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Abstract

A multi-term solution of the Boltzmann equation is used to calculate the spatially homogeneous
velocity distribution function of a dilute swarm of electrons moving through a background
of denser neutral molecules in the presence of crossed electric and magnetic fields. As an
example, electron motion in methane is considered.

1. Introduction

Despite a long history of investigation (Allis 1955; Huxley and Crompton 1974;
Heylen 1980) many aspects of charged-particle transport through neutral gases
in the presence of both electric and magnetic fields remains unexplored. This is
true from both an experimental and theoretical perspective, and is in part due
to the practical and theoretical problems that arise when the magnetic field is
included with no desired loss of precision in either measurement or calculation.

In recent years interest in charged-particle transport through neutral gases
under the conditions of crossed electric and magnetic fields has revived. This
interest was in part motivated by the desire to understand the physics underlying
the operation of wirechambers in which the geometry of crossed electric and
magnetic play an important role (Heintze 1978; 1982). Of more fundamental
interest is the possibility of using data obtained from Ex B experiments in the
swarm derivation of electron-molecule scattering cross sections (Schmidt 1993;
Schmidt et al. 1994). In order to achieve this, a general, accurate theory (at
least as accurate as experiment) is required. Such a theory, Ex B based on the
spherical-harmonic decomposition of the Boltzmann equation, has been published
by the author (Ness 1993). In that paper the general formalism was given for
solving the Boltzmann equation for reacting charged-particle swarms in neutral
gases in the presence of an electric and magnetic field set at some arbitrary
angle to each other. In subsequent papers (Ness 1994; Ness and Robson 1994)
a numerical solution for the case of non-reacting swarms in perpendicular fields
was given for both model and real gases; transport coefficients and other average
properties were presented. The present work is part of an on-going theoretical
investigation into charged-particle transport through gases in the presence of
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electric and magnetic fields. Here we focus on the velocity distribution function
rather than transport coefficients. In the following section a brief outline of the
theory is given; for more detailed theory the reader is referred to Ness (1993,
1994).

2. Theory

Theoretically, all relevant information about the swarm can be obtained from
the phase space distribution function f(r,c,t). Under the present conditions
f(r,c,t) is the solution of the Boltzmann equation

8t+c-V+%(E+ch)-6c+J f=0, (1)

where all symbols have their usual meaning (Ness 1993, 1994). In the present
approach equation (1) is solved by decomposing f(r,c,t) in terms of spherical
harmonics in velocity space and powers of the gradient operation acting on the
number density n(r,t) in real space, i.e.

l s A
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Here 7Ql(é) denotes the spherical harmonics which are functions of the polar
angles ¢ = 0, ¢ of ¢, and G,(fA) denotes the sth application of the gradient operator
in irreducible tensor notation.

Substitution of equation (2) into (1) and carrying out the necessary operations
(Ness 1993) reduces (1) to an infinite set of coupled one-dimensional integro-
differential equations for the functions of speed f(Im |sAu). This set of equations
is finally reduced to a matrix equation by expanding the speed dependence of
the f(Im|sAu) in terms of Sonine polynomials about a Maxwellian distribution
at some base temperature Ty, i.e.

Flm|shp) =@(e,c) Y F(vim|shp)Rui(ac), (3)

v=0

where a? = m/kT},, @(a,c) is a Maxwellian,

l

Ru(ac) = Ny [%} ity (@*/2), (4)
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Nu = T(v+1+3) %)

and Sl(:)l /2 is a Sonine polynomial.
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The resulting matrix equation may be represented by

> Myt FQ/ U | D) = X (vim | shp) (6)
v'l'm’

v1=0,1,2,..,00, m= -1, ..., +1.

Here the matrix M consists of three distinct components, the collision term, the
electric field term and the magnetic field term. Each value of the spatial indices
sAu gives a set of equations, while the velocity indices vim specify individual
equations of that set. For a given value of s the X vector on the right side of (6)
is given in terms of lower s values of the F(vim|sAu). For practical solution, the
summations in expansions (2) and (3) must be truncated. The truncation values
of the indices [, m and v are denoted by lpmaz, Mmar and Unme, respectively. In
the present approach l,az, Mmazr and Ve, are chosen independently. Of course
Mmaz cannot exceed l,q;, but apart from that no other restrictions are placed
on the indices.

For a given value of sAu equation (6) is solved for the quantities or ‘moments’
F(vlm | sA\u), which depend upon the gas temperature and mass, the interaction
cross sections, and the reduced fields E/ng and B/ng, where ng is the gas density.
Having obtained the F'(vim|sAu), the transport coefficients and distributions
functions may be calculated. For perpendicular fields with E along the z axis
and B along the y axis the drift velocity and diffusion tensor are given by

W = (_Wza 0’ _Wz) )

D, 0 D,
D=|0 D, 0|,
Dzaz 0 Dz

where W, and W, denote the ExB and E components of the drift velocity,
respectively, D, denotes the diffusion coefficient along E x B, D, denotes the
diffusion coefficient along B, D, denotes the diffusion coefficient along E, and
D, and D,, are the off-diagonal diffusion coefficients. The off-diagonal diffusion
coefficients are reported as the sum Dj = D,, + D,,, which appears in the
continuity equation. In the absence of a magnetic field, W, = D,, = D,, =0,
and W, =W, D, = Dy = Dr, D, = D;,. The Lorentz or magnetic deflection
angle o, is defined to be the inverse of the tangent of the ratio W,/W,, and the
net drift speed of the swarm is W = (W2 + W2)%. Explicit expressions for the
transport coefficients in terms of the moments are given in Ness (1994).

The spatially homogeneous velocity distribution function is obtained from the
solution of the first member (s = A = = 0) of the hierarchy in equation (6)
and is given by

l

FO>)=1c,6,8) =D D (=)™ Fim(€)(2 — 8mo) P™(cos 0) cos(mep), (7)

I m=0



560 K. F. Ness

where

@+ 1)1 -my]?

Fim(c) =i phe ] @(er,¢) Y F(vim]000)R,(ec) (8)

and P/™ are the associated Legendre polynomials. In the absence of a magnetic
field f((c) is independent of ¢ (and therefore m) and the above equations
reduce to

FO(e) = fO(c,6) = > Fi(c)Pi(cosb), (9)
l
Fy(c) =i {%} w(a,c) Y F(vl|00)Ryi(ac). (10)

Calculations of transport coefficients for electron swarms in both model and real
gases in crossed fields have been presented elsewhere (Schmidt 1993; Ness 1994).
In the present work we are interested in investigating the effects of the crossed
magnetic field on the velocity distribution function of the electrons.

3. Results and Discussion

Electron transport in methane provides a good application for the calculation
of electron velocity distributions functions, particularly for energies in the vicinity
of the minimum in the elastic cross section where significant anisotropy in velocity
space occurs. For the electron—methane cross sections we use the set by Schmidt
(1991) and set the gas temperature Tp to 295 K.

In Fig. 1 contours of constant f(®) are shown as a function of € = mc?/2
in €V and 6 in degrees for E/ng = 5Td and B/no = 0. In this case f(® is
independent of ¢ and Fig. 1 represents the intersection of any plane in velocity
space passing through the origin perpendicular to the zy plane with surfaces or
shells of constant f(®). In general the plane of intersection is specified by ¢ and
¢+ 7, and in this particular case ¢ may have any value. Fig. 1 clearly shows
the anisotropy in velocity space by both a displacement and an elongation of the
contours in the —z direction. Isotropy in velocity space is represented by circular
contours centred at the origin. The convergence of the transport coefficients in
the ! index corresponding to Fig. 1 is shown in Table 1.

The convergence of the transport coefficients in the ! index reflects the anisotropy
in velocity space shown in Fig. 1, where for the f(°) = 2 (eV)~3/2 contour the effect
of truncation at | = 1 is shown by the dash-dot contour. Note the large difference
in the shape of the two f(©) =2 (eV)~3/2 contours. The contour resulting from the
| = 1 truncation shows a significant displacement towards the —z direction, but
not the elongation of the multi-term result. In fact, the contour resulting from the
| = 1 truncation shows a compression in the —z direction. Both the mean energy
¢ and the drift velocity W may be calculated from f(©(c). Table 1 shows that the
| = 1 truncation over-estimates the value of € and W by 3% and 6%, respectively,
despite the large differences in the shape of the contours of f () in velocity space.
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Fig. 1. Contours of constant f(®(¢) in units of (eV)™%/2 for electrons in methane (solid
curves) at To =295 K, E/no = 5-0 Td and B/no = 0. The angle 6 is marked in increments of
30° from 0° to 180° and three energy contours, 0-3, 0-6 and 0-9 eV are shown (thin dashed
curves). The dash—dot curve gives the f(® =2 (eV)‘3/ 2 contour in the [ = 1 approximation.
The —FE direction is indicated.

This appears to indicate that it is the displacement of f(9) rather than the actual
shape that has the larger impact upon transport.

The effects on f(© of including a perpendicular magnetic field is shown in
Figs 2-4, where contours of constant f(®) are shown as functions of € and 6 for fixed
values of ¢ at E/ng = 5-0 Td and B/ng = 30-0 Hx. The unit Hx has been defined
earlier (Schmidt 1993; Ness 1994) and is given by 1 Hx = 1 Huxley = 10727 Tm?>.
In Fig. 2, we have ¢ = 0, 7, i.e. we are looking at the zz plane intersection of the
swarm in velocity space. The contours of f(%) are clearly rotated towards the E x B
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Table 1. Convergence in the ! index of electron transport coefficients
in methane at E/no =5-0 Td, B/no =0 and To =295 K

l € w noDr noDr
(eV) (10* ms™1) (10%* m~1s™1) (10**m~1s71)
1 0-619 10-6 10-6 1.87
2 0-599 9-89 6-57 2-18
3 0-602 10-0 7-44 2.02
4 0-602 10-0 7-28 2-05
5 0-602 10-0 7-30 2.05
6 0-602 10-0 7-30 2-05

directions (the —z axis). Both the —E and the E x B directions are indicated.
The elongation now occurs approximately in the direction of the Lorentz angle as
indicated (o = 49-7° from the —z axis). In Fig. 3, we have ¢ = 7/4,37/4, while
in Fig. 4, ¢ = 7/2,3n/2. In Fig. 4 we are looking at the yz plane intersection of
the swarm in velocity space; the direction of B is marked. In going from Fig. 2
to Fig. 4, observe that the contours rotate back towards the —z axis and become
more symmetric in velocity space. Thus in three-dimensional velocity space we
have the picture of a swarm being ‘drawn’ in the direction of the Lorentz angle,
which lies in the zz plane (¢ = 0,7). The transport coefficients corresponding to
the situation in Figs 2-4 are shown in Table 2. Note that with the application of
the magnetic field the mean energy of the swarm decreases from 0-602 to 0-399
eV. This is reflected in the contour plots of f(® by the fact that the contours
of f© in the ExB case are not spread out as much in velocity space as the
contours for the E-only case.

In one sense the magnetic field opposes the electric field, as can be seen by
the reduction in the mean energy when the magnetic field is applied. This
was discussed in some detail in Ness (1994), where it was also pointed out
that in the limit of strong B, W, W,, D., D, and D} approach zero while
€ and D, approach their thermal values. This fact may also be seen in the
above contours plots; besides the obvious rotation towards the E x B direction,
there is a distinct reduction in the elongation and a general reduction in the
asymmetry in velocity space when B is applied. This occurs despite the fact that
electrons at 0-399 eV are more sensitive to the minimum in the electron-methane
cross section than those at 0-602 eV. Thus, although the introduction of the
magnetic field complicates matters by destroying the symmetry in velocity space
about the electric field, an increasing magnetic field will tend to decrease the {
dependence and ultimately reestablish isotropy in velocity space. In Fig. 2, the
value of ¢ which shows most clearly the sensitivity of f (©) to both E and B, the
fO =1 (eV)_B/2 contour, is shown for E/ng = 5-0 Td and B/no = 300-0 Hx by
the dash—dot contour. For these values of the fields we have a = 85.7°, € = 0-0770
eV, and the f© =1 (eV)_3/ 2 contour shows the trend of reestablishing isotropy
in velocity space for strong magnetic fields. If the magnetic field is increased by
a further order of magnitude to 3000-0 Hx the mean energy falls to 0-0575 eV,
a=89-4°, and the f©O =1 (eV)_3/ 2 contour is almost a circle of radius 0-16
eV, centred at the origin in velocity space. In this case the = 1 approximation
agrees to four significant figures with the converged multi-term result, for both
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Fig. 2. Contours of constant f(°)(c) in units of (eV)™3/2 for electons in methane (solid
curves) at To =295 K, E/no =5-0 Td and B/no = 30-0 Hx for ¢ = 0, 7. The Lorentz angle
is o~ 50° and is indicated by the thin line drawn from the origin. The dash-dot curve is
the f(® =1 (eV)~3/2 contour when B/no is increased to 300-0 Hx while E/no is held fixed.
The —F and the ExB directions are indicated.

drift and diffusion coefficients. It is also useful to compare distribution functions
for different field strengths, but the same mean energy. By keeping the mean
energy the same it is hoped that any differences in f(©) will be due to the different
fields and not the dependence upon the cross sections. This of course will not be
strictly true, as the dependence upon the cross sections will vary with the actual
energy dependence of the distribution and not simply with the average energy &.
In Fig. 5 contours of f(%)(c) are shown for E/ng = 3-4 Td and B/ng = 0. In
this case € = 0-399 eV, the same value to three significant figures as for E/ng =
5.0 Td and B/ng = 30-0 Hx. Comparing Fig. 5 with Figs 2-4, we see that the
elongation of the contours is more pronounced for the E-only case. The contours
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Fig. 3. Contours of constant F©(¢) in units of (eV)‘B/ 2 for electrons in methane (solid
curves) at To = 295 K, E/no = 5-0 Td and B/no = 30-0 Hx for ¢ = m/4, 3r/4.

in Fig. 5 are essentially a cooler version of those in Fig. 1. The transport
coefficients corresponding to the conditions of Fig. 5 are shown in Table 3. The
error in the | = 1 truncation of both € and W is a little larger for E/ng = 3-4 Td
than for E/ng = 5-0 Td; 3-3% compared to 2-8% for € and 7-5% compared to 6%
for W, respectively. The error in the [ = 1 truncation of the diffusion coefficients
is also larger for the weaker electric field. The elastic electron-methane cross
section has a deep minimum near 0-3 eV, and this decrease in the accuracy of
the | = 1 truncation arises because of the rapid decrease in the electron-methane
elastic cross section when the swarm is cooled from 0-602 eV at E/ng = 5-0
Td to 0-399 eV at E/no = 3-4 Td. Thus, on the basis of the I convergence of
the transport coefficients in Tables 1 and 3, one may conclude that the swarm
at 3-4 Td is more anisotropic in velocity space than the swarm at 5-0 Td, but
this detail is not evident from the contour plots in Figs 1 and 5.
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Fig. 4. Contours of constant f(®(c) in units of (eV)™3/2 for electrons in methane (solid
curves) at To = 295 K, E/no = 5-0 Td and B/no = 30-0 Hx for ¢ = 7/2,37/2. The —E
and the B directions are indicated.

Table 2. Convergence in the ! index of electron transport coefficients in methane at E/no = 5-0
Td, B/no =30-0 Hx, To =295 K and mmes = 4

! € W W, w noDg noD. noD, noDp
(eV) (10* ms™1) (10** m~1s71)
1 0-377 8-63 6-27 10-7 4-66 9.27 2-51 3-97
2 0-396 8-26 6-84 10-7 6-44 6-90 2-20 3-66
3 0-399 8-19 6-91 10-7 6-33 6-98 2-13 3-44
4 0-399 8-19 6-92 10-7 6-30 7-02 2-12 3-40
5 0-399 8-19 6-92 10-7 6-31 7-04 2-12 3-40
6 0-399 8-19 6-92 10-7 6-31 7-04 212 3-40
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Fig. 5. Contours of constant f(®(c) in units of (eV)~3/2
curves) at Tp = 295 K, E/no = 3-4 Td and B/no = 0.

for electrons in methane (solid

In Fig. 6 the | = 0 velocity distribution functions, calculated from equations
(8) and (10), are shown as functions of electron energy for (E/no, B/no) =
(5-0Td, 0), (5-0Td, 30-0Hx) and (3-4 Td, 0). These functions satisfy the
normalisation condition

o0
47r/ Fy de = 1.
0

The swarm mean energy can also be calculated from these functions and is
given by

oo
€=2mm / ctFyo de.
0
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Table 3. Convergence in the ! index of electron transport coefficients
in methane at E/no =3-4 Td, B/no =0 and To =295 K

l € w noDr noDy,
(eV) (10* ms™?) (10%* m~1s71) (10** m~1s7?)
1 0-412 11-4 10-4 2.06
2 0-397 10-5 6-19 2-86
3 0-399 10-6 6-90 2-64
4 0-399 10-6 6-83 2-67
5 0-399 10-6 6-82 2-67
6 0-399 10-6 6-82 2.67

----------- Maxwelian at & = 0.399 eV
E/ng=34 Td, B/ng=0

PH ] e - Elng=50 Td, Bing=0 .
------- Elg=50 Td, Bing=300 Hx

Distribution function (eV)™>/2

Energy (eV)

Fig. 6. Velocity distributions functions Fo and Foo for electrons in methane for the three
combinations of E/no and B/no indicated. The Maxwellian velocity distribution function
with € = 0-399 eV is also shown.

The function Fyo or Fp results from the integration of f(©)(c) over the angles
in velocity space, and they reflect the above contour plots. The largest value
of € occurs at E/ng = 5-0 Td, B/ng = 0, and the corresponding function Fj
in Fig. 6 has the smallest maximum and the thickest tail, indicating a greater
spread in velocity space as observed in the contour plots. The functions Fjyq
and Fp corresponding to E/ng = 5-0 Td, B/ng = 30-0 Hx and to E/ny = 3-4
Td, B/no = 0, respectively, give the same mean energy. For comparison, the
Maxwellian distribution at the same mean energy, € = 0-399 eV, has also been
plotted in Fig. 6. Both Fy and Fpo are significantly different from the Maxwellian
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Fig. 7. Velocity distribution functions F1, Fio and Fi1 for electrons in methane for the three
combinations of E/no and B/no indicated.

at low energies. For high energies both approach the Maxwellian form, with Fyo
doing so sooner than Fjp.

In Fig. 7, the | = 1 velocity distribution functions are plotted as functions of
electron energy for the same field values as in Fig. 6. In the non-zero magnetic
field case there are two functions, corresponding to m = 0 and m = 1. The drift
speeds are given as integrals over these functions:

8w [

4 oo
W, =2 [ BFide W,=—
3 0 0

03F10 de.

In the absence of a magnetic field we have

o0
w=2 " &R de.
3 Jo

4. Summary

The spatially homogeneous velocity distribution function for an electron swarm
in methane in the presence of perpendicular electric and magnetic fields has been
calculated, using a multi-term solution of the Boltzmann equation outlined in
Section 2. The mean energy of the swarm was chosen to lie in the vicinity of the
minimum in the elastic electron—methane cross section in order to optimise the
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anisotropy in velocity space. The velocity distribution function f(© (e, 8, ¢) was
presented in the form of two dimensional contour plots, in polar coordinates, of
constant f(®) as a function of € and @ for a number of fixed values of ¢. Using
these plots the effect of the applied fields, in velocity space, upon the swarm
was demonstrated, and a discussion of the impact of the magnetic field on the
anisotropy in velocity space was given. In particular the rotation of the swarm
away from the —E direction towards the E x B direction, when the perpendicular
magnetic field is applied, was clearly shown. Transport coefficients and the [ =
0 and the | = 1 spherical-harmonic components of f(® (6,8, ) corresponding to
the conditions of the contour plots were also presented.
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