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Abstract

The gradual transition from van der Waals-like to metallic behaviour in mercury clusters is
studied by a localised orbital theory based on the tight-binding approximation. The total
density of states (DOS) of the Hg., clusters is obtained by means of the moment expansion
method. The Fermi energy determined from the DOS is combined with the classical conducting
sphere droplet (CSD) model to calculate the size-dependent ionisation potential (IP) of the
cluster. The theoretical results are in good agreement with the experiments. The size
dependence of the ionisation potential has an abrupt change at n = 13, indicating that the
transition from insulating to metallic behaviour begins.

1. Introduction

The physical and chemical properties of metal clusters have received considerable
attention during the last decade (Morse 1986; Moskovits 1991). It is of fundamental
interest to know how the discrete electronic states in the cluster are broadened
to form the band structure of the bulk solid and the metallic properties of the
clusters evolve as a function of cluster size. Particularly interesting in this respect
are the divalent metals, which have an s2 closed-shell atomic configuration just
like helium, and should in principle be insulating in the bulk. In fact, the binding
energy of these metals in homonuclear dimers is so weak that these dimers quite
often are considered analogues of the weakly bound rare gas dimers (Morse 1986).
But is is well known that the bulk solid of these elements has a metallic character
resulting from the overlap between the filled s band and empty p band. Although
the dimers and other smaller clusters are generally van der Waals-like, metallic
cohesion must eventually prevail in the larger aggregates. Therefore, probing the
transition from van der Waals to metallic bonding in divalent metal clusters has
become one of the foci in cluster research (Rademann et al. 1987; Erechignac
et at. 1988; Pastor et at. 1988, 1989; Haberland et al. 1990; Kawai and Weare
1990; Rademann 1991; Kaiser and Rademann 1992; Zhao et at. 1994).

Among these divalent metal clusters Hg., is the most intensively studied
both experimentally and theoretically. Experiments on the ionisation potential

0004-9506/95/040731$05.00



732 J. Zhao et ale

(Rademann et ale 1987; Haberland et ale 1990; Rademann 1991), inner-shell
autoionisation spectra (Erechignac et ale 1988) and photoelectron spectroscopy
(Kaiser and Rademann 1992) of the Hg., find a gradual transition from van der
Waals-like to metallic properties in the size range between 20 and 70 atoms.
Calculations on the size dependence of the ionisation energy and autoionisation
energy of these clusters based on a tight-binding Hubbard Hamiltonian have
shown that the transition from localised to delocalised electronic states occurs
in Hg., at n ~ 13-19 (Pastor et ale 1988, 1989). In this paper, we shall use the
localised orbital approach to calculate the ionisation potential of Hgn clusters up
to 55 atoms.

2. Theoretical Model

Due to the large number of electrons and the heavy nucleus in the Hg atom,
an ab initio computation on the Hg., cluster is almost impossible. A simplified
theoretical method must be developed to investigate such a system. In this
work we use a parametrised LCAO Hamiltonian constructed from the localised
orbital theory (Weeks et ale 1973; Bullett and Cohen 1977; Heine 1980; Zhao
et ale 1994). The atomic-like orbitals I¢il) are defined by the set of localised
pseudopotential equations

(T + Vi)I¢il) - L(v~/ -1¢jll)(¢jl/IVj)l¢il) = Eil!¢il).
jl'

(1)

Here i and l label the atomic site and angular momentum of the orbital
respectively, Vi is the potential of the isolated atom i, V/ is the deviation of
the crystal potential from Vi, caused by the presence of atom j, and T is the
kinetic energy operator. We can write (1) in an alternative form:

HI¢il) = €ill¢il) + L l¢jll)(¢jl'l~/I¢il) = L l¢jl,)Djl',il (2)
jl' jl'

by introducing the coefficient matrix D. By assuming linear independence of the
localised orbitals, it has been proved that the eigenenergy E can be determined
from the secular equation for the pseudo-Hamiltonian D matrix (Weeks et ale
1973),

ID -Ell = 0,

whose diagonal elements and off-diagonal elements are

o " .Dil,il = eu ~ €il - LJ (¢ill¢jll)(¢jl/lv~/I¢il),

jl'

Dil,jl' = (¢illv~/I¢jll).

(3)

(4)

(5)

Here €?l is the atomic level (Pastor et ale 1988, 1989). In equation (4) we have
neglected the crystal field integral because it is usually much smaller than the
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hopping integral. In practice, the hopping integral in the D matrix is obtained
from Slater's tight-binding formula. The Slater-Koster parameter is

Vlllm = 1}ll 'm
t . (6)

Here we choose 1}ssO' = -1 .32, 1}spO' = 1·42, 1}ppO' = - 2 .22, 1}PP7r = -1 .32 and
t = 0·44 eV (Pastor et ala 1988, 1989). For sp bonding, the distance dependence
of the hopping integral is t rv d- 2 • The orbital overlap integral (cPill cPjll) is derived
by employing the extended Hiickel approximation (K = 1· 50) :

K 0 0
Vlllm = Slllm -(El + Ell) .

2
(7)

Thus, we can obtain the eigenenergy or the density of states by diagonising the
pseudo-Hamiltonian D matrix. Instead of a direct diagonalisation, we adopt the
moment expansion method (Gaspard and Cyrot-Lackmann 1973; Heine 1980) to
calculate the eigenenergy spectrum. The density of states (DOS) of the system
is determined from the Green function (Heine 1980):

n(E) = _.!. lim G(E + if) .
1f€-+O

(8)

The Green function is obtained via a continuous fraction whose coefficients
are related to a certain amount of moment (Gaspard and Cyrot-Lackmann
1973). Comparing with direct diagonalisation, the moment method needs less
computational time but can give quite accurate results.

After the total DOS has been obtained, the Fermi energy EF of the cluster
can be determined by requiring

j E F

-00 n(E) dE = :1, (9)

because the total number of electrons in full occupied s, p levels is eight while
there are only two electrons in each Hg atom. Assuming that the shape of the
DOS of Hg., remains unchanged after ionisation, the size-dependent ionisation
potential can be calculated from (Pastor et ala 1988, 1989; Zhao et ala 1994)

2 2
1 e 1 e -1/3In = -EF + '2- = -EF + '2-n .

Rn ro
(10)

Here the first term -EF denotes the energy needed to remove an electron from
the highest occupied state of the cluster to the vacuum state. The second term
arises from a classical static electric effect (Wood 1981; Perdew 1988), which
can account for the shift of the electronic levels of Hg;t with respect to those of
neutral Hg., upon ionisation. Here Rn is the cluster radius and ro the atomic
radius. In most monovalent metal clusters such as Nan or Kn , the electronic
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structure of the cluster is considered to be similar to the bulk and consequently
the -EF is replaced by the bulk work function W; thus

e2 2
In = W + 1_ = W+ 1~n-l/3

2 R 2 •TO
(11)

This simple model, usually called the conducting sphere droplet (CSD) model
(Wood 1981; Perdew 1988), has been applied to the simple metal clusters quite
successfully, but fails in predicting the size-dependent ionisation potential of the
transition metal cluster (Zhao et ale 1993) due to the localised d band.
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Fig. 1. Size dependence of the ionisation potential In of Hg.,
clusters. The calculated results of the localised orbital theory
are shown along with the experimental results taken from
(Rademann et ale 1987; Rademann 1991). The dashed line
is the theoretical prediciton of the conducting sphere droplet
(CDS) model.

3. Results and Discussion

In small clusters (n < 13) the cohesion is mainly van der Waals-like. Therefore,
these clusters favour a close-packing structure with a compactness or mean
coordination number as high as possible. Here we adopt those polyhedral
structures with the highest compactness which are similar to those that have been
obtained for small Mg., clusters (Kumar and Car 1991). For larger clusters, we
adopt the fcc-like packing structures, e.g. cuboctahedron or truncated tetrahedron,
since the lattice structure of bulk Hg can be viewed as a slighly distorted fcc
structure. The calculated ionisation potential and the experimental values (Kawai
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and Weare 1990) are shown in Fig. 1. The present results based on the localised
orbital theory conform nicely to the experiments.

In Fig. 1 there is an obvious transition behaviour at about n = 13 in the
size dependence of the ionisation potential both theoretically and experimentally.
Below the transition point (n < 13), In evolves gradually with increasing cluster
size. Beyond that (n > 13) In decreases dramatically with n. This rapid change
is believed to correspond to the transition from the localised electronic state
(van der Waals) to the more delocalised one (covalent or metallic). In Fig. 1 we
observe that there is not much discrepency between I n and the prediction of the
CSD model up to n = 70, indicating that clusters of this size are almost metallic.

Previously, Pastor et ale (1988, 1989) performed a tight-binding calculation on
the ionisation potential of Hg., clusters but obtained relatively poor agreement
with experiment in the medium size range. They explained the failure by strong
electron localisation originating from electronic correlation. However, we believe
this is not the only reason. As the cluster is very small, the electronic correlation
and localisation in the cluster can be much stronger than that in the larger one.
Then the deviation of the theory from experiment much be larger in the smallest
clusters and decrease as the cluster becomes larger. In contrast to this view, the
disagreement between their calculation and the experimental results lies just in the
medium size range (5 < n < 50). Therefore, electronic correlation is not the only
reason. Since the overlap between different atomic orbitals is neglected in their
model, we believe that the improvement in our theory comes from the inclusion
of the overlap effect in the diagonal terms of the pseudo-Hamiltonian matrix D.
In the tight-binding localised orbital theory, correction of the overlap effect can
provide the repulsive interaction between each atom and weaken the attractive
cohesion. As a result, localisation of electrons in the clusters is more pronounced
than in the usual tight-binding theory. However, as the cluster becomes larger
and almost metallic, the localised orbital theory can overestimate the electronic
localisation and cannot serve as well as it does in small clusters. From Fig. 1 we
find that the disagreement between theory and experiment becomes non-negligible
when the cluster size exceeds 50.

In summary, the localised orbital theory can describe the electronic structure
and size dependent ionisation potentials of Hg., clusters smaller than 50 atoms,
while the tight-binding model (Pastor et ale 1988, 1989) should be used in the
larger clusters.
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