;
Mason and McDaniel 1988). It provides a very useful contrast to the detailed,
rigorous numerical analysis normally associated with the solution of Boltzmann's
equation, but of course will never be a true alternative to the latter when high
accuracy ( ;s 1%) is required. The method is applicable to both heavy and light
charged particles and can therefore be used to analyse weakly ionised gases used
in plasma processing and gas laser excitation. The space-time varying fields
occurring in these plasmas can be incorporated directly into the equations of
momentum-transfer theory without further ado, since the only approximations
involved are in the collision terms; the field terms are exact and are of the
same mathematical form, regardless of whether the field varies in space-time or
not. This paper therefore constitutes the first step in a natural progression of
extension of the d.c. momentum-transfer results to a.c. fields.

The theory, at its lowest level, is similar in spirit to the 'relaxation continuum'
model of Makabe et al. (1992), but the origin and definition of the collisional
relaxation times is more precise. In essence, momentum-transfer theory provides
a scheme for systematic approximation of collision terms in moment equations
generated by integrating Boltzmann's equation for each charged species with
1, mv, ~mv2, ... over all particle velocities v. In the lowest approximation,
momentum-transfer theory consists in employing collision terms of the same
mathematical form as for the Maxwell (constant collision frequency) model, but
with cross sections evaluated according to actual energy dependencies. The
accuracy of the approximation can be assessed internally and consistently. Details
can be found in Robson (1984, 1986) and Mason and McDaniel (1988).

In order to simplify the discussion, we consider only light swarm particles and
assume spatially uniform conditions. The gas is assumed cold. In that case, it
can be shown that equations (8) and (9) of Robson and Ness (1988) simplify to

~ (v) + Vm((f))(V) = e: '
d

Te((E))-(E) + (E) == ~M(v)2 - O((E))
dt

(1)

(2)

respectively, where (v) is the average velocity in the direction of the field E, (E)
the mean energy, and

,.., 2 ( ) I
Vm == Vm. + VI + '3 E Va ~ Vm ,

Te = (~ Vm ) -1 ,

(3)

(4)
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n = Te [~ViEi + VIEI + (VI + ~ (E)V~) (E)] . (5)

We denote by m and M the masses of the swarm particle and neutral
molecule respectively, while Vm, Va, VI and Vi denote ensemble averaged collision
frequencies for momentum transfer, attachment, ionisation and the ith inelastic
process respectively, while EI and Ei denote the ionisation energy of the molecule
and threshold energy for the ith inelastic process respectively.

D.C. field. If E is a constant in equation (1), then a steady state is eventually
attained, i.e,

d(v) = 0,
dt

d(E) = 0 j

dt

where the average ('drift') velocity Vd =(v) and mean energy Ed =(E) are given
by the solution of the equations

Vm(Ed)Vd == eE/m,

Ed == ~Mv~ - O(Ed)'

(6)

(7)

Once the cross sections Q are specified as functions of energy E, collision
frequencies can be found [e.g. Vm(Ed) == N y'2Ed/m Qm(Ed)] and the equations
can be easily solved. [Note that cross sections characterised by sharp thresholds
must be treated more carefully (Robson 1984).]

The following useful identities follow from direct differentiation of (6) and (7):

Mv dVd == (1 O')~
d dIn E + dIn E '

_Mv2dlnvm == (1 O')~
d dEd + 1 + K' ,

where K == Vd/ E is the mobility coefficient, and

(8)

(9)

0'= dO
dEd'

K' == dInK
- dInE'

(10)

Negative differential conductivity (NDC) arises when 1 + 0' < 0 (Robson 1984).

A. C. field. We now consider harmonically varying fields

E(t) == Eo coswt. (11)
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For simplicity, we henceforth write v for (v) and E for (E) and hence equations
(1) and (2) become

iJ + Vm(E)V = eE(t)
m'

Te(E)i + E= ~Mv2 - O(E)

(12)

(13)

respectively. These are nonlinear in v and E and must in general be solved
numerically. Although this can be readily carried out, the avenue which we explore
in this paper is to obtain physical insight through analytic (albeit approximate)
solution of the equations.

Before going into these details, it should be noted that quite general symmetry
arguments can be invoked (Robson 1995, present issue p. 347) to demonstrate
that v(t) and E(t) can be represented by Fourier series involving, respectively,
only odd and even harmonics of w, i.e, showing only leading terms (see also Goto
and Makabe 1990, Margenau 1948; Margenau and Hartman 1948):

v(t) == Vacos(wt - 'Pm) + ... ,

E(t) == EO + El cos(2wt - 'Pe) + ... ,

(14)

(15)

where vo, EO, El, 'Pm and 'Pe are appropriate amplitudes and phase shifts
respectively. This sort of representation is very useful in discussing the analytic
solution of (12) and (13).

(2b) Approximate Solution of Balance Equations

We now write for the mean energy

E(t) == EO + DE(t) , (16)

where DE(t) is the oscillatory part of the energy, assumed small compared with
the cycle-averaged value EO,

DE« Eo.

As we shall see, this corresponds to a frequency regime such that

WTe > 1.

(17)

(18)

In what follows, we thus linearise in the small quantity DE. Thus, for example,
we expand

to first order in DE.

l/m(E) == l/m(EO) + DE l/:n(EO) + ... ,

O(E) == O(EO) + DE O'(EO) + ...

(19)

(20)
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To this order of approximation, the solution of the momentum balance equation
(12) in the periodic steady state (after all transients have decayed) is

v(t) = e~o100

drcosw(t - r) exp { -iT dr'Vm(E(t - r'))}

~ e~o100

drcosw(t - r)e- II"' (€O)T { 1 - V:"(Eo) iT dr'&(t - r')}. (21)

If the energy balance equation (13) is integrated over a cycle and (20) is employed,
we find that the cycle-averaged energy EO satisfies

EO = ~Mv;ms - O(Eo) , (22)

where Vrms denotes the root-mean-square drift velocity. Then the linearised
energy balance equation is

Te(Eo)bE + bE[l+ O'(EO)] == ~M(v2 - v;ms). (23)

Henceforth, the EO dependence of 0, Te , etc. will not always be made explicit.
We seek solutions of (21) and (23) corresponding to the lowest-order time

harmonics, as indicated in (14) and (15). Thus, if (14) is substituted into the
r.h.s. of (23), we find

bE(t) == E1 cos(2wt - 'Pe) , (24)

where

1M 2'2 vrms (25)E1 == , cos () ,
1+0

'Pe == () + 2'Pm , (26)

_ -1 ( Zurr; ) (27)() == tan 1 + 0' .

If (24) is then substituted into the r.h.s. of (21) we obtain (14) once again with

eEo/m 1
Vo == [1 - 4Pcos () cos( 'Pe - CPm) cos 'Pm] ,

Jw 2 + v~

'Pm == 'P - ~P cos () sin( 'Pe - 'Pm) cos 'Pm .

In these expressions

sp == tan- 1(w/ vm ) ,

Mv 2 dlnvmrms __
P == -1-+-0-' dEo

(28)

(29)

(30)

(31)
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The rms drift velocity is given by

Vr m s = vo/V2 = eEel1
mlJm(Eo'\ ,

where

EelI == E~~j [1 - ip cos 0 cos(<Pe - <Pm) cos <Pm] ,

E(O) = Eo/V2 = Eo cos .
eff - vil +W2/V;'(EO) V2 'P

341

(32)

(33)

(34)

Equations (22) and (32) are of identical mathematical form to the d.c. equations
(7) and (6) respectively. Hence, just as the d.c. field E determines the d.c.
transport properties va and Ed, so are Vrms and EO determined by Eell' For this
reason, we may think of Eel I as constituting an equivalent or 'effective' d.c. field,
for cycle-averaged a.c. transport properties. Note that E~~j in equation (34)
resembles a more conventional definition of effective field, sometimes employed
in the analysis of a.c. transport (Ferreira et ale 1991; Loureiro 1993), although
elsewhere the definition of lJm often appears somewhat arbitrary. The value of
Eel I differs from E~~j through the factor in square brackets in (33), and this
in turn differs from unity only over a certain range of frequencies, as explained
below.

By (22), (24) and (25) it is clear that the assumption (17) holds if

l+n'
cosO = J(1 + D/)2 + (2WT

e
)2

(35)

is small and a sufficient condition for this to be true is if (18) holds. Beyond
this, however, there is no restriction on the applied frequency.

Many of the results for the d.c. case carryover to the a.c. case in terms of
Eel l. Thus (8) and (9) become

M dVrms - (1 n,)~
Vrms - + ~G ,

d(ln EelI) d(ln EelI)

K;msn') ,- - (1 + 1 + K
r m s

where n' == dn(EO)/dEo and

d(lnKr m s ) ,

K;ms = d(ln EelI )

K rms == vrms/ Eel! .

(36)

(37)

(38)

(39)
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Equation (31) for the important parameter p can thus be written as

p == -K;ms/(1 + K;ms) . (40)

Finally, note that just as for the d.c. case, NDC can arise, in the sense that
dVrms/dEeff < 0, if 1 + n' < o.

3. Frequency Variation of Transport Properties

The variation of EO and Vrms with w is controlled entirely by Eef f (w) and, since
EO is a monotonically increasing function of Eef f' it follows that if the effective
field has an extremal at a certain frequency, then so will the cycle-averaged
energy. That is, it is sufficient to explore the frequency dependence of the
effective field (33) in order to understand how cycle-averaged properties depend
upon frequency.

On the r.h.s. of (33), E~~)f is a monotonically decreasing function of wand
controls the behaviour of Eef f at high frequencies. In contrast, the term in
square brackets may actually increase with frequency, provided that

p> 0, (41)

and approaches unity in the high frequency limit. This combination of factors
means that Eef f' and hence EO and Vr.ms, may reach a maximum at some
frequency, provided that (41) holds at that frequency.

We now focus on the frequency range

Ve < w« V m

and observe that in this case (33) can be approximated by

Eo 1 2 2) ( A)Eeff(w) ~ ;n(1 - 2w Tm 1 - 122 '
y2 2 w r;

where

== 1 (1+ n')2 (m) 2 .A- sP M

It is then readily shown that 8Eeff/8w == 0, 8Eo/8w == 0 when

lW2T 2 == A!2 m ,

(42)

(43)

(44)

i.e.

or equivalently

WTm = (p/2)t (11 + O/!)! (:) !

(

.1

1 1 1 2

WTe = 2(p/2):r (11 + 0/ 1)2 :) .

(45a)

(45b)
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Obviously (41) must hold in order for these equations to make sense physically.
Given that we also expect p;:S 1 for most realistic situations, it is clear that
equations (45) are consistent with the original assumption (42). Notice that the
maximum value of effective field is

Eell = Eo/Vi(l - A!)2 ~ Eo/Vi, (46)

since A is small. Then maximum values of EO, Vr m s are found by substituting
(46) in the r.h.s. of (31) and solving (22) and (31) simultaneously. Beyond
this maximum, Eel I and EO decrease monotonically with increasing frequency
w. This remark is also true for V r m s , unless a region of (cycle-averaged) NDC
is encountered as the frequency is further increased, leading to an additional
maximum in vr m s . We now examine the key requirement (41) in more detail.
Obviously in the absence of ionisation, attachment and inelastic processes (0 = 0)
and when Vm = Vm(EO) increases with EO, equation (31) indicates that p > 0,
and hence Eel I and EO attain maxima. In this case (36) shows that V r m s is
also a monotonically increasing function of Eel f, and therefore it, too, reaches
a maximum at the same value of w. The same remarks apply even in the
presence of attachment, ionisation and inelastic processes (0 i= 0), provided that
1 + 0' > 0 at that frequency. On the other hand if at this frequency 1 + 0' < 0
(a region of NDC in a cycle averaged sense), equation (41) cannot be satisfied
unless Vm is a decreasing function of energy, but this combination is improbable
for realistic cases.

In summary, if Vm. is an increasing function of energy then, generally speaking,
the cycle-averaged energy EO and rms drift velocity V r m s simultaneously attain a
maximum at a frequency satisfying (45). For combinations of elastic and cross
sections such that 1 + 0' < 0 in the relevant frequency range, however, no such
extremal property is possible. An interesting exception to this general rule occurs
when 1 + 0' < 0 outside the frequency range for which EO attains its maximum,
for then V r m s may have an additional extremals as w is varied. This is the case
for CH4 as shown in Fig. 1, as discussed below.

To make these results more concrete, we take a model where the electrons make
only elastic collisions with the neutrals, the collision frequency being governed
by a simple power law

Vm (E) rv E(l+1)/2 ,

where l is an arbitrary constant. In that case (22) and (31) together give

MV;ms d(1uvm) = l + 1 .
p = EO d(ln Eo)

(47)

(48)

For the constant cross section model l = 0, p = 1 and the frequency for which
energy reaches a maximum follows from (45a):

WTm = 2-1/ 4 (;; ) ! . (49)
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We have also calculated the cycle-averaged mean energy over a range of frequencies
for a constant cross section model by solving a multiterm Boltzmann r.f. code
(White 1993) and the results are displayed in Fig. 2. The peak is quite broad,
but the position of the maximum nevertheless appears to be very close to the
predicted value (49).

Fig. 2. Frequency variation of the cycle-averaged energy for the
constant cross section model: am == 5 A2, E/N == 1 Td and To == 0 K.

4. Discussion

The previous section gives the derivation of an expression (equation 45) for the
frequency at which the cycle-averaged energy reaches a maximum, based upon the
approximate momentum-transfer theory. It was shown that such a maximum is
possible only if Te (€) decreases with energy. We now present a physical argument
to supplement this mathematical discussion, following the thesis of Maeda (1993).
For convenience, we refer to H2 in Fig. 1. At low frequencies WTe < 1, mean
energy is a function of the instantaneous field and oscillates between a minimum
of zero (where the field is zero) and a maximum value when the field is also a
maximum. As frequency is increased, the minimum value of mean energy increases
above zero, since WTe (€) is not small at low energies, and electrons cannot relax
their energy. However, at higher energies, WTe (€) may in fact be small [Te (€)
decreases with €], allowing the electron energy to relax. The maximum value of
€ attained in a cycle therefore remains virtually unchanged, but the minimum
value increases, as frequency is increased. Therefore the cycle-averaged energy
increases with frequency at first. As W is further increased, however, WTe > 1
over the entire cycle and electron energy cannot be relaxed. The modulation is
therefore weaker and the cycle-averaged energy attains a maximum in this range
of frequencies. Finally, at high frequencies when WTm > 1, electrons are trapped
by the oscillating field and energy is not fed in. As a result the mean energy falls
with increasing frequency. The prediction on physical grounds is thus that the
cycle-averaged mean energy has a maximum somewhere in the range specified by
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(42), provid.ed that the relaxation time decreases with increasing energy. This is
consistent with the restriction (41) in the corresponding mathematical treatment.

For CH4 in Fig. 1, this also follows the general pattern referred to above, but
in contrast to H2 , V r m s actually appears largest at frequencies well above the
frequency corresponding to the maximum EO. In fact, EO falls dramatically while
Vr m s is still rising. This is the 'signature' of NDC (Robson 1984), and what is
observed can be explained as in Section 3 in terms of an additional maximum in
V r m s at high frequencies, following on from the (shallow) maximum in V r m s which
occurs simultaneously with maximum EO. This property of the drift velocity in
CH4 was observed and discussed by Goto and Makabe (1990) and displayed in
their Fig. 8.
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