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Abstract

The kinetic theory of charged particle swarms in gases is based upon solution of the space
and time dependent Boltzmann's equation for the phase space distribution function f(r, c, t).
Hydrodynamic transport coefficients are defined in connection with a density gradient expansion
(DGE) of f(r, c, t) and it is believed that these are the quantities measured in experiment.
On the other hand, Ikuta and coworkers start with the spatially independent form of the
Boltzmann equation, which they solve iteratively as in path-integral methods, and define
transport coefficients in terms of the 'starting rate distribution', rather than f itself. Ikuta's
procedure has come to be known as the 'flight time integral' (FTI) method and the discrepancies
between numerical calculations based upon this and the more commonly known DGE procedure
have generated a deal of controversy in recent times. The purpose of this paper is to point out
that the respective definitions of the transverse diffusion coefficient DT coincide only for light
swarm particles undergoing collisions for which the differential cross section is isotropic, and
that the particular technique used for solving Boltzmann's equation, be it a path-integral or
a multi-term method, has nothing to do with the numerical discrepancies which are observed
when scattering is anisotropic. In particular, it is shown that Ikuta's definition of DT is
inconsistent with even the well established result for constant collision frequency.

1. Introduction

The kinetic theory of charged particle swarms (electrons, ions, muons, etc.)
in gases in electric fields has been developed substantially over the last forty
years or so following the seminal paper of Wannier (1953). The reader is referred
to the reviews of Kumar et ale (1980) and Viehland (1992) and to the texts
of Huxley and Crompton (1974), and Mason and McDaniel (1988) for details.
Basically, the problem is to solve Boltzmann's equation

(Ot + c. \l +a. Oc + J)f = 0 (1)

for the phase space distribution function f( r, c,t) of the charged particles, given
the field E, the gas number density and temperature, no and To respectively, and
the differential cross sections u(g,X) describing the various scattering processes.
(Note that in swarms interactions between the charged particles may be neglected
in view of the fact that their number density n~ no.) The collision term in (1)
may be written as
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J(f) = J[f(e) fo(eo) - f(e') fo(e')]gO"(g, X) dy' deo, (2)

if the swarm particle-neutral gas molecules are elastic, as will be assumed for
simplicity throughout this paper. The notation is that c, Co denote the velocities
of charged and neutral species respectively, 9 = c-co and g' = c'-co' denote
relative velocities before and after a collision respectively, cos X == g.g' and
f 0 ( co) is the distribution function of the neutrals, assumed to be Maxwellian
at temperature To. Quantities of physical interest are found by taking averages
over t, e.g. for some function ¢( c) of swarm particle velocity,

(¢(e)) = ~Jde ¢(e) f(e),

n = Jde f(e).

(3)

(4)

Methods for solution of (1) are many and varied (Kumar et al. 1980), but most
involve decomposition of f in spherical harmonics,

00 l

f(c) = L L flm(C) Yim(C) ,
l=O m=-l

(5)

the so-called 'multi-term' representation. In the hydrodynamic regime, a further
decomposition in terms of density gradient is generally made (Kumar et al. 1980).
This procedure, along with appropriate definitions of particular hydrodynamic
transport quantities (drift velocity, diffusion, etc.) will be termed the density
gradient expansion (DGE) approach in this paper.

On the other hand, the flight-time integral (FTI) method as developed by
Ikuta and co-workers (see e.g. Ikuta and Murakami 1987) treats the 'starting
rate distribution'

'l/Js(f(e)) = JdeoJdy' gO"(g, X) f(e') fo(eo') (6)

as the quantity of principle interest. Moreover, the Boltzmann collision operator
(2) is split into two parts, which we write as

where

J(f) = liT f - 'l/Js(f) ,

lIT(e) == Jdeo gO"o(g) fo(eo)

(7)

(8)

and the resulting equation is solved iteratively. The quantities (partial cross
sections)
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O"l(g)=27rl 1r

Pl(COSX) O"(g, X) sinx dX (1 = 0, 1, 2, ...)

679

(9)

figure prominantly in the kinetic theory of gases.
The FTI method is thus similar in character to the path-integral methods

discussed by Skullerud and Kuhn (1983). In addition, Ikuta et ale define transport
quantities as averages over 'l/Js' instead of the conventional way as indicated in
(3). This is a key point which should be kept in mind when reading this paper.

At the recent Japan-Australia Workshop on Gaseous Electronics and Its
Applications (see Aust. J. Phys. 48, 333-569), it was suggested by Ikuta that
the standard, multi-term representation (5) somehow fails to describe transport
phenomena correctly when scattering is anisotropic, Le. when O'(g,x) does in
fact have a x-dependence. In the subsequent discussion two major points for
discussion have emerged:

(1) The accuracy of the iterative procedure used in FTI.
(2) The definitions of Ikuta et ale for transport coefficients.

In regard to the first point, the observations of Skullerud and Kuhn (1983) are
especially relevant. However, it now seems that the second point is the most
likely source of discrepancy between Ikuta's results and standard theory, and it
is this aspect that we focus on in this paper.

In Section 2 we review the FTI method and in Section 3 we discuss the
definition of transport coefficients, in particular, the transverse diffusion coefficient
DT . It is shown that Ikuta's definition of DT agrees with the standard DGE
definition only for light swarm particles for which the scattering is isotropic
[i.e, O'(g, X) is independent of X]. The discrepancy for anisotropic scattering is
highlighted by appealing to the constant collision frequency model, for which
gO'(g, X) is independent of g, facilitating exact analytic expressions for transport
coefficients, which have long been known (Wannier 1953).

2. FTI versus Standard Kinetic Theory
(2a) Hierarchy of Kinetic Equations and Hydrodynamic Transport Coefficients

In the hydrodynamic regime (Kumar et ale 1980) a density gradient expansion

f(r, c, t) = n(r, t) f(O)(c, t) - j(l)(c, t). \1n(r, t) + ... (10)

is usually made to account for (assumed weak) space-time variation. From (10)
it follows that the particle flux is given by

r = Jde efoo(r, e, t) = nW - D. 'Vn + ...

in the limit as t ~ 00, where

W == Jde ef~)(e),

D == Jde ef~)(e)

(11)

(12)

(13)
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denote the drift velocity and diffusion tensor respectively and
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f~) (e) == p~00 fU> (e, t), j = 0,1.

The equations for fO) and f(1) can be found by substitution of (10) into (1) and
equating coefficients of respective orders of \In. We write these equations in the
form

(at + a. ac + VT )fCO) = 'l/Js(fCO)) ,

(at + a. ac + VT )fC1) = (c - W)fCO) + 'l/Js(fC1) ) ,

(14a)

(14b)

where 'l/Js(fCO)) and 'l/Js(f C1) ) can be found by substituting fCO) and f(1) for f in
the right side of (6) respectively.

It is to be emphasised that the above represents a simplification to nonreacting
swarms. If reactions occur, and particle number is not conserved in collisions,
terms to second order in the density gradient must be retained and definitions of
transport coefficients modified (Kumar et ale 1980). Finally, note the normalisation

Jde fU>(e) de = OjO (j = 0, 1, ...) . (15)

(2b) Solution of Prototype Equation

Both equations (14a) and (14b) can be written in the form

(at + a. ac + vT)f = p(c, t) , (16)

with appropriate definitions for p(c, t). It can be shown that (16) has the solution

f(c, t) = f(c, 0) e" J~ vrrCc-ar)dr

+ l t
dr e- J; liT (c-ar')dr' p(e - ar, t - T),

and that in the limit t -+ 00 we have the asymptotic solution

(17)

foo(e, t) = 100

dr e" J; liT (c-ar')dr' poo(e - ar, t - T). (18)

If Poo = Poo (c) is independent of time, then clearly so is foo, i.e,

foo == foo(c).

(2c) Averaging, FTI Procedure

Using (18) with

(19)
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Poo(c) = 1/Joo(f~O)(c)),

we obtain the asymptotic solution of (14a) in the form

f~,>(e) = 100

dr e- f; v-r(c-ar')dr' .,ps(f~)(e- aT)).

681

(20)

(21)

This equation may then be solved iteratively for either f~) or 1/Js(f~»): for
example, using (6) we can recast (21) in the form

.,p~?2c(e) = lOO

•dTJdeoJdg' fo(eo')e- fJ v-r(c'-ar')dr'

X 1/J~?1(C' - aT) ga(g, X) , (22)

where we have written

1/J~?1(c) == 1/Js(f~) (c)) (23)

for convenience, and calculate a new value of 1/J~?2c, after inserting an initial
estimate in the right-hand side, and repeat until some convergence criterion is
satisfied. This is the essence of the FTI procedure.

At present, however, our attention is focussed on definitions of transport
coefficients, rather than calculation of f or 1/Js per see The connection between
averages over these properties is readily established. Let ¢(c) be some function
of swarm particle velocity c. The the standard averaging process (3) for the
spatially homogeneous state and asymptotic limit gives

where

(</>(e))~ = Jde </>(e) f~)(e)

= 100

drJde e- J; v-r(c-ar')dr' .,p~%(e - aT) </>(e)

= 100

dr Jde e- f; v-r(c+ar')dr' .,p~%(e)</>(e + aT)

= [Gf ¢(c)]~) , -

G f </>(e) == 100

dr e- f; vT(c+ar')dr' </>(e + aT),

[···l~ == J... .,pi?2c(e) de

(24)

(25)

(26)

is essentially an average over 1/J~?1(c). Equation (24) expresses the connection
between the standard and FTI methods of averaging.
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Before applying these formulas to calculation of transport quantities, we digress
briefly to establish an important result for isotropic scattering.

(2d) Isotropic Scattering

If the scattering is isotropic, Le.

a(g, X) = a(g) , (27)

then certain averages can be shown to vanish identically and simplifications follow.
If (27) holds, then by equation (9) all partial cross sections vanish for 1~ 1, i.e.

al(g) = ao(g) 8l0 .

Consider now some tensor function cp(c) of rank 1,

cp(c) = ¢(c) Ylm(c)

(28)

(29)

and its integral with 'l/Js(f(c)), where f(c) is any distribution function: Using
similar notation to (26), we have

[<p(e)] == Jde <p(e) 'l/Js(f(e))

== Jde JdeoJdg' <p(e)f(e') fo(eo') ga(g, X)

=Jde Jdeo f(e)fo(eo) Jdg' <p(e')ga(g,x), (30)

where a standard transformation between pre- and post-collisional velocities has
been applied, and a general, anisotropic differential cross section retained for the
moment. To obtain the desired result, we take a cold gas

fo(co) = no 8(co)

and assume light swarm particles, m« mo. Then we get

(31)

g~c, g' ~ c' and cosX ~ c.c' . (32)

Thus (30) becomes approximately

[<p(e)] = noJde f(e) Jde' <p(e') ca(c, e.e')

= noJde f(e) ¢(c) CO"I(C). (33)

Clearly, for isotropic scattering (IS) the right side vanishes for 1~ 1 by virtue
of (28), and we may write

[cp(c)lJs = 0 (34)
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for all functions <1>( c) of velocity which do not have a scalar (l = 0) contribution.
In particular if <1>( c) = c, we must have

[chs = O. (35)

This result is of crucial importance in establishing the convergence of Ikuta's
definition of DT with the DGE definition (13) when scattering is isotropic.

(2e) Drift Velocity

We now return to (24) and set ¢(c) = c. Thus

w = (c)~) =[GfC]~),

GfC= 100

dTe-J;v.r(c+ar')d'r'(c+aT)

= roo d-r Tc(T) VT(C+ aT) e- J; vT(c+ar')dr'
Jo '

where an integration by parts has been performed and

Tc(r) == cr + ar2j2

(36)

(37)

(38)

is the position of a particle, initially located at the origin and moving with
velocity c, after time r. It is then convenient to define

GTe = roo d-r Tc(T) v.r(c + aT) «: J; v.r(c+ar')dr'
Jo '

so that by (36) and (37)

W = [Gf c]~) = [GTc]~) .

(39)

(40)

Notice also that by virtue of the normalisation (15) we have from (24) with
¢= 1,

1 = [Gf 1]~) = [Gr]~) , (41)

where Gr is defined in a similar fashion to (39). Thus, from (40) and (41), we
have

w = [GTc]~) j[Gr]~), (42)

which is consistent with Ikuta and Murakami's (1987) expression (36) for drift
velocity. That is, we have shown that the DGE and FTI definitions of drift
velocity agree in general, without any restrictive assumptions.
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Before proceeding to the definition of the diffusion coefficient, it is of interest
to investigate the simple, constant collision frequency model in the context of
the present discussion. Thus we consider the special case where

ga(g, X) = 1r(X) ,

and note that in this case the quantities

gO'I(g) = JF't(COSX) 7r(X) sinX dX == 7r1

(43)

(44)

are all independent of relative speed g. Notice also that by (8), the collision
frequency

lIT = Jdeo fo(eo)7ro = no 7ro == Vo

is independent of c in this case. Thus by (37), we have

100 1
Gf c = dr e-VOT(c+ ar) = -(c + a/vo)

o Vo

and by (36) it follows that

W = [Gr e]~ = :0 [e + a/vo]~)

1
= -[c]~) + a/v5[1]~) .

Vo

The second term on the right-hand side is readily calculated:

[1]~ = JdeJdeo f~)(e')fo(e~)gO'(g,X) dg'

=JdeJdeo f~)(e) fo(eo) 7r(X) dg'

=vo·

(45)

(46)

(47)

The first term on the right vanishes for light swarm particles undergoing isotropic
scattering, according to equation (35), and then (46) and (47) together yield

W = a/vo = eE/mvo. (48)

In general, however, for particles of arbitrary mass undergoing anisotropic
scattering, it can be shown that

[e]~) = JdeJdeo f~)(e) fo(eo) 7r(X) e' dg'

= W(mvo + mo vl)/(m + mo), (49)
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where

VI = no 1TI •

Combining (46), (47) and (49) then gives

W = eE/j.tvrn ,

where j.t == mmo/(m+mo) is the reduced mass and

Vm = Vo - Vi = 211"J(1 - COSX)g O'(g, X) sinx dX

685

(50)

(51)

(52)

is the momentum transfer collision frequency.
Equation (51) is an exact and very well. known result which can be obtained

far more simply and directly by taking the velocity moment of (1) under spatially
uniform and static conditions. However, it is useful to see its derivation in the
context of the FTI formalism and to note in particular the origin of the total and
momentum transfer collision frequencies, Vo and Vrn respectively, in equations
(48) and (51). We shall do the same thing for DT in the following section to
highlight the origin of the discrepancy between DGE and FTI definitions.

{2/} Transverse Diffusion Coefficient

We now turn to the second member of the hierarchy of kinetic equations (14b),
which again is of the same form as the prototype equation (16), but with

Poo(c) = (c - W)f~)(c) + 1/Js(f!;) (c)) . (53)

Thus, by virtue of (18), the solution of (14b) can be obtained (e.g. by an iterative
procedure) from

f~(e) = 100

dr e- J;VT(c-aT')dT'He - ar - W)f~)(e - aT)

+ 1/Js(f~))(c - aT))}.

It then follows with (13) that the diffusion tensor is given by

D = Jde100

dr e- J;VT(c+a.,-')d.,-' (e + aT){(e - W)f~)(e)

+ 1/Js(f~)(c))}.

(54)

(55)

It is emphasised that both f~ and f~ are required in general to determine D.
We now focus on the transverse diffusion coefficient DT and, to facilitate the
calculation, we take a coordinate system in which the z-axis is defined by the
direction of a and x is a transverse coordinate. Thus by (55)
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DT = Dxx

= Jde100

dr e- I; v-r(c+ar')dr' {c; f!:1,)(e)

+ ex 1/Js(f~~20(c))}. (56)

Now follows the key argument: In reality VT(c) = VT(c) depends on the magnitude
of the velocity alone. This in turn implies that VT(c+ar'), which occurs in the
argument of the exponential, is a function of c, r' and cz , but not cx. Thus we
have

<I>(e) = cx100

dr e- I; vT(c+ar')dr' = Cx h(c, cz), (57)

where h( c, cz ) is a function of c and cz , but not cx. Clearly then the function
(57) has vector and higher order tensor contributions, but no scalar part. Hence,
for light swarm particles in a cold gas undergoing isotropic scattering

[<I>(e)]1~~ == Jde100

dTe-I;VT(c+ar')dr'cx'l/Js(fJ~20(e))

=0,

by virtue of the theorem expressed by (34), and hence (56) gives

DT = Jde100

dT e- I; v-r(c+ar')dr'c; f!:1,)(e).

(58)

(59)

That is, for m/mo « 1 and a(g,x) independent of X, DT can be found entirely
in terms of f~(c), according to (59). We show below that the definition of
Ikuta matches (59), that is, that the DGE and FTI definitions are in agreement
for light particles in a cold gas undergoing isotropic scattering. However, in
general, calculations of DT from the standard DGE definition requires, f~~~ as
well as f~, in contrast to Ikuta's definition. More specifically, the second term
in curly brackets in (56) is responsible for the difference between the standard
DT (DGE) and DT (FTI).

We now show that we can formulate the expression for DT entirely in terms
of 1/J~?20 for isotropic scattering. Thus, if we substitute for f~} in (59) from
equation (21) we obtain

DT = Jde100

dr e- I; v-r(c+ar')dr'c;100

dT e- It v-r(c-ar')dr''l/J~?1(e - aT)
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= j de c~ 7/J~?20(e)100

d'r100

df

x exp ( - l T
lIT(e+ a(7'+ r'))dr' - 17' lIT(e+ ar')dr')

= j de c~ 7/J~~(e)100

dr100

df

x exp ( - £T+7' lIT(e+ ar')dr' - 17' lIT(e+ ar')dr')

= j de c~ 7/J~?20(e)100

dr100

df exp ( - IT
+7' VT(e+ ar')dr')

= j de c~ 7/J~?20(e)100

dr100

dt' exp ( - l t

' lIT (e + ar')dr')

= j dec~7/J~?20(e)100

dttexp(-It

lIT(e+ar')dr')

= j de100

dt (cx2t)2 lIT(e+at)exp ( - l t

lIT(e+ar')dr')7/J~?20(e)

= ![Gx2] (0)
2 coo' (60)

where xc(t) = Cx t is the x-component of the position vector (38) after time t.
Given the normalisation (41), we can also write (60) in the form

DT = [Gx~]~) /2[Gt]~) , (61)

which is similar in appearance to equation (37) of Ikuta and Murakami (1987).
The main point to note is that Ikuta et ale use (61) to calculate D T for all types
of scattering, whereas the standard DGE definition of D T leads to (61) only for
isotropic scattering of light swarm particles.

We again revert to the 'benchmark', constant collision frequency model to
reinforce the above comments. In the case where (27) holds the standard DGE
expression (55) for diffusion tensor reduces to

D = -!.. jdC(C + a/lIo){(c - W)f~)(c) + 'l/Js(f£) (c))} . (62)
110

After some algebra and rearrangement this becomes

1 j 1D = - dc(c - W)(c - W)f~)(c) + -[c]~),
110 110

(63)

where we have used the normalisation requirement (15) and the bracket quantity
is defined in a similar way to (26) for 'l/Js(f~)). The latter, by virtue of the
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theorem represented by (35), vanishes for light particles undergoing isotropic
scattering and in that case (and only that case)

D = kT/mvo,

where the temperature tensor is defined by

kT = m Jdc(c - W)(c - W)f~)(c)

== m((c - W)(c - W))~) .

(64)

(65)

However, the bracket quantity can be evaluated exactly for the constant collision
frequency model, for arbitrary mass ratio and anisotropic scattering:

[c]~) = (mvo + mo vl)D/(m + mo) . (66)

Substitution of (66) into the right-hand side of (63) and solving for D gives the
expression

D = kT/f.-lvm, (67)

well known in the kinetic theory of swarms (Wannier 1953).
As we have already pointed out, Ikuta's definition of the diffusion coefficient

is tantamount to neglecting the second term on the right of (63), which leads
(for m« rno) to (64), where the total collision frequency Vo appears in the
denominator. However, this is consistent with the standard DGE definition for
isotropic scattering only. For anisotropic scattering, it is the collision frequency
for the momentum-transfer collision frequency V m which occurs naturally, as can
be seen from equation (67).

Finally, we note again that the constant collision frequency analysis for diffusion
proceeds most simply directly from equation (1). The analysis given in this
section serves mainly to highlight precisely where the point of departure is
between standard DGE and Ikuta definitions of diffusion coefficient, viz. Ikuta et
ale effectively neglect the second term in curly brackets -in (56), which involves
j};}.

3. Discussion
In this paper we have briefly outlined the standard DGE and FTI approaches

to the analysis of swarm transport parameters, and have discussed the respective
definitions of drift velocity and transverse diffusion coefficient. It was shown that
'while the Ikuta/F'I'I definition of drift velocity matches that of standard DGE kinetic
theory, his definition of DT is consistent with the DGE expression only for isotropic
scattering and light swarm particles. Numerical studies (not presented in this paper)
have produced results which are consistent with this observation. We have used
a simple constant collision frequency model to illustrate precisely where the Ikuta
definition of DT leads to an expression which differs from the well known DGE result.

Our conclusions are these:

(1) Because of their different definition of DT , Ikuta et ale are calculating
a different transport quantity from the generally accepted one, which is
the quantity measured by experiment.
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(2) Only for light swarm particles and isotropic scattering do the two
definitions agree and only then should there be any expectation of
agreement between respective numerical calculations.

(3) The FTI and multi-term expansion techniques are effectively merely
different methods for solving the Boltzmann equation and any major
discrepancy which exists between numerical calculations of DT is due
to the difference in definitions, rather than the difference of numerical
techniques.

(4) However, it does seem that Ikuta (personal communication) may be
suggesting that not only the integral (56) of '¢s(/~l») vanishes, but that
this term itself is zero, in which case the implication is that the Boltzmann
collision term (7) should be replaced by

JIkuta(/) = liT/ - '¢s(/(0») ,

The FTI literature should be viewed in that light.

(68)

Note added in proof: Professor L. A. Viehland has advised that he reached
similar conclusions to those outlined above through an independent though
unpublished analysis.
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