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Abstract

In this paper the field equations of general relativity are solved to obtain an exact solution
for a static anisotropic fluid sphere. The solution is free from singularity and satisfies the
necessary physical requirements. The physical 3-space of the solution is pseudo-spheroidal.
The solution is matched at the boundary with the Schwarzschild exterior solution. Numerical
estimates of various physical parameters are briefly discussed.

1. Introduction

The assumption of local isotropy is a common one in astrophysical studies of
massive celestial objects. However, the theoretical investigations of Ruderman
(1972) and Canuto (1973) on more realistic stellar models indicate that stellar
matter may be anisotropic at least in certain density ranges (p < 1015 g cm:").
According to them the radial pressure may not be equal to the tangential pressure
in such anisotropic massive bodies. It is an idealisation to assume that the
stellar matter is a perfect fluid. Certainly no astronomical object has a perfect
fluid distribution. Therefore it seems worth while to study the behaviour of
anisotropic fluid spheres in general relativity.

Anistropy in the pressure could be introduced by the existence of a solid core,
by the presence of a type-P superfluid or by other physical phenomena. Our aim
is not to study the ways of incorporating anisotropy in stellar matter. Rather,
we are interested in constructing models for relativistic anisotropic fluid spheres
with physically reasonable behaviour.

Bowers and Linag (1974) have investigated the possible importance of locally
anisotropic equations of state for relativistic spheres by generalising the equations
of hydrostatic equilibrium to include these effects. Their study indicates that
anisotropy-if present in the density range expected for relativistic stars (densities
up to at least 1015 gcm-3)-may have non-negligible effects on such parameters
as the maximum equilibrium mass and surface redshift.
. Consenza et ale (1981), Bayin (1982), Krori et ale (1984), Maharaj and
Maarten (1989) and Gokhroo and Mehra (1993) have obtained different exact
solutions of the Einstein field equations describing the interior gravitational fields
of anisotropic fluid spheres. These solution can be used as models of massive
compact objects.
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Maharaj and Maaten (1989) discussed a solution for an anisotropic fluid sphere
with uniform density. But most astronomical objects have variable density.
Therefore, solutions describing the interior fields of anisotropic fluid spheres, with
variable density, are physically more realistic. In the present paper we give a
physically significant exact solution of the Einstein equations for an anisotropic
fluid sphere having a variable density distribution, which is a maximum at the
centre and decreasing along the radius.

2. Static Pseudo-spheroidal Space-Time and the Field Equations

A 3-pseudo-spheroid immersed in 4-dimensional Euclidean space with the
metric

da2 = dx2 + dy2 + dz2 + dw2

will have the cartesian equation

(1)

w2

l7
x

2 + y2 + z2 = 1
R

n (2)

where band R are constants. This pseudo-spheroid has the parametric
representation

x

z

R sinh.X sinOcos¢,

RsinhAcosO

y = R sinhXsinOsin¢,

w = RcoshA.

(3)

The metric (1) now becomes

da2 = (R2cosh2 A + b2sinh2A)dA2 + R2sinh2~ d02 + R2sinh2A sin20 d¢2 .

The substitution r = R sinhx yields a metric in the form

2 _ 1 + kr
2
j R

2
dr 2 + r2 ( d(J2 + sin2(} d¢2) ,

drr - 1 + r2 jR2

where k = 1 +b 2 / R2. Thus we have k > 1. We consider the space-time defined
by the line-element

1 + kr2jR2

ds 2 = e"Y dt2 - dr2
- r2(d02 + sin20d¢2)

1 + r 2/ R 0
,

where "( = "((r), the physical 3-space of the space-time under consideration, is
pseudo-spheroidal. Thomas (1992) has discussed such space-times in detail in
connection with Einstein clusters and isotropic fluid spheres. The metric (3) is
clearly spherically symmetric. We denote the coordinates xl = r, x 2 = 0, x 3 = ¢
and x 4 = t.

We shall develop the Einstein field equations for a static anisotropic fluid
sphere with the metric (3) as the metric associated with the distribution. Einstein
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equations for non-empty space-times are

Rik - ~Rgi k = -81rTik •

The energy-momentum tensor is taken here in the form

Tik = PVi Vk + phik + tik ,

637

(4)

(5)

where Vi = eV
/

2t5f represents the four-velocity, p is the energy density, P is the
isotropic fluid pressure and hik = Vi Vk - gik is the projection tensor. Here tik

is the anisotropic pressure (stress) tensor given by

tik = V3 s(r) (c, Ck - i hik) , (6)

where Ci = eA/2t5i is a unit radial vector and s(r) is the magnitude of the stress
tensor.

Now, the surviving components of T~ given by (5) can be written as

Tt = p, Tl = -(p + 2sjV3) ,

Ti = T: = -(p - sjV3) .

The radial pressure Pr and the tangential pressure P..L are given by

(7)

Pr = P + 2sjV3, P..L = P - sjV3, s = (Pr - p..L)jV3. (8)

The Einstein field equations (5) along with (6) and (7) for the metric (3) reduce
to the following system of three equations:

[(
r2)v' k-1]( kr

2)-1
81rpr = 1 + R2 --; - Ji2 1 + R2 '

81r = 3(k-l)(1 kr
2) ( kr

2)-2
p .,...? + 3R2 1 + R2 '

(9)

(10)

321rV3 sr2 = 4(1 - k)r
2

/ R
2

1 + kr 2 jR2

4(1 - k)r2 j R2

(1 + kr 2 jR2
) 2

2rv' ( 2kr kr 2) r2(1+ r2j R2)(2v" + v,2)+ 1 + - + - - (11)
(1 + kr 2jR2)2 R2 R4 1 + kr 2jR2 .

This is a system of three equations for one metric function v and three physical
variables p, Pr and s. So we have to put one additional restriction on the
behaviour of these variables. In the next section we shall specify the anisotropy
function S and obtain a solution of the system of equations (9)-(11).
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Differentiating (10) with respect to r, we get

8 ' - 2k(k-l)r(5 kr
2) (1 kr

2)-3
1rP - ~L1 + R2 + R 2 · (12)

From (10) it is easy to see that p is positive. The result (12) indicates that p'
is negative. Hence as r increases the density decreases from the maximum value
Po at the centre.

3. Solution of the Field Equations

We now specify the anisotropy function S for the explicit solution of the
system (9)-(11). We assume that

{3r2
I;;S 2 "hl),81rv3 =-R4(1+krIR (13)

where {3 is an arbitrary constant. Using (13) in equation (11) and introducing
new variables u and F defined by

k
u

2 = k -1 (1 +r
2j R2), F = eV

/
2 , (14)

we get the differential equation

(1-u2)d2Fjdu2 +udFjdu +(l-k +{3jk)F=O. (15)

Equation (15) is integrable when k = 1+JI+73. Its general solutions, in this
case, can be expressed in the form

eV
/
2 = F = Au + B[ulog(u + vu2 - 1) - vu2 - 1] , (16)

where A and B are constants of integration. The density p is given by (10).
The fluid pressure Pr is determined as

81rpr = Au(3 - k) + B[u(3 - k)log(u + vu2 - 1) + (k - 1)vu2 - 1]. (17)

R2(u2 -l)(k - l)[Au + B{ulog(u + Ju2 -1) - Ju2 -I}]

(18)+ 22'81rpl.. = 81rpr R4(1 + kr 2 j R )

From (17) it is clear that Pr always remains finite. Clearly, we get

{3r2

Any physically acceptable solution must satisfy the following boundary conditions:

(i) At the surface of the sphere (r = a), it shuold match with the Schwarzschild
exterior solution given by the metric

ds 2 = (1 - 2mjr)dt2 - (1 - 2mjr)-1 dr2
- r2(d02 + sin2 Od¢2) , (19)
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where m is a constant representing the total mass of the sphere.
(ii) The radial pressure Pr must be finite at the centre r = 0 and it must

vanish at the boundary r = a of the sphere.
Applying these boundary conditions to our interior solution, we can determine

the constants m, A and B. They are given by

2m

a

B

A

a2jR2

u; -1'

k -1 U a

2Vk u~ -1 '

1
k ../u~ -1 - B(log(ua + Ju~ -1) - JUr=l)u 'a

(20)

(21)

(22)

where u~ = {kj(k-1)}(1+a2 /R2
) .

The explicit form of the line-element of our interior solution is

ds 2 = [Au + B{ulog(u + Ju2 -1) - Ju2 _1}]2 dt 2

1 + kr
2/R2

dr2 _ r2(d02 + sin20 d¢2),
1 + r2 /R?

(23)

where u is defined by u 2 = {kj(k - 1)}(1 + r 2 j R2 ) and the constants A and B
are given by (21) and (22). We have also verified that the solution given by the
metric (23) is not conformally fiat.

4. Discussion

In order to study several physical features of the above solution, we shall
discuss numerical estimates of its various physical parameters. It can be easily
checked that the central density Po and the central radial pressure PrO are given
by

81rpo=3(k-l)jR2
, (24)

Auo(3 - k) + B[uo(3 - k)log(uo+ JU5 - 1)+ (k -1)Ju~ - 1]
81rpro = , (25)

R2(u~ "':'1)(k -I)[Ao+ B{uolog(uo + vu~ -1) - VU5 - I}]

where Uo is given by u5 = k/(k-l). The positivity of PrO implies that the function

Auo(3 - k) + B[uo(3 - k)log(uo + JU5 -1) + (k -1)Ju5 - 1]
H(A, B) = (26)

Auo + B[uolog(uo + v ug - 1) - VU5 - 1]
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should be positive. Also Po - PrO should be positive. Clearly, we have

87T"(Po - PrO) = (IIR2)f(A, B) , (27)

= 2(2k - 3)Auo + 2B[(2k - 3)uolog(uo + vu~ -1) - 2(k -1)Vu~ -1]. (28)

Therefore, for a physically viable model we must have

f(A, B) 2:: 0 .

At the boundary r = a' of the sphere the density Pa is given by

81r =3(k-l)(1 ka
2) (1 ka

2)-2.
Pa R 2 + 3R2 + R 2

Thus the ratio J-t = PalPo is given by

3 + ka21R2
J-t = 3(1 + ka2IR 2)2 .

(29)

(30)

(31)

As P is a decreasing function of r, J-t is always less than 1. Equation (31)
determines a2IR2 in terms of k and J-t as

i:.- _ 1 - 6J-t + VI + 24J-t
R 2 - 6J-tk

(32)

Using the scheme outlined above, we take the matter density on the boundary of
the star as Pa = 2x 1014 g cm-3 . Again we choose different values for the ratio J-t
and for each chosen value of J-t and the assumed value of Pa we compute Po. We
assign a particular value to the constant k. We take {3 = 0·21 so that k = 2· 1.
Equation (22) then gives R. Equation (32) then gives us an estimate of the radius
a of the star. Equation (20) can then be used to find the mass m in km. The
mass M of the star in grams can be obtained by M = mc2/ G. Equations (21)
and (22) give us values of the constants A and B. Consequently H(A, B) and
f(A, B) can be calculated from equations (26) and (28) respectively. It is easier
to express the mass of the star as a multiple of one solar mass M 0 = 1· 475 km.
The results of the calculations for various values of J-t are given in Table 1.

From Table 1 it is clear that R and A are increasing functions of u: Also,
f(A, B) and H(A, B) are always positive. Therefore, the requirements Po 2:: 0
and Po 2:: Po are satisfied. From Table 1 it is also clear that m is a decreasing
function of u. The maximum possible mass for the configuration is 1·74889M
which is reached when the radius is 2·48307 km. Thus all values of J-t give a
series of physically viable anisotropic star models.
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Thus, we have obtained an exact relativistic model for an anisotropic superdense
star which permits a density of the order of 2xl014 gcm-3 , radii of the order
of a few kilometres and masses up to 1·75 times the solar mass. Though the
numerical calculations have been carried out for the exact solution corresponding
k = 2 ·1, the method is quite general and can be used for any k > 1. At the centre
(r = 0), the radial and tangential pressures are equal. Hence lim(Pr-p..L)/r = 0
holds (i.e. the gradient dpr/dr is finite at r = 0).

The conservation law T~;i = 0 for the anisotropic fluid distribution gives

(p + Pr)v'/2 = -Pr'+ (2/r)(p..L - Pr).

These laws for a isotropic fluid distribution give

(p + Pr )v' /2 = -Pr' .

On comparing these equations we see that there is an additional term (2/ r)(p..L -Pr)
in the equation for the anisotropic case, representing the 'force' which is due
to the anisotropic nature of the fluid. This force is directed outwards when
P..L > Pr and inward when P..L < Pro The existence of a repulsive force (in the
case P..L > Pr) allows the construction of a more compact distribution, when using
an anisotropic fluid rather than an isotropic fluid.

Finally, we discuss the physical requirement (dp, / dp) < 1 at the centre and
the boundary. Now (dPr/dP)r = a can be simplified to the form

(
dPr

)

dp a

(1 + ka21R2)(3 - k)[(k + 1) + (3 - k)ka21R 2]

4k(k - 1)(1 + a21R2)(5 + ka21R2)

For the assumed value k = 2·1, it can be verified that (dpr/dP)a < 1. One can
easily see that

( dPr )
dp 0

27rR2(po+ Pro)[(k - 1) + 87rPrO R2]

5k(k - 1)

Values of (dPr/dr)o for various values of J-l are given in Table 2.

Table 2. Values of (dprjdp)o, Za and Zi

J1 (dprjdp)o Za Zi

0-90 0-01196 0·01651 0·03231
0·80 0-01154 0·03484 0·06997
0·70 0·01110 0·05542 0-11470
0-60 0·01058 0-07887 0·16972
0·50 0·00999 0·10607 0·23915
0-40 0·00928 0·13843 0·33173
0-30 0·00841 0·17832 0·46541
0-20 0·00732 0·23034 0·68577
0·10 0·00574 0·26379 0·86950

0-30554 1·77223
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Now we discuss the effect of anisotropy on the surface redshift. The redshift
is given by

Z = (1- 2m)-1/2
a -1,

where a is the boundary radius. For the isotropic case Z is denoted by Zi and
for the anisotropic case by Za. Table 2 gives values of Za and Zi for various
values of 11. It is clear that Zi is always greater than Za. Thus the introduction
of anisotropy in the pressure gives rise to a decrease in the surface redshift.

Acknowledgments

It is a pleasure to thank Dr A. K. Desai for his help in numerical calculations.
N. P. Mehta wishes to thank the Government of Gujarat for financial support.
The authors are thankful to the referee for constructive comments.

References

Bayin, S. S. (1982). Phys. Rev. D 26, 6.
Bowers, R. L., and Liang, E. P. T. (1974). Astrophys. J. 188, 657.
Canuto, V. (1973). Solvay Conf. on Astrophysics and Gravitation, Brussels.
Consenza, M., Herrera, L., Esculpi, M., and Witten, E. (1981). J. Math. Phys. (New York)

22, 118.
Gokhroo, M. K., and Mehra, A. L. (1993). Gen. Rei. Gravit. 26, 1.
Krori, K. 0., Bargohain, P., and Devi, R. (1984). Can. J. Phys. 62, 239.
Maharaj, S. D., and Maarten, R. (1989). Gen. Rei. Gravit. 21, 899.
Ruderman, R. (1972). Ann. Rev. Astron. Astrophys. 10, 427.
Thomas, V. D. (1992). M. Phil. Dissertation, Sardar Patel University, Vallabhvidyanagar.

Manuscript received 12 October 1994, accepted 9 February 1995






