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Abstract

We study a relativistic bounded plasma consisting of hot ions and electrons with density
gradient and variable streaming. It is observed that the nonlinear wave generated inside is
governed by a variable coefficient KdV equation, which we analyse numerically. Furthermore,
the solitary wave is scattered at the discontinuity due to inhomogeneity, and the characteristics
of the left and right moving wave become different. Such scattering usually takes place in the
solar wind, interplanetary shocks, and in the environment of a comet where, as the relativistic
effect gives rise to streaming, the non-uniformity of the plasma leads to a density variation.
By evaluating a suitable form lof such variations we compute the amplitude, velocity and
width of the soliton before and after the scattering. The amplitude of the reflected wave is
seen to decrease as in previous observations.

1. Introduction

The properties of nonlinear waves generated in a plasma hold a central place in
theoretical plasma research. Of late the importance of relativisitic effects has been
realised, since they are solely responsible for the phenomenon of mass variation
and streaming (Nejoh 1987; Roy Chowdhury et ale 1988; Mukhopadhyay et ale
1992; Das and Paul 1985). These two physical phenomena have an important
influence on various aspects of nonlinear waves. Experiments in plasma are usually
performed in a very small volume so that the effects of the finite boundary should
be taken into account. Already some results are available regarding the influence
of such boundaries (Das and Ghosh 1988; Mukhopadhyay et ale 1992). Another
important aspect of a real plasma is that its density seldom remains uniform.
The effect of a density gradient has been considered in a few cases by Buti
(1991) and Nishikawa and Kau (1975). An important consequence of the density
gradient is that the solitary wave is scattered in such a region. It is important
to note that scattering of solitons in plasma has been observed by Dahiya et ale
(1978) and reflection of an ion-acoustic soliton from a negatively biased grid has
been studied by Papa and Oertl (1983). Kuehl (1983) investigated theoretically
the reflection of the ion-acoustic solition and showed that the amplitude of the
reflected wave is much smaller than that of the incident. Recent experimental
findings on the scattering of solitons by Nishida (1984) support this observation.
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In theoretical analysis so far the effects of the finite boundary (which is
essential for any experimental observation) and relativity have been neglected.
Here in this paper we study the scattering of solitons in a relativistic bounded
plasma, consisting of hot ions and electrons, by treating the soliton on the
left and right sides of the impurity separately. Due to the inhomogeneity and
relativistic mass variation, the streaming velocity turns out to be variable and
becomes a function of distance. Our paper is organised as follows. In the
first section we deduce the variable coefficient KdV equation by the reductive
perturbation technique, modified due to the density gradient and presence of
the finite boundary (Mukhopadhyay et ale 1994). Next we discuss the technique
to solve such an equation to obtain the solitary wave solution explicitly and
then discuss how the amplitude and velocity depend on the variable streaming
velocity, relativisitic mass variation, and the radius of the boundary. A modified
form of scaled variable is introduced to describe the scattering of the solitary
waves from the inhomogeniety.

2. Formulation

Let us consider a one-dimensional collisionless relativistic weakly inhomogeneous
plasma having a spatial gradient in the ion density. The electrons are assumed
to be isothermal because of their large thermal conductivity. The electron
temperature is assumed to be much greater than the ion temperature which
is assumed to be constant. As a consequence, the effect of Landau damping
becomes small. In the absence of solitons the plasma is considered to be in a
time independent steady state, which arises as a result of the loss of ions and
electrons in the walls of the boundary and their production due to ionisation. The
frequency of ionisation is small and therefore the condition of quasi-neutrality
is a good approximation over a region extending from the plasma centre to
the transionic layer. In the present analysis we assume that the scale length
of plasma inhomogeneity is large compared with the soliton width. Under this
assumption the soliton retains its shape and its amplitude, width and speed are
functions of position. Neglecting transport properties such as heat conduction and
viscosity and assuming a Boltzmann distribution for the electrons, we can write
the one-dimensional ion continuity and momentum equations, the equation of
state, the electron Boltzmann distribution and Poisson's equation in the following
form (Mukherjee and Roy Chowdhury 1994; Murthy et ale 1984):

an a
at

+ -(nv) == 0ax '

avo avo ap a¢
n - + nv - + - + n - == 0at ax ax ax '

ap ap avo- + v - + 3p - == 0 ,at ax ax
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(lc)
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with

02¢ 02¢
-2 + -2 =ne-n,
OZ AX

ne = exp(¢),

Va = "'tV ~ (1+ v2/2c2
) V •
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(ld)

(Ie)

Here we have used an approximate form for the Lorentz factor. Further, we have
normalised the ion and electron densities by the zeroth order ion density no at
an arbitrary reference point in the plasma, which we choose to be x = o. Also,
v is the ion velocity normalised by the ion-acoustic speed (kTe/m)1/2, ¢ is the
electric potential normalised by kTe/e and p is the ion pressure normalised by a
characteristic electron pressure no kTe . The space coordinate x and time tare
normalised respectively by the electron Debye length and ion plasma period at
x=o.

3. Reductive Perturbation Analysis

In order to obtain the nonlinear partial differential equation governing the
propagation of the right and left moring waves we carry out a reductive pertubation
analysis of equations (la)-(le).

(3a) Right Moving Wave

The set of stretched coordinates for a right moving wave (positive x direction)
in a spatially inhomogeneous plasma is

1/2(JX dx )e=€ - -t ,
AO(X)

TJ = €3/2 . (2)

Such a modified version of the stretching of the coordinates was initially suggested
by Asano (1974) and later used by Nisikawa and Kaw (1975). It may be
observed that when A(X) is constant this become identical to the usual stretched
coordinates used in plasmas. The functional dependence of A is used to take
care of the inhomogeneity of the plasma. The physical quantities describing the
plasma such as (n, v, ¢, p) all are expanded as follows (Tagare 1974):

w= Wo(x) + €W1(X, t) + €2 W2(x, t) + ... , (3)

(4)

where Wstands for n, v, ¢ or p, and the subscript zero indicates the unperturbed
quantity which is a slowly varying function of the position coordinate x.
Substituting (2) and (3) in (1) we get

OAO = owo = 0
oe oe '
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a
a'Tl (novo) = 0,

avo a¢o 8po
novo- +no- + - =0,

ary 8ry 8ry

8po avo
Vo - + 3po - = 0 ,

ary 8ry
(5)

a
2

4>0 = neo - no ,
ary2 neo = exp(¢o).

Also from terms of first order in €, we get

anI no aVI Vo 8nl _ 0
- at, + Ao at, + Ao at, - ,

a [( 3v5) ] a [( v5 )] 1 apl-no - VI 1 + - - nl - Vo 1 + - + - -
a~ 2c2 a~ 2c2 Ao a~

no Vo ~ [v (1 3V5) ] no a¢1 = 0
+ AO at, 1 + 2c2 + AO at, ,

_ apl Vo apl 3po (1 3V5) aVI - 0
at, + AO at, + AO + 2c2 at, - ,

a2¢ nl
-=¢1- -.az2 no

Integrating these equations with the boundary conditions gives

(6)

nl = VI = ¢1 Vo, ¢o, Po ~ 0,

no, Ao ~ 1, aslel~oo. (7)

Since the plasma is assumed to be confined to a region bounded by the planes
z = 0 and z = b, which we assume to be perfectly conducting, we should impose
the condition that ¢ = 0 on the z = 0 and z = b planes. Such a procedure was



Scattering of Solitons

also followed by Das and Ghosh (1988). The condition is satisfied by

¢>1 = f (e, 1]) sin [q(1])z] ,

when q(1]) = n1r/b, along with

2 no
q = (1 + 3v5/2c2)[no (Ao - vO)2 - 3po] .

We also get
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(8)

(9)

AO = Vo + no + 3po (1 + n21l"2/b2) (1 + 3v5/2c2)1/2
no(1 + n21l"2/b2) (1 + 3v5/2c2)· (10)

Using these results in equations (6) and (8) we at once obtain

n1 = n1 (1]) f (e, 1]) sin [q(1])z] ,

VI = VI(1]) f(e, 1]) sin[q(1])z] ,

PI = PI(1]) f(e, 1]) sin[q(1])z] , (11)

where

n2
nl (11) = 2/ 2)[ 0 )2 ] ,(1 + 3vo 2c no(Ao - Vo - 3po

( ) no(Ao - vo)
VI 1] = 2 2 2'(1 + 3vo/2c )[no (Ao - Vo) - 3po]

PI(1]) =
3pono

(12)2 .
no(Ao - vo) - 3po

Proceeding now to second order terms in E2, after using the results in equations
(10) and (11) we get

{)2 ( a¢>2 ) (n6 ) a¢>2 1.- - + -- - 1 - + - sIn[q(1])z]
az 2 ae 0 1(1]) ae A6

a
3

f + A1(1])Ao . [ ( ) ]af + (A2(1] ) \ 1)x - Sl Il q 1] Z - -- /\0 -
ae3 0 1 (1]) a1] 0 1 (1])

• 2 . af A3 (1])Ao a . A4 (n )Ao
X sm [q(11)Z]j~ + () ~{sm[q(n)z]}f+ --ue 0 1 1] on 01(n
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aVl('TJ) . AS('TJ)Ao avo .
x -- sln[q('TJ)z]J + () - sln[q('TJ)z]J

a'TJ C1 'TJ an

A6('TJ)AO apl ('TJ) . [ ( )] A7('TJ)Ao apo+ --slnq'TJz + -
C1('TJ ) a'TJ C1('TJ ) a'TJ

x sin[q(71)z]f + ,>'0 Vo anal (71) sin[q(71)z]f = 0,
0- vo 'TJ

(13)

where the coefficients occurring in the above equation are defined as follows:

C1('TJ ) == [no(Ao - vO)2 - 3po] (1 + 3v5/2c2)(Ao - vo),

2n~ Ao(Ao - vO)2
A l (71 ) = (1 + 3v5/2c2)[no(>'0 - vO)2 - 3po] ,

[(
3v5) 3no vo 2

A2('TJ) == no(Ao - vo) 1 + 2c2 nl('TJ) Vl('TJ) - --r vI ('TJ)

3noV5 2() no(1 +~v5/c2) 2( )
+ \2 vI 'TJ + A vI 'TJ

.1\0 C 0

Vo ( 3V5) nl ('TJ)]+ >'0 1 + 2c2 nl(71)Vl(71) +~

no gpo vono 2 3no
+ ,Vl('TJ)Pl('TJ) + Vl('TJ) + ~Pl('TJ)Vl('TJ)
~ ~ ~

(
3V5) 2 ( 3V5)x 1 + 2c2 - 2[3po - no(>'o - vo)] 1 + 2c2 nl(71) Vl(71),

2n~ Ao(Ao - vo)2
A3 (71 ) = (1 + 3V5/2c2)[no(>'0 - vO)2 - 3po] ,

A4('TJ) == n~(Ao - vo)(1 + 3v5/2c2) + 3po no(1 + 3v5/2c2)

- no[3po - no(Ao - vo)2](1 + 3v5/2c2) ,

[
3noV5 ( 3V5)As('TJ) == no(Ao - vo) --r Vl('TJ) + no Vl('TJ) 1 + 2c2
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( 3v5 )] qnoPo Vo+ Vo n1(1]) 1+ 2c2 + ? V1(1])

( 3V5) )2]+ 3 1 + 2c2 noP1(1]) - [3po - no(Ao - vo

x (1 + 3U6/2c2)nl (1]) ,
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A6 (1] ) = no AO, A7 (1]) = noVI (1]) . (14)

Multiplying both sides of equation (13) by sin (q(1])z] and integrating between
the limits 0 to b, we get

01 B2(1]) 01 031

~ + -B( )ul-;;- +UI-3 +u2/=O,
on 1 1] ue oe (15)

where

(T = l b

sin3(qz) dz / l b

sin2(qz) dz,

(T2 = ~:i~~(lb

sin(qz) dz / l b

sin
2(qz)

dz)

x 0 ·81] sm[q(1])z) + B4 (1])
B1(1] ) ,

B3(1])

Al (1])AO
B1(1]) = C1(1]) ,

A3 (1] )AO
C1(1]) ,

A2 (1])AO
B2(1]) = C

1
(1]) ,

B4(1])
AO ( OVI (1]) oVo

C1(1]) A4 (1])~ + AS(1]) 81] + A6 (1])

0Pl (1]) A ( ) opo Ao Vo on 1 )x--+ 71]-+ -.
01] 01] AO - Vo 01]

(16)

Equation (15) is the required nonlinear KdV equation with variable coefficients
describing the propagation of the right moving wave. Due to the variable nature
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of the coefficients we seek a solution of the form

fR = A(TJ) sech2 (€ -V(TJ))
8(TJ) ,

(17)

where A(TJ), v("l) and 8(TJ) are the variable amplitude, velocity and width,
governed by the equations

8A(11) + D3(11) A(11) = 0,
8TJ

4D2(TJ)b

8
2(11)

= D
1(11)

A(11) ,

A(11) 82(11) 8~~11) + [A(11) 8(11) - A(11)V(11)11] ~~

(18)

+A(11) 82(11) V(11) - D1;11) A2(11) 83(11) + 8A(11) D2(11) = O.

(3b) Left Moving Wave

Due to the inhomogeneity of the plasma the left and right moving waves
behave differently. The appropriate set of variables for the left waves is

1/2 ( JX dx )
~ = E - AO(X) - t , TJ = _€3/2 . (19)

Proceeding similarly as in the previous case we arrive at

8
811 (novo) = 0,

8vo 8¢o 8po
novo- +no- + - =0,

8TJ 8TJ 8TJ

8po 8vo
Vo- +3po- =0,

8"l 8TJ

8
2

4>0 = neo - no,
8TJ2

no = exp(¢o). (20)
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Terms of first order in € lead to

AO +VO
VI = - nl,

no
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PI
3po (1 3V5)- . + - VI

AO + Vo 2c2
'

(
3V2)no(Ao + VO)VI 1 + 2c~ = -PI - no <PI ,

82<pI = <PI _ nl ,

8z 2 no
(21)

with boundary conditions

q(1]) = n1T
b '

2 no
q = (1 + 3v5/2c2)no(Ao + vO)2 - 3po .

(22)

Without going into details of the computation for terms of higher order in €

(which is similar to the previous case but differs in detail only), we give the final
results:

AO = -Vo + (no + 3po(1 + n
2

1T
2/b2)(1 + 3V5/2c2)) 1/2

no(l + n2
1T

2/b2)(1 + 3V5/2c2) ,

along with

nl = nIl ("1) !(e, n) sin[q(n)z] ,

Vl= VII ("1) ! (e, n) sin [q(n)z] ,

PI = Pll ("1) !(e, n) sin[q(n)z] ,

where

nll(1])

Vll(1])

Pll ('TJ)

n6
(1 + 3v5/2c2)[no(Ao + vO)2 - 3po] ,

no(AO +vo)
(1 + 3v5/2c2)[no(Ao + vo)2 - 3po] ,

3pono
2 •

no(Ao + vo) - 3po

Taking into account terms of higher order in €, we can again obtain another
KdV equation which can be written as

8/ + fh(1J) f(C n) 8! + b (n) 8
3

/ + b ! = O.
8"1 b ~ , 8e 2 8e3 3

(23)
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We now follow the same technique as in the case of the right moving wave, that
is we assume a modulated form for the solitary wave and obtain the differential
equations for the amplitude, velocity, etc. by substituting this assumed form in
equation (22).

The form of the soliton may be written

fL = a(1]) sech2 (e -U(1])1])
w(1]) ,

(24)

where a(1]), v(1]) and w(1]) are respectively the amplitude, velocity and width of
the left moving wave, governed by the following system of equations:

8a(TJ) + fh(TJ) a(TJ) = 0,
81]

4D2 (1])b
w

2
(n ) = [h(TJ) a(TJ) ,

2 8v 8w
a(TJ) W (TJ) 8TJ + [a(TJ) U(TJ) - a(TJ) V(TJ)TJ] 8r}

(25)

+a(TJ) w2 (TJ )V(TJ) - Dl:TJ) a2(TJ) w2 (TJ ) + 8a(TJ) + 8a(TJ)D2(TJ) = O.

The coefficients D i (1]) and Di (1]) are given in the Appendix.

4. Analysis and Inferences

Since the equations governing the motion of our solitary waves have variable
coefficients, numerical methods are to be adopted for the integration of the sets
(18) and (25). To do this information is needed about the zeroth order terms
such as vo, Po and no, which are governed by equation (5). We observe that
a possible set of solution is obtained as follows. We set no = 1+1] so that as
1]~ 0, then no ~ 1, the equilibrium value. With this information we can now
solve (5) and obtain

k1 .
Vo=-,

no

k2

PO=3'
Vo

where k1 and k2 are certain constants. For carrying out the numerical integration
of equations (18) and (25), it is necessary to fix a range of 1] values. Since vo varies
with 1], the relativistic or nonrelativistic nature of the system is automatically
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fixed along with the range of 'fJ. For large values of 1], we have Vo --+- 0 and so
we are in the nonrelativistic region, whereas for small 1], values Vo may become
comparable to c. Simultaneously, it should be kept in mind that for large 'fJ, Po
is large and for 'fJ small, Po tends to be small. We now utilise these forms of Po,
Vo and no in the differential equations for the phase velocity and the amplitude
of the left and right moving soliton, given in equations (18) and (25). These
are then integrated numerically for various values of the plasma parameters. All
these results are displayed in Figs 1 to 6.

25.0 15.0

Left moving ~ Right moving
20.0

~ ~ 10.0~- b=2
E 15.0 6~1 .s
~ 0 =e10.0 e i "'"""'d~
-e b=2 < 5.0

::: ~ I Ii I I " Ii I Ii Ii I Ii " I 0.0 ] i I I i I I i ~~o
-1.0 -0.8 -0.5 -0.2 0.0 0.0 0.5 1.0 1.5

~ ~

Fig. 1. Amplitude of the right and left moving soliton after scattering from the inhomogeneity
for different b and small 1J.
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~

~
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S
<<

2.5
. '~

50.0

Right moving <;

Fig. 2. Amplitude of the right and left moving soliton after scattering from the inhomogeneity
for different b and large "1.

In each figure we show the cases of left and right moving waves separately. An
important role is seen to be played by the dimension of the bounding surface.
In a previous analysis (Mukhopadhyay et all 1994) we showed that b has an
important influence on the formation of solitons in plasma. So here we have
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Fig. 3. Width of the right and left moving soliton after scattering from the inhomogeneity
for different b and small rJ.
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Fig. 4. Width of the right and left moving soliton after scattering from the inhomogeneity
for different b and large rJ.

considered three ranges, b = 10, b = 5 and b = 2; large, medium and small. In
Figs 1 and 2 the amplitudes of the left and right moving waves are shown.
Fig. 1 gives the relativistic situation, whereas Fig. 2 yields the nonrelativisitic
case (remember these are determined by the range of "7). Though the. trend of
the curves in these two regions both for the left and right moving waves remains
the same to some extent, they differ in finer details. It is important to note
that for the various values of b their variation follows a definite pattern. Next
in Figs 3 and 4 we plot the width of the solitary waves. In this case for the left
moving wave the behaviour changes drastically in passing from the relativistic to
the nonrelativistic regime, but the right wave shows a similar behaviour. Lastly
in Figs 5 and 6 we exhibit the velocities of the two solitons. The nature of these
curves mimics that of the amplitude, which is reasonable because in the case
of ordinary solitary waves these are proportional to each other. The important
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Fig. 5. Velocity of the right and left moving soliton after scattering from the inhomogeneity
for different b and small TJ.
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Fig. 6. Velocity of the right and left moving soliton after scattering from the inhomogeneity
for different b and large TJ.

feature that emerges out of the above analysis is that due to the imhomogeniety
the soliton is scattered and its behaviour changes completely. Though still not
feasible, it may in the future become possible to measure the changes in the
nature of the soliton by scattering in a relativistic plasma. Then, many physical
characteristics of a plasma might be determined by using soliton scattering such
as has been discussed here.

One may note that even in the presence of relativistic effects and a finite
boundary, the basic observation of Mukhopadhyay et at. (1994) still holds; that
is, the amplitude of the reflected soliton is less than that of the incident one.
Only the magnitudes vary due to the variations in size of the boundary. Another
important feature of our analysis is that the variation of the ion temperature is
automatically taken care of due to the dependence of Po on 'fJ and it is not at
all a parametric feature.
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Appendix

In the following we give detailed expressions for the coefficients occuring in
equation (25) and a few more relations which have been proved to be useful in
the analysis:

D11(1J)

D21(1J)

D31(1J)

B11(1J)

B21(1J)

B31(1J)

(_1)n+2 4B21(7])

3q(7]) B 11 (7]) - Al ,

1
.,\2 B11(1J) ,

o

B31(1J) 8q(1J) B41(1J)
2B11(1J) q(1J) ---a:;J - B11(1J) '

A 11 (7]) >'0,
011(1J)

A31(1J).,\O
011(1J) ,



Scattering of Solitons 711

B4 1 (TJ )

011(TJ)

A11(TJ )

AO (A ( )aV11 ('fJ ) A ()avoeu (1]) 41 1] 81] + 51 1] 81]

+A
61

(1]/ PU(1]) +A
71

(1])8Po + Aovo 8n u(1]»)
aTJ aTJ AO + Vo aTJ '

2 (
3V5)[no(Ao + vo) - 3po] 1 + 2c2 (Ao + vo) ,

2n~AO(AO + vO)2

(1 + 3v5/2e2) [no(Ao + vo)2 - 3po] ,

A21 (1]) = no(Ao.::.~o~I(1 + ~~~) nu (1])vu(1])

2
3noVo 2 3no Vo 2 ( )

- --2- V11(TJ) +~ VII TJ
e Aoe

2 (3V2)no(l + 3V5/2c ) v2 (n) + Vo 1 + --1- nll(TJ)VII(TJ)
+ Ao U Ao 2c .

n11 ( TJ) ] no qpo Vo no 2+~ + Ao VU(1])PU(1]) + , 2 Vu(1])

(1 + ~v2 /e2
)

+ 3noPll (TJ) VII (TJ) + 2 0 + 2[no(Ao + VO)2
Ao

(
3V2)- 3po] 1 + 2?' .nU(1]}VU(1]) ,

A31 (TJ)
2n~ AO(AO + vo)2

(1 + 3v5/2e2)[no (,\0 + vo)2 - 3po] ,

3 (
3V5) ( 3V5)

A41(1]) = no(Ao + vo) 1 + 2c2 + 3po no 1 + 2c2

2 (
3V5)+ no[no(Ao + vo) - 3po] 1 + -2 '

. 2e
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[
3n5Vo

no(Ao - vo)~ V11(1]) + nOV11 (1])

( 3V5) (3V
2

) ]X .1+ -2 +vOn11(1]) 1+ _0 + qnopovo
2c 2c2 -

(
3V2)

X Vl1(n) + 3 1 + 2c~ noPl1(17)

2 ( 3V5)- [3po - no(Ao + vo)] 1 + 2c2 n11(1]) ,

A6 1 (1]) Aono, A71(1]) = no V11 (1]) .
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