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Abstract

This paper extends the treatment of the polarisation tensor for the electroweak plasma to
encompass all the preliminaries needed for a thorough study of its characteristics as they affect
the early Universe. The detailed development of the one-loop polarisation tensor calculated
in a previous paper includes the construction of the basis tensors in terms of which the
polarisation tensor is most conveniently expressed. The polarisation response functions are
obtained next and there follows a detailed discussion of the real and imaginary parts of
the polarisation tensor. These are the essential tools for the subsequent study of the mode
structure and dissipation properties of the electroweak plasma.

1. Introduction

The aim of the present work is to step back from the details of the early
Universe and give a broad general discussion, within the framework of gauge field
theory, of the behaviour of the particles involved using the polarisation tensor in
the one-loop approximation. From the polarisation tensor, the thermodynamics
and dispersion relations of the system can be obtained and the consequences of
the appearance of an electroweak plasma in the early evolution of the Universe
and any phase transitions that t.he electroweak plasma may undergo can then be
evaluated. By using a systematic approach, the set of particles which make the
main contribution to the phase transition can be obtained, which gives insight
into the development required to extend the calculations.

The procedure used to obtain the polarisation tensor is given in Smith et ale
(1995) hereinafter referred to as Paper 1. There all contributions to the polarisation
tensor of the electroweak plasma have been determined at the one-loop level.

The aim of the present paper (Paper II) is to continue with the analysis of
the detailed mathematical properties of the polarisation tensor up to a stage at
which meaningful investigation of the characteristics of the electroweak plasma
can be undertaken.

The present paper begins by constructing the set of basis tensors in terms
of which the polarisation tensor may most usefully be described. Following on
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from this the polarisation response functions are defined in equation (16) and then
explicitly calculated using equations (55), (56) and (57) for the loop, tadpole and
balloon diagrams respectively. These expressions are given in terms of the so-called
Y and Z functions which turn out to be of great importance in the subsequent work.

In terms of these functions the real parts of the polarisation response functions
are calculated next. The imaginary parts of the polarisation response functions
are obtained from the study of electroweak plasma properties by extending the
work of Tsytovich (1961) for the QED plasma to the electroweak plasma. The
determination of the damping regions in Fourier space is dependent on the masses
of the propagating particles and this leads to the definition of the imaginary parts
of the polarisation response functions given in equation (135). From the real and
imaginary parts of the polarisation response functions, the mode structure and
dissipation properties of the electroweak plasma may be investigated, in principle.

The correspondence between each Feynman diagram and the equations and
functions used to describe it is given in Table 5 of this paper.

2 Construction of the Polarisation Tensor

2.1 Basis Tensors

As we are interested in the first order self-energy shift, the incoming and outgo­
ing particles are the same, so the polarisation tensor for a particular diagram will
be symmetric. The most general symmetric second rank tensor that can be con­
structed for the isotropic system will be a linear combination of the invariants q/-L q/-L
and q/-Lu/-L and the symmetric tensors 9/-Lv, q/-Lqv, u/-LUV and q/-LUV + qvu/-L' where u/-L
is the 4-velocity of the frame co-moving with the plasma. It would be possible to
specify the polarisation tensor in terms of this basis set; however, the more conve­
nient choice is to use the set of orthogonal tensors L/-Lv, T/-Lv, Q/-Lv and C/-LV given
by

(4)

(3)

(1)

T/-Lv

L/-Lv

C/-LV

Q/-LV

(q.U)2 {q/-LqV q/-LUV + qVU/-L 2 U/-LUV }
2 --- +q--2 '

q2 _ (q.u) q2 q-u (q.u)

9/-,v+ 2 ~ )2 {(q.U)(q/-LUv+qVU/-L) _q2(U/-LUv+ q/-L;V)} , (2)
q - q·u q

q/-Lqv
-2-'

q
q/-LUV + qVU/-L q/-Lqv

Zq-u -7·
Here T/-Lv and L/-Lv are based on the tensors specified in Melrose (1982), while the
other two are based on the tensors specified in Gross et ale (1981) recalculated to
show explicitly the u/-L velocity.

A useful relationship between the tensors is

g/-LV == L/-Lv + T/-Lv + Q/-Lv. (5)

The calculations for the polarisation tensor are performed in the rest frame
of the plasma, where U == (1,0,0,0) and hence q·u == w. The magnitude of the
momentum 3-vector of the incoming particle is given by

Q= Iql·
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The tensors used are orthogonal with the following properties:
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TltPL pv

TltPQpv

trrci;

trro;
irrc;
crrc;
TltPTpv

LltPi-;
QltPQpv

cltPcpv

0,

0,

0,

0,

0,

0,

Tit v ,

ir :

cr.,
q2 - (q.u)2 tL"v + Q" J.

4q·u2

(6)

(7)
(8)

(9)
(10)

(11)

(12)

(13)

(14)

(15)

2.2 Polarisation Response Functions

The polarisation tensor will be expressed using the set of tensors defined previously
as

IIltv = 1[
T

T lt v + 1[LL lt v + 1[Q Q lt v + 1[
c

C lt v ' (16)

Using the orthogonality of the basis tensors, the polarisation response functions
used to describe the polarisation tensor are

1[T IIltv T ltV
(17)

T Tltv'ltv

1[L IIltv L ltV
(18)= L Lltv'ltv

1[Q
IIltvQltv

(19)
QltvQltv'

1[c IIltv C ltV
(20)

CltvCltv

2.3 Other Tensors

Any other tensors can be given as a linear combination of the set described in
Section 2.1. For example, those used by both Kapusta (1989) and Carrington
(1992) are

pltV

T
pltV

L

_Tltv,

_Lltv.

(21)

(22)

The set of tensors used by Gross et al. (1981) are

AG P Y

ltV

B G P Y
ltv

C G P Y

ltv

D G P Y

ltv

-Tlt v,

-Llt v,

WV2"-cltV ,
Q

Qltv'

(23)

(24)

(25)

(26)
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The set of tensors used by Melrose (1982) are

T M E L
1-£ V

L M E L
1-£V

TI-£v,
2

!LLI-£v.
W 2

(27)

(28)

In the rest frame, the ij components of these tensors are

(30)

(29)

L'MEL

TM E L ~ qq
-I + Q2'

qq
- Q2'

hence these tensors can be considered as the covariant forms of the transverse
and longitudinal 3-tensors respectively. The three dimensional tensors used by
Tsytovich (1961) are the negative of the ij components of those used by Melrose
(1982).

2.4 Propagators

2.4.1 Free Field Propagator

The propagator for a massive gauge boson for the R~ gauge and in the absence of
external fields is given by

(31)V 1 [ ql-£qv] ql-£qv 1
ol-£V == 2 2 gl-£v - -2- + -2--2-(: 2'

q -m m m q -~m

where ql-£ is the wave 4-vector of the propagating particle and m is the mass of the
gauge boson. This is a standard result of gauge field theory, e.g. Itzykson and Zuber
(1980), Bailin and Love (1986) and others, which follows from the electroweak
Lagrangian.

The inverse of a general propagator is defined by

Vl-£av~; == n" u : (32)

The inverse free field propagator is found by constructing a linear combination of
the basis tensors, substituting this and the free field propagator in equation (32),
performing the contraction and solving for the coefficients of the linear combination.
This gives for the inverse free field propagator

'1" -1 (2 2) 1 - ~V0J,LV == q - m gl-£v + -~-ql-£qv. (33)

2.4.2 Full Propagator

The Dyson equation states that the full propagator is related to the free field
propagator and the polarisation tensor by

'1"-1 '1"-1 II
vl-£v == vOI-£V - I-£V· (34)

Using the form of the free field propagator given in equation (33) and the general
form of the polarisation tensor given in equation (16), the Dyson equation gives
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for the inverse full propagator

V;~ (q2 - m 2
- 7rT)TJ1-v + (q2 - m 2

- 7rL)LJ1-v

+ [e- 1q2 - m2
- 7rQ] QJ1-V + 7rCCJ1-v.

779

(35)

Here, the relationship between the basis tensors given in equation (5) has been
used. The inverse full propagator is inverted using the same procedure as outlined
in Section 2.4.1. This gives for the full propagator

VJ1-V
1 2 2 2 Q 1
2 TTJ1-v+4w(q -em -e7r )-SLJ1-v

q" - m -7r

2 2 2 L 1 C 2 1
+ 4ew (q - m - 7r )SQJ1-V + 4e7r w SCJ1-V, (36)

where S is defined to be

S == eQ2(7rC)2 + 4w2(q2 - m 2 - 7rL)(q2 - em2 - e7rQ) . (37)

As a check on this expression, for the case of no interactions, the polarisation
response functions are all zero and equation (36) reduces to the free field propagator
given in equation (31).

2.4.3 Ward's Identity

The full field propagator satisfies Ward's identity

qJ1-qvVJ1-V == e· (38)

The full propagator given in equation (36) is used with Ward's identity. Also qJ1-qv
is proportional to QJ1-V' hence the contractions in equations (7), (9), (11) and (14)
can be used. These show that only the term multiplying QJ1-V contributes when
Ward's identity is applied. This gives

w2

(1I"C)2 = -4 Q2 (q2 - m 2 - 1I"L)(m2+ 1I"Q),

which can be rearranged to give

7rQ == -4m2w2(q2 - m 2 - 7rL ) - Q2(7rC)2

4w2(q2 - m 2 - 7rL ) .

For the case where m == 0, equation (40) reduces to

(39)

(40)

m == 0:
1I"Q = Q2(1I"C)2

4w2(q2 - 7rL ) ·
(41)

Gross et al. (1981) considered Ward's identity applied to the case of QeD
gluons. The basis tensors used there are given in equations (23) to (26) and when
the difference in basis tensors is taken into account, equation (41) is equivalent to
equation (4.6) of Gross et ale (1981).
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2.4.4 Infrared Limit

The discrete variable W n arises from the periodic (anti-periodic) boundary condi­
tions on the path integral and this leads to the definition of Wn = i2n1CT for bosons
and ghosts and W n = i(2n + 1)1CT for fermions. For the analytically continued po­
larisation tensor, the infrared limit is defined by W = 0, q ~ 0, as the limit W ~ 0
is ill-defined.

The electric and magnetic masses at the one-loop level are obtained from the
infrared limit of components of the polarisation tensor following Gross et al. (1981):

2
mel
2

mmag

-IIoo(w = 0, Q~ 0),
1 i2"II i(W = 0, Q ~ 0).

(42)

(43)

The expressions for IIoa and IIii are related to the polarisation tensor response
functions by

IIoo

IIi i

Q2 L w 2 Q2 C
--1C + -1CQ --1C

q2 q2 «:
w2 Q2 Q2

21CT + _1CL - -1CQ + _1CC .
q2 q2 q2

(44)

(45)

2.5 Polarisation Response Functions

The polarisation tensor for a particular diagram is expressed in terms of the four
polarisation response functions as stated in equation (16); namely

II/-lV = 1CTT/-lV+ 1CL L/-lv + 1CQQ/-lv + 1CCC/-l
v'

For example, 1CT is given by

(46)

T _ II/-lvT/-l
V

( )
1C - T TV' 47/-lV /-l

and the expressions for 1C L , 1CQ and 1CC follow in the usual way.
The polarisation tensors for the tadpole, loop and balloon diagrams can be

expressed as an integral depending on one of the tensors g/-lV, P/-lPV, q/-lqv or P/-lqv +
q/-lPv' From equation (47) each of these tensors is contracted with T/-lv. Hence, the
set of functions required to evaluate 1CT is

yg
T [m 1' !-L1]

Yp~[m1' !-L1]

Yq~[m1' !-L1]

ZJ[m1' m2, !-Ll]

Z~[ml' m2, !-Ll]

JdlJ F(Ep(ml)' !-Ll) g/-lvT/-lV

(21C)3 2Ep (ml ) T/-lvT/-lV'

JdlJ F(Ep(m1), !-Ll) p/-lPvT/-lV

(21C)3 2Ep (ml ) T/-lvT/-lV '

JdlJ F(Ep(ml)' !-L1) q/-lqvT/-lV
(21C)3 2Ep(m1) T/-lvT/-lV '

JdlJ F(Ep(ml), !-L1) g/-lvT/-lV

(21C)3 2Ep(m1) T/-lvT/-lV

x [4(p.q)2 - (q2 + mi _ m~)2J -1 ,

JdlJ F(Ep(ml)' !-Ll) p/-lPvT/-lV

(21C)3 2Ep (ml ) T/-lvT/-lV

(48)

(49)

(50)

(51)
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Z::Z[m1' m2,fl1]

Z~[m1' m2,fl1]

X [4(p.q)2 - (q2 + mr _ m~)2J -1 ,

Jd3p F(Ep (m1), fl1) qfJ-qvTfJ-V

(27r)3 2Ep (m1) TfJ-vTfJ-V

X [4(p.q)2 - (q2 +mr - m~)2J-1,

Jd3p F(Ep (m1)' fl1) [PfJ-qv + qfJ-Pv]TfJ-V
-- P:q-----------
(27r)3 2Ep (m1) TfJ-vTfJ-V

X [4(p.q)2 - (q2 + mr _ m~)2J -1 .

(52)

(53)

(54)

The notation used here is that the Z functions have an integration over a denom­
inator, while the Y functions do not. The subscript on the functions corresponds
to the tensor (from the set of gfJ-V' PfJ-PV' qfJ-qv or PfJ-qv + qfJ-Pv) that is contracted
with the basis tensor, and the basis tensor is given as the superscript.

The functions used to evaluate the 7rL function are obtained by contracting the
LfJ-v tensor with each of gfJ-V' PfJ-PV' qfJ-qv or PfJ-qv + qfJ-PV and this would yield a set
of functions similar to those shown above, with TfJ-v replaced by LfJ-v and hence the
superscript T replaced by L. The same procedure is followed to give the functions
used for the 7rQ and 7rc response functions.

The procedure used to calculate the polarisation tensor was given in Paper I
and this can be represented as

Vertices X () ffJ-v(p) x, II ()
Propagators ---+ fJ-V P ---+ hfJ-v (p) ---+ M i ---+ fJ-V q .

The polarisation tensor is then expressed in terms of the polarisation response func­
tions given above. As the constants K; and M i are independent of the integration
variable, they can be taken outside the defined functions.

For example, the most general expression for the loop diagram polarisation ten­
sor with gauge bosons in the external legs is taken from Paper I and the polarisation
response function for this case is

1fJ - ~{iK2Y/[ml,JLl] + iK4Y~[ml,JLl] + iK6~~[ml,JLl]

+ [J(1 + ~J(2(q2 + mi - m~)2]Z;[m1' m2,fl1]

+ [J(3 + ~J(4(q2 + mi - m~)2]Z;p[m1' m2,fl1]

+ [J(s + ~J(6(q2 + mi - m~)2]Z;q[m1' m2, fl1]

+ J(7Z;q[m1, m2,fl1]

+ ~M2YgJ[m2' fl2] + iM4Y~[m2' fl2] + iM6Yq~[m2' fl2]

+ [M 1+ iM2(q2 +m~ -mi)2]Z;[m2,m1,fl2]

+ [M3+ ~M4(q2 + m~ - mi)2]Z;p[m2' m1, fl2]

+ [Ms + ~M6(q2 + m~ - mi)2]Z;q[m2' m1, fl2]

+ M 7 Zp'q[m2' m2, JL2]}, (55)

where J is one of {T, L, Q, C}. This gives a template for the results.
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For example, the most general expression for the tadpole diagram polarisa­
tion tensor with gauge bosons in the external legs is taken from Paper I and the
polarisation response function for this case is

rr
T == lCoygT[ml' Jll] + MoYp~[ml' Jll], (56)

while the most general expression for the tadpole diagram polarisation tensor with
gauge bosons in the external legs is taken from Paper I and the polarisation response
function for this case is

rr
T == lCsygT[ml' Jll]' (57)

The procedure given above has been implemented for the computer application
Mathematica of Wolfram (1991) and the Mathematica package HIP of Hsieh and
Yedudai (1992) to obtain the lCi and M i constants for the most general types of
Feynman diagrams. The K; and M i constants are not shown explicitly but rather
have been combined with equations (56), (55) and (57) to give the polarisation
response functions for diagrams with gauge bosons propagating in the external
legs that are shown in Appendix B.

3 Real Part of the One-loop Polarisation Tensor

The one-loop polarisation tensor for a propagating particle is specified in terms of
the tadpole, loop and balloon diagrams. These diagrams are constructed from the
Y and Z functions and the polarisation tensor is analytically continued. The real
part of the one-loop polarisation tensor is obtained by finding the real part of the Y
and Z functions using the Plemelj rule. For the real part, the Plemelj rule simply
specifies that the integration is a principal value integration. The Y functions have
no singularity and hence no principal value integration is needed.

3.1 Polarisation Response Functions

The Y and Z functions are specified in equations (48) to (54). In the rest frame
(defined in Section 2.1) we have

qj-tTj-tV == 0, (58)

Pj-tPvTj-tv ==
(p . q)2 -lp I2, (59)Q2

gj-tVTj-tv == 2, (60)

Tj-tvTj-tv == 2, (61)

qj-tLj-tv == 0, (62)

( )2pj-tPvLj-tv
1 p.q

(63)== - q2 Ep(ml)Q - w Q '

Yj-tvLj-tv == 1, (64)

Lj-tvLj-tv == 1, (65)

qj-tqvQj-tv == q2, (66)
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PJ-tPvQJ-tv ==
(p.q)2

(67)---;j2 ,

(PJ-tqv + qJ-tPv)QJ-tv == 2p·q, (68)

gj.tvQJ-tv == 1, (69)

QJ-tvQJ-tv == 1, (70)

qJ-tqvCJ-tv == 0, (71)

PJ-tPvCJ-tv == _ (poq)2 + (poq) Ep(ml) , (72)
q2 W

(PJ-tqv + qJ-tPv)CJ-tv == 2 ( (poq)2 + ( )Ep(m1) ) (73)q --- p.q ,
q2 W

gJ-tvCJ-tv == 0, (74)

CJ-tvCJ-tv
Q2

(75)== -2w2'

where p.q == Ep(ml)w - p. q.
This has been left in the general form as cylindrical coordinates are used later.

Here, spherical co-ordinates are used, with the z axis chosen to be along q, hence
cos () is the angle between p and q. The notation is

P-=Ipl· (76)

3.1.1 yT Functions

Using equation (58) the Yq~ function is identically zero. For the other yT functions
the only occurrence of () is due to PJ-tPvTJ-tv, and hence the () integration is simple
and along with the ¢ integration can be performed immediately. The integrals are
expressed in terms of dimensionless parameters

ygT[ml' J-Ll]

Yp~[ml,J-Ll]

_1_T2r [3] H· (m1 J-Ll)47r2 3 --T' ,ml

_ 1 4 (121r2 T r[5]Hs m
1 , .!:!:1.. )

T ml '

(77)

(78)

where the Hi functions were defined by Haber and Weldon (1982a,b) and are given
by

1 rOC) xl-1dx (1 )
H1(y,r)=r(l)}o (x2 + y2)l /2 exp[(x2 + y2)1/2 _ yr] - 1+r~-r . (79)

Here, and generally, the r -4 -r notation means that the second term in the large
parentheses is given by the first term under this substitution. The Bose-Einstein
distribution function is used as it has been assumed that bosons are propagating in
the loop. When fermions are propagating in the loop, the Fermi-Dirac distribution
function will be used in the expression for Hi,
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3.1.2 ZT Functions

Using equation (58) the Z~ and Z~ functions are identically zero. For the other
ZT functions the ¢ integration can be performed immediately; however, the ()
integration is more difficult due to the p.q term in the denominator. For bosons
propagating in the loop

Re ZJ[m1' m2,J.l1]

1 100 p 2dP
87t"2 To (P2 + mi)!

1

exp [ CP2+m ;)! -ILl] + J.l1 ~ -J.l1
T -1

(80)

1 100 p 4dP
167t"2 To (P2 + mi)!

1
+1 1

x d(cos 0) 2

-1 4 [(P2 + mr)tw - PQcosB] - (q2 + mr - m~)2

Re Z~[m1,m2,J.l1] -

[
1_

1
:-----=-__ + J.l1 ~ - J.l1]

exp [(P2+1nJ)2 -ILl] - 1

1+1 COS 2 0 - 1
x d(cos 0) 2 .

-1 4 [(P2+mi)tw-PQcosB] -(q2+mr-m~)2

The general form of the integrals over 0 are

(81)

1+1

L1d(cosB)

1+1

L1d(cosB)

1+1

L
1
d(cosB)

1 1 1
4a2

- (2b - C) 21
4bc n 4a2 - (2b + c)2 '

1 14(a-b)2-c21-In ----
8b2 4(a + b)2 - c2

a 14a2 - (2b - C)21
+ 4b2c In 4a2 - (2b + c)2 '

1 a 1 14(a - b)
2

- c21
2b2 + 4b3 n 4(a+b)2 -c2

4a
2 + c2

1
4a2 - (2b - C)21

+ -~.., In 4a2 _ (2b + c)2 '

(82)

(83)

(84)

where these results have been obtained by straightforward integration.
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Hence the expressions for the real part of the ZT functions are

Re Z;[ml,m2,J1,I] =

1 1

327r2Q (q2 + my - m~)

(85)
1

exp [<'P2+m;)t -j1,1] + J1,1 --t -J1,1 I In AT -1 0,tOO PdP
x 1

o (P2+ m i )"2

Re Z~[ml,m2,J1,I]

1 tOO p
2
dP [ 1

2Q2 ----1 .[ 1] + J1,1 --t -J1,1
321f 0 (P2 + mi)'i exp (P2+mp'i -/1-1 _ 1

x {I + ..!:!...- (P
2
+ mi)! InA

2Q p I

[
q2 1 4m 2w2+ (q2 + m 2

_ m2)2] }+ P + _ I I 2 In Ao2Q(q2 + my - m~) P 8Q(q2 + rny - m~) ,

(86)

where

Ao

Al

1

4(P2 + my)w2 - [2PQ - (q2 + my - m~)J 21

4(P2 + my)w2 - [2PQ + (q2 + my - m~)]2 '

4 [(P2+ mi)!w _ PQ] 2 _ (q2 + mi _ m§)2
2 I.

4 [(P2 + mi)!w + PQ] - (q2 + mi - m§)2

(87)

(88)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

3.1.3 YLand Z L Functions

The YLand Z L functions are developed in a similar manner to the y T and ZT.
The YL functions for bosons propagating in the loop are

yg
L [ml , J1, I ]

Yp~[ml,J1,I]

yg
T [ml , J1, I ],

__1 [(Q 2 + w
2

) T 4f[5]H (m 1 .!:!i-)
47r2q2 3 5 T' mi

+ miQ2T 2r[3]H3 (';1 ,~~)].

(89)

(90)



786

The Z L functions for bosons propagating in the loop are

Z:[ml' m2, ILl] = ZJ[ml' m2, ILl],

Re Z;p[ml' m2, ILl] =

B. J. K. Smith et al.

(91)

1 100 p 2dP
167r2q2Q2 k (P2 + mi)!

1

exp [(P2+m i)t -/-Ll] + ILl -t -ILl
T -1

{

2 wq2(p2+mi)t
x w + 2Q ~ In A,

[
q4 1 4miq4+ w2(q2 + mi - m§)2] }

+ P 2Q(q2+ mr - m~) + P 8Q(q2 + mr - m~) InAo.

(92)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

3.1.4 yQ and ZQ Functions

The yQ and ZQ functions are developed in a similar manner to the y T and ZT.
The yQ functions for bosons propagating in the loop are

ygQ[ml' ILl]

yp~[ml' ILl]

yq~ [ml, ILl]

ygT[ml' ILl],

_1 [(w2+ Q2) T 4f[5]Hs (ml,.!!:.l.)
47r2q2 3 T ml

+ miw2T 2r[3]H3 ( r;l ,~~)],
q

2yg
T [m l ' ILl]'

(93)

(94)

(95)

The ZQ functions for bosons propagating in the loop are

Z~[ml'm2, ILl]

Z~[ml' »», ILl]

Z~[ml' m2, ILl]

Z~[ml' m2, ILl]

ZJ[ml' m2, ILl], (96)

4~2 {YgT[ml' ILl] + (q2 + mi - m~)2ZJ[ml' m2, ILl]},

(97)

~{Y/[ml> ILl] + (q2 + mi - m§)2ZJ[ml' m2, ILl]}, (98)

q2ZJ[ml,m2,1L1]. (99)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

3.1.5 Yc and ZC Functions

Using equations (74) and (71) the ygC , Yq~, Zf and Z£ functions are identically
zero. The other Yc and ZC functions are developed in a similar manner to the
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yT and ZT functions. The yp~ function for bosons propagating in the loop are

787

yp;[ml,J-lI] 1w
2 [4 4 (ml J-lI) 2 2 (ml J-lI)]

211"27j2 3"T r[5]H5 T' ml + mIT r[3]H3 T' ml ·

(100)

The ZC functions for bosons propagating in the loop are

Re Z~[ml,m2,J-lI] ==

1 w
2

1-0
00

p
2
dP I 1-- +J-ll ~-J-ll

811"2 Q2 0 (P2 + mI) ~ exp [ (P2+mp~ -ILl] _1

{
1 1 (p2+mi)~ 1 (q2+mi-m~)2 }

x q2 + 4wQ pInAl + p 8Qq2 InAo,

Z~[ml,m2,J-lI] - q2Z~[ml,m2,J-lI].

(101)

(102)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

4 Imaginary Parts

The one-loop polarisation tensor for a propagating particle is specified in terms
of the tadpole, loop and balloon diagrams. These diagrams are constructed from
the Y and Z functions. The imaginary part of the one-loop polarisation tensor is
obtained by finding the imaginary part of the Y and Z functions.

4.1 Resonant Denominators

The imaginary parts of the Y and Z functions are obtained by using the Plemelj
rule

_1_ 1
x ± ia == P; =f i1rt5(x). (103) .

The term on the left-hand side is a resonant denominator. The Y functions have
no denominator of this form and hence have zero imaginary part.

The resonant denominator common to the Z functions is expressed in the com­
pact form 4(p.q)2_(q2+mi-m~)2. This can be expanded out, under pO == Ep(ml),
using

(Ep(ml) ± qO)2 - E~±q(m2) == ±2(p.q) + (q2 + mi - m~). (104)

As an example, consider a general Z function Z;p[ml' m2,J-lI], where J is one of
{T,L,Q,C},

Z;p[ml' m2,J-lI]

-1 Jd:P F(Ep(ml)' J-lI) PI1-Pv JI1-V

2(q2 + mi - m~) (21r)3 . 2Ep(rnl) JI1-V JI1-V
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x { 2Ep_~(m2) [Ep(ml) - W ~ Ep-q(m2) - Ep(ml) - W~ Ep_q(m2)]

+ ~ - 1 , [En(m,) + W 1_ En-Ln(m,,) - En(m,) + W ~ En-Ln(m~)] }.

(105)

Here w is understood as w == w + ie with e ~ 0+ .
A cylindrical co-ordinate system is used where the z axis is taken along the

direction of the wave vector q. The notation is

p

q

ir., r., ¢),
(Q,O,O),

(106)

(107)

and in this co-ordinate system

PP,PvJP,v _ J
-v-,- == Zpp[Pz , Pl-].
p, - p,v

(108)

The Plemelj rule is applied and the imaginary part of the Z;p[ml,m2,J1,1] func­
tion is

1m Z;p[ml' m2,J1,1]

-1 Jd3p
- (2n)3 F(Ep(ml)' JLl)ZP'p[Pz 1 P1-]

x { Ep(ml)~p-q(m2) [ nO(Ep(ml) - w - Ep_q(m2))

- nO (Ep(ml) - w + Ep_q(m2))]

+ 1 [p(ml)Ep+q(m2) -nO (Ep(ml) + w - E p+q(m2)) (109)

+ nO(Ep(ml) + W + Ep+q(m2))] }.

4.2 Absorption Processes

The delta functions in equation (109) express the conservation of energy and mo­
mentum for the physical processes occurring in the plasma. The energy conserva­
tion relations for the physical processes are Tsytovich (1961)

Cerenkov emission: Ep(ml) - w - Ep-q(m2) 0, (110)

Pair production: Ep(ml) - w + Ep-q(m2) 0, (111)

Cerenkov absorption: Ep(ml) + w - Ep +q (m2) 0, (112)

Pair absorption: Ep(ml) + w + Ep +q (m2) O. (113)

It is conventional to describe disturbances in the plasma in terms of positive
frequencies. The reality condition implies that positive and negative frequencies in
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the polarisation tensor specify the same information; hence, following Melrose and
McPhedran (1993), we can specialise to the region of positive wand positive Q.
In this region the pair absorption process has no solutions, as the energies of the
particles must be positive. The pair production process corresponds to the energy
of the propagating particle being used to create two particles, momentum being
absorbed by the medium. The Cerenkov processes correspond to part of the energy
of the propagating particle being absorbed by the particles in the medium, the two
possible processes corresponding to the way in which the energy can be shared.

The energy conservation equations for the processes occurring in the plasma
are all solved by squaring both sides of the equation, re-arranging and squaring
both sides again. This leads to the set of solutions for Pz (in terms of the masses,
w, Q and PJ...)

where

pA
z

pB
z

pC
z

pD
z

X=

1 ( mi-m~) w
-"2 Q 1 + w 2 _ Q 2 + QX'

1 ( mi-m~) w
-2 Q 1 + w 2 _ Q 2 - QX,

1 ( mi-m~) w+2Q 1 + w 2 _ Q 2 + QX,

1 ( mi-m~) w
+"2Q 1 + w 2 _ Q 2 - QX,

i Q2 (1 + m,i -m~ ) 2 + Pi + mi
w 2 _ Q 2 1-w2j Q 2 ·

(114)

(115)

(116)

(117)

(118)

The expressions P: and p! relate to the Cerenkov process given by equa­
tion (112), while the expressions pC; and pp relate to the Cerenkov process given
by equation (110) and the pair production process given by equation (111), respec­
tively. All of the expressions p~ are defined under the condition that X2 > 0, and
hence these absorption processes have solutions only in a particular region of the
(w, Q) plane. Equation (118) can be re-expressed as

where

X==
Q2

4(w2 _ Q2)2 (w2
- Q2 - zI)(w 2

- Q2 - z§), (119)

Zl

Z2

JPi +mi + JPi +m~,

JPi +mi - JPi +m~.

(120)

(121)

In the region of the (w, Q) plane where X2 < 0, equations (110) to (113) have no
solutions and hence there will be no damping as the particle propagates through
the medium. From equation (119) this region of the (w, Q) plane is given by

Zl > w 2
- Q2 > Z2. (122)
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This condition depends on P-l., an integration variable which ranges from zero to
infinity. The region given in equation (122) changes with P-l. because Zl increases
as PL increases, while Z2 decreases as P -l. increases. Hence the region of the
(w, Q) plane where X2 < 0 for all values of PL is obtained by setting P.L = 0 in
equation (122). This gives

Non-damping region: y!Q2+(ml+m2)2 > w > y!Q2+(rnl-m2)2.

Hence, in the (w, Q) plane, the curve w = y!Q2 + (ml + rn2)2 and the curve
w = JQ2 + (ml - m2)2 define the region where X2 < 0 and hence the region where
no absorption processes are possible. This region is shaded in Fig. 1. For ml < m2

2 2

the dashed line above w = Q is the solution to :~=~1 = -1 and the dashed line
2 2

below w = Q is the solution to :~=~? = +1. For ml > m2 this identification is
reversed. The regions 1, 2 and 3 relate to solution regions given later.

4.3 Energy Solutions

The energy corresponding to a particular expression for Pz is found by substituting
this value of Pz back into the energy equations. For P: this gives

E~(ml)

E~+q(m2)

./pA2+ p 2+ m2V z .i. 1

V('Pf + Q)2+ Pi + mi

2 2) Im 1-m2 - X ,
1

1
W( 1 + 2_Q2

2 W (123)

2 2) Im 1-m2 + X .lw 1 - 2 2

1

2

( W -Q (124)

The expressions for both E~ (ml) and E~+q(m2) involve a modulus sign so we need
to examine the relative sign and magnitudes of the terms on the right-hand sides.

2 2

The sign of :~=;} depends on the region of the (w, Q) plane and also depends
on whether ml > m2 or ml < m2. Hence we may have different expressions for
E~(ml) and E~+q(m2) in a particular region for each case. Table 1 gives for

2 2

each region shown in Fig. 1 the sign of :1=~1 and the expression for E~(ml) and

E~+q(m2) given by equations (123) and (124) respectively, for ml < m2.
The absorption processes detailed in Section 4.2 can now be examined. The

expressions for E~(ml) and E~+q(m2) given in Table 1 show that the Cerenkov
process described by equation ll12), viz. Ep(ml) + w - Ep+q (m 2) = 0, is solved
by Pz = P: for ml < m2 in Regions 2 and 3 only.

The same procedure is followed for the case where ml > m2 and the results
are given in Table 2. Examining the expressions given for E~(ml) and E~+q(m2)

shows that the Cerenkov process given by equation (112), viz. Ep(ml) + w ­
Ep+q (m2) = 0, is solved by Pz = P1 for ml > m2 in Region 3 only.

The same procedure is followed for all the P1 expressions. The results are
given in Tables 3 and 4 and show the region of the (w, Q) plane where the Pz

expression is applicable for the process considered. This work indicates that the
pair production process specified by equation (111) has solutions only for wand Q
in Region 1 and these solutions are given by pf and Pp. For wand Q in Region 3
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w

w = VQ2 + (m'l +1112)2

/
/

/
/

/
/

/

• I 'w=vQ2+(ml-m2)2
/

/
/

/
/

/
/

/
I

/
/

Regi6n 3.
7

I
I
I

Region 1.

Region 2.

Iml + m2/

Iml - m21

K' • Q

Figure 1. Non-damping region (shaded) for m., < m2.

Region
m2-m~

E~(ml) E~+q(m2)w1_Q1

1 -1 < ... < 0 1 ( m
2-m2

) 1 ( m2_m2
)-w 1+~ -X -w 1-~ +X2 w -Q 2 w -Q

2 ... <-1 1 ( m2_m2
) 1 ( m2_m2

)X--w 1+~ -w 1-~ +X2 w -Q 2 w -Q

3 ... > 0 X - lw (1 + mJ-m~) lw ( 1- mJ-mn + X
2 w -Q 2 w -Q

Table 1. Energies for P: in each region for m.; < m2
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Region
m 2_m2

E~(ml) E~+q(m2)~

1 1 > ... > 0 1 ( m2_m2
) 1 ( m2_m2

)-w 1+~ -X '2 w 1 - w 1_Q! + X2 w -Q

2 ... > +1 1 ( m2_m2
) 1 ( m2_m2

)-w 1+~ -X --w 1-~ -X2 w -Q 2 w -Q

3 ... < 0 1 ( m2_m2
) lw ( 1 - mJ -m?) + XX- -w 1+~2 w -Q 2 w -Q

Table 2. Energies for r: in each region for ml > m2

Pz Ep(ml) Reg. Process Eq.

A -rc (1 + mJ-mi) + .\!!.X 1 ( m2_m2
) 2,3 Cerenkov 112x--w 1+~2 w -Q Q 2 w -Q

1 ( m2
m

2
) ( m2 m2

) CerenkovB --Q 1+~ -~X _lw 1+~ -X 2 112
2 w -Q Q 2 w -Q

+lQ (1 + mJ-mi) +.\!!.X ( m2 m2
)

1 Pair 111
C ~w 1 + w 1=Q! + X 3 Cerenkov 1102 w -Q Q

+lQ (1+ mJ-mi) _.\!!.X ( m2 m2
) PairD lw 1+~ -X 1 111

2 w -Q Q 2 w -Q

Table 3. Energies in each region for ml < rn2
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Pz Ep(ml) Reg. Process Eq.

A _lQ (1 + m~-mn + ~ 1 ( m
2

_ m
2)

3 Cerenkov 112x--w 1+~2 W _Q QX 2 w -Q

( 2 2) NoneB -rc 1 + m 1-mJ - ~X
2 w -Q Q

( 2 2) ( m
2

m
2) 1 Pair 111

C 1 m -m w
~w 1 + w1=Q1 + X+"2 Q 1+~ +"QX 2,3 Cerenkov 110

1 ( m2-m~) w 1 ( m
2

_ m
2) 1 Pair 111

D +2"Q 1+~ -"QX 2"w 1 + w1_Q'1 - X 2 Cerenkov 110

Table 4. Energies in each region for m.; > m2

the Cerenkov processes given by equations (112) and (110) have solutions given by
P: and Pf. For wand Q in Region 2 the solutions to the Cerenkov processes given
by equations (112) and (110) depend on the relative magnitude of the masses.

The delta functions of energy given in equation (109) can be converted to delta
functions of Pz using the tabulated results and

o(J(Pz)) = L Id~~~) 1-
1

u», - P;),
~

(125)

where P~ are the solutions to the energy equation.
Hence, for ml < m2, the delta functions arising from equations (112), (110)

and (111) respectively are

8(Ep (ml ) + w - Ep +Q(m2))
1

Qxl1 - w2 jQ21

x { E~(m1)E~+q(m2)o(Pz - P:)O ( JQ2 + z~ - w )

+ E$(m1)E$+Q(m2)o(Pz - P:) [0 ( JQ2 + z~ - w) - O(Q - w)] },
(126)

8(Ep (ml ) - w - Ep - q (m2))

Qxl1 _lw2/Q21EB(m1)EB-Q(m2)o(Pz - P<j)O(Q - w), (127)
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8(Ep(m1) - w + Ep- q(m2))

1 { E8(ml)E8_q(m2)8(Pz - P<j)O (w -JQ2 + ZI)

+ E8(ml)E8-q(m2)8(Pz - pf)O (w - JQ2 + ZI) },
(128)

where step functions are used to confine the solutions to the applicable regions.
The energies for each region are not shown explicitly as they will cancel out when
inserted in equation (109).

For m1 > m2, the delta functions arising from equations (112), (110) and (111)
respectively are

8(Ep(m1) + w - Ep+q(m2))

1 A A AEp(m1)Ep+q(m2)8(Pz - Pz )O(Q - w), (129)
~AI..L ~/~I

8(Ep(m1) - w - Ep- q(m2))
1

Qxl 1 - w2 jQ2
1

x { E8(ml)E8-Q(m2)8(Pz - P<j)O ( JQ2 + z~ - w)

+ E8(ml)E8-Q(m2)8(Pz - pf) [0 (JQ2 + z~ - w ) - O(Q - W)] },

(130)

8(Ep(m1) - w + Ep- q(m2))

1 { E8(ml)E8-Q(m2)8(Pz - P<j)O (w - JQ2 + ZI)

+E8(mt}E8-Q(m2)8(Pz - pf)O (w - JQ2 + ZI) }.
(131)

These delta functions are inserted into the expression for the polarisation tensor
to give

Im Z;p[m1' m2, ILl]

( 2 2) -1 1 100 P dP1 m1 - m21.. 1..-- 1+ -
8q2 w2 - Q2 41T"Q 0 XiI - w2jQ2

1

x i:dPzF(Ep(ml) , f..Ll)Z;p[Pz,P.1.]

x { -0 (w - JQ2 + ZI) [8(Pz - p<j) +8(Pz - pf)]
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+ [0 ( JQ2+ Z~ - W) - O(Q - W)] O(ml - m2)

X [8(Pz - P~) + 8(Pz - pf)]

[0 ( JQ2 + Z§ - W) - O(Q - W)] 0(m2 - md

X [8(Pz - P:) + 8(Pz - P~)]

+ O(Q ~ w) [8(Pz - P~) - 8(Pz - P':-)] }. (132)

The integrals over the delta functions is performed and the energies for each P~

expression are used. This gives

1m Z;p[m1' m2,1"'1]

1(1 my - m~)-l 1 roo P.ldP.l
-Sq2 + w2_Q2 47rQJo xI1-w2 /Q2

1

x { -0 (w - JQ2 + zi )

(
J C [ 1 ( mi-m~ ) ]

X Zpp[Pz' P.l]F 2"w 1 + w 2 _ Q 2 + X, 1"'1

J D [1 ( mi-m~) ])+ Zpp[Pz ,P.l]F 2"w 1 + w 2 _ Q 2 - X, 1"'1

+ [0 ( JQ2 + z§ - w) - O( Q - W)] O(ml - m2)

(
J C [1 (mi-m~) ]

X Zpp[Pz' P.l]F 2"w 1 + w 2 _ Q 2 + X, 1"'1·

J D [1 (mi-m~) ])+ Zpp[Pz ,P.l]F 2w 1 + w 2 _ Q 2 - X, 1"'1

- [0(JQ2+z§ -w) -O(Q-w)] 0(m2 -ml)

(
J A [1 ( mi -m~ ) ]

X Zpp[Pz, P.l]F -2"w 1 + w 2 _ Q 2 + X,1"'1

J B [1 ( mi-m~) ])+ Zpp[Pz ,P.l]F -2"w 1 + w 2 _ Q 2 - X, 1"'1

(
J C [1 ( mi-m~) ]+O(Q-W)X Zpp[Pz,P.l]F X+2"w 1+ w 2 _ Q 2 ,1"'1

J A [1 ( mi-m~) ]) }- Zpp[Pz ,P.l]F X - 2"w 1 + w 2 _ Q 2 ,1"'1 .

(133)

The integration variable is changed to X using

dX P.l
dP.l == X(1-w2/Q2)· (134)
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In region 1, defined by () (w - VQ2 + Zl), X is a decreasing function of P..L.
Hence X ranges from Xo at P..L = 0 to 0 at an upper limit of P..L. That is, the
restriction of w > VQ2 + Zl places an upper limit on P..L, as Zl is an increasing
function of P..L. While w > J Q2 + zll p -L=0 then there will be some range of P..L

in which the delta function is non-zero.
In region 2, X is still a decreasing function of P..L, hence the limits on X will

be the same. The restriction w < VQ2 + Z2 places an upper limit on P..L ,as Z2 is
a decreasing function of P..L. While w < J Q2 + z21 p -L =0 then there will be some
range of P..L in which the delta function is non-zero.

In region 3, X is an increasing function of P..L, hence as P..L ranges from 0 to 00,

X ranges from Xo to 00.

Taking account of the modulus sign and rearranging the integration limits gives

1m Z;p[m1' m2,Ill]

( 2 2)-11 m 1 - m2 1
-- 1+ -

8q2 w2 - Q2 47rQ

X{O (w - J Q2 + (ml + m 2)2)

r- (J C [1 ( mi-m;) ]x 10 dx Zpp[Pz (x), x]F 2w 1 + w 2 _Q; + x, Jll

J D [ 1 ( In i - m~ ) ] )+ Zpp[Pz (X), X]F 2w 1 + w 2 _ Q 2 - X,III

+ [0 (JQ2 + (ml - m2)2 - w) - O(Q - w)] O(ml - m2)

[Xo (J C [1 (mi-'m~) ]x 10 dx Zpp[Pz (x), x]F 2w 1 + w 2 _ Q 2 + x, Jll

J D [1 (mi-m~) ])+ Zpp[Pz (X), X]F 2w 1 + w 2 _ Q 2 - X,III

- [0 (JQ2 + (ml - m2)2 - w) - O(Q - w)] O(m2 - mI)

[Xu (J A [ 1 ( rni -m~ ) ]
x 10 dx Zpp[Pz (x), x]F -2w 1 + w 2 _ Q 2 + x, Jll

J B [ 1 ( mi-m~ ) ] )+ Zpp[Pz (X), X]F -2w 1 + w 2 _ Q 2 - X,Jl1

-()(Q-w)

x JOO dX(Z;p[P;C(X), x]F [x + 1W ( 1 + :!=~!), Jll]
Xo

J A [1 ( mi -rn~ ) ] ) }- Zpp[Pz (X), X]F X - 2w 1 + w 2 _ Q 2 ,Jl1 .

(135)
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4-4 Polarisation Response Functions

The result given in equation (135) can be generalised to give an expression for
the imaginary part of each of the Z functions using the contractions defined in
equations (58) to (75). Under each of the delta functions

Ep(ml)Q - wPz =

v«

pi
where

for pA pC
z' z'

for pB pD
z' z'

for pA pB
z' z'

for pC pD
z' z'

{
+Qx (1 - w2jQ2)
-Qx (1 - w2jQ2)

{
_1 2 f1+~J2 q w -Q

+1q2 1 + mJ-m~
2 w -Q

(1 - w2jQ2) (X2 - X~),

(136)

(137)

(138)

=XI -Xo P -1=0

Hence we have

2 2] 2 m2m 1-m2 1

iQ2 [1 + W 2_ Q2 + 1-w2/ Q2 ' (139)

ZJ(P~(X),X) = 1, (140)

Z~CP~(X), X) = -~ (1_w2jQ2) (X2 - X~), (141)

Z;('P~(X), X) = 1, (142)

Z~(P~(X), X) =
q2 2

(143)- Q2 X ,
Q .

1, (144)Zg (P~(X), X) =

[ 2 2fQ . 1 2 1 + m 1-m2 (145)Zpp(P~(X), X) = 4q w2_Q2'

[ 2 2fQ . 1q4 1 + m 1-m2 (146)Zpq(P~(X), X) = 2 w2_Q2'

Q . = q2, (147)Zqq(P~(X), X)

{ f 2 2] for P:-, pp,C . -wx (1 - w2jQ2) 1 + m1-mi
Zpp(P~(X), X) =

+wX (1 - w2
/ Q2) 1 + :~=~J

(148)
for pfl, pf,

C . 2 C i (149)Zpq(P~(X), X) = q Zpp(Pz(X), X),

and the imaginary part of a particular Z function is obtained by substituting
the expression for Z(P~(X), X) in equation (135). The Z(P~(X),X) functions not
explicitly shown here are identically zero.

5 Grand Table of Results

The aim of the two papers in this series is to calculate the finite temperature
self-energy polarisation tensor for the electroweak model in the Rt; gauge. The
polarisation tensor is expressed in terms of the basis tensors and the polarisation
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response functions. The diagrammatic expansion has been used and the diagrams
needed for the calculation of the photon polarisation tensor to e2 order are

+
'Y A A ) 1 1 ~ ~ __

= eye +WYW+W))G +G':r~G + "'1'" +~W+ i-)G
'Y

The diagrams needed for the calculation of the Z boson polarisation tensor to g2
order are

ZO

+- l/?l/+e?e+ W?W +Z{:'H + W{:'G+GO'::,~H +G'::,~G
ZO

+ ",:", + pW + ~:~-)G + ~:~-)Go + ~:~-)H + ~i-tO W + ~H-o Z

+ ~--/-'~ G + ~_;I-'~ GO + ~-;I-'\I H + ~-~"'. ':: '11 + ~_./ " '11z + ~-O e
~H ,_/ ~H <;> ~H ,_/ ~H',,,"/ ~H,_'/ ~H

The diagrams needed for the calculation of the W boson polarisation tensor to g2
order are

w

+= e?l/+ W?'Y+ W?Z +'Y{:'G + Z{:'G +W{:'H + G'::,~GO
W

1 1 z ~. ~ ~ ~ ~ --+ G\~H +"'1'" +"'1"'''1 + ~'Y+ ~Z + ~W + i-)G
+ ~/-'~GO + ~/-'~H + ~- A W + ~-~ Z + ~--t'\1 GO

~'_/ e- ~H~ ~H~ ~H'_/

+ ~-;I-'\I G + ~_;I-'\, H + ~-~.'.',> '11 + ~-~'_.: '11
z + ~-O e

~H'_/ ~H'_/ ~H' ,'/ ~H',,"/ ~H

In view of the great number of Feynman diagrams that are taken into account,
the calculations have been arranged systematically and this is shown in Table 5. In
this table each generic type of diagram is shown along with the equation number
for the polarisation response functions, the table in Paper I which tabulates the
vertex factors relevant to this diagram and the list of Y and Z functions used to
describe the polarisation response functions where J is one of {T, L, Q, C}.

In Table 6, the equation number for the real and imaginary parts for each Y and
Z function is given. The Y functions all have an imaginary part that is identically
zero. Some Y and Z functions are identically zero due to orthogonality between
tensors.
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Diagram

~

~

JW\I!, ',\I\f\J\I'

JWV(~:WJV'

,-,

~

o
vvJvvv-

.: -,
\ )
'r'

vvJvvv-

"r"

vvJvvv-

v
vvJvvv-

~
I ...
\ }

IIJ'JvvVv.

Equation for
polarisation
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(B7), (B8)

(B14)

(B13)

(B1S)

(B16)

(B2), (B3)

(B1)

Vertex factor
from Paper I

Table Al

Table A2

Table A3

Table A4

Table AS

Table AS, B1

Table AS, B2

Table AS, B3

Table AS

Table CO

Table C1

Y and Z functions

ygJ, Z;, ztp,ztq

YgJ,Y~, Yq~

Z;, ztp,ztq,Z;q

ztp,ztq

ztp,ztq,Z;q

z;, ztp,ztq,Z;q

yJ
9

yJ
9

yJ
9

yJ
9

YgJ,Y~

yJ
9

Table 5. Grand table of diagrams

Function T L Q c
1m Re 1m Re 1m Re 1m Re

Yg zero (77) zero (89) zero (93) zero zero

Ypp zero (78) zero (90) zero (94) zero (100)

Yqq zero zero zero zero zero (9S) zero zero

Zg (140) (8S) (142) (91) (144) (96) zero zero

z.; (141) (86) (143) (92) (14S) (97) (148) (101)

Zpq zero zero zero zero (146) (98) (149) (102)

Zqq zero zero zero zero (147) (99) zero zero

Table 6. Grand table of Y and Z functions
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6 Summary and Discussion

For the standard electroweak theory of (Glashow 1961; Salam 1968; Weinberg 1967)
the finite temperature part of the polarisation tensor for the W±, ZO and I gauge
bosons has been calculated in a systematic manner using gauge field theory and the
Rt, gauge. The polarisation tensor gives the shift in the propagator of the gauge
bosons due to interactions and is expressed in terms of the polarisation response
functions which are given by 7[T, 7[L, 7[Q and 7[G.

Finite temperature field theory is used in the imaginary-time formalism which
means that the perturbation expansion used for the zero temperature theory can
be carried over to the finite temperature calculations under the application of the
finite temperature Feynman rules. These rules prescribe a Matsubara summation
due to the periodic boundary conditions.

The contributions to the polarisation tensor due to the interactions described
by the electroweak model are expressed in terms of Feynman diagrams. Each
Feynman diagram is one of three distinct types-loop, tadpole or balloon-and for
each of these types, a procedure is given to calculate the contribution of the general
diagram. This procedure is followed for the combinations of particles possible for
each diagram and the results for the general case are given in the Appendices. By
calculating the Feynman diagrams in this systematic manner the symmetries of the
system are exploited and the results for each diagram can be constructed from a
particular set of functions, which can then be cross referenced.

The full set of tensors used to describe the polarisation tensor have been ex­
amined and the propagator for the gauge bosons in the presence of interactions
has been obtained. Ward's identity has been applied and this yields a relationship
between the polarisation response functions which are given by 7[T, 7[L, 7[Q and
7[G.

The leading characteristics of the electroweak plasma, in particular the mode
structure, can in principle be developed from a knowledge of the real part of the
polarisation tensor. In Section 3 the real part of the Y and Z functions has been
expressed in terms of the Y and Z functions.

The calculation of the imaginary part of the polarisation tensor gives the dis­
sipative processes occurring in the plasma and these processes are defined by the
equations of energy and momentum conservation. For the electroweak theory the
particles propagating in the loop diagram may be different and the solution pro­
cedure used for the equations of energy and momentum conservation has to be
extended from the results of the QED case given by Tsytovich (1961). This leads
to damping regions dependent on the masses of the particles propagating in the
diagram.

The correspondence between each diagram and the equations and functions
used to describe it is given in Table 5 of the present paper.

7 Further Work

With the techniques available as detailed in previous sections the way is now open
for the future study of the physical properties of the electroweak system. The po­
larisation tensor corresponding to the propagation of a particular gauge boson has
been obtained by adding together the contributions from the appropriate Feynman
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diagrams. This has been done in the high temperature limit by considering the
high temperature expansions of the Y and Z functions and will appear in a subse­
quent paper. This will show the eindependence of the polarisation tensor in the
high temperature limit for the electroweak system.

The most immediate use of this work would be the calculation of dispersion
relations which would provide information about the modes and damping for the
propagation of particles through the system. Physical properties such as the modes
of propagation, damping, excitations and screening length in the plasma could all be
considered. The classical field equations could be calculated from the electroweak
Lagrangian by the Euler-Lagrange equations for each field and then linearised,
where each field would be expanded as a classical part and a fluctuation part and
only first order terms in the fluctuations would be kept. The one-loop contributions
would be used for the fluctuations and the classical field equations solved. The solu­
tions to the classical field equations give the equilibrium state of the plasma about
which the fluctuations yield the modes, excitations and quasi-particles. Compari­
son of these properties with those expected from the QED case would be of great
interest.
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A Notation

The notation used in this work is standard (except for the labelling used for the
vertices) and is given in Paper 1.

A.1 Photon Mass

The finite temperature photon propagator is

;2 [gaf3 - (1 - ~)paPf3]
p2 '

while the finite temperature propagator for a general gauge boson is

(AI)

(gaf3 - P;:::) [p02 _Eb(m)] -1 + p;::: [p02 _ Eb(~tm)] ~1 • (A2)

For a photon propagating in the loop of a diagram the result for that general
1

diagram is used with the transformation e2"m, ~ m, made only in the Y and
Z functions and then the high temperature expansion is performed. This repro­
duces the form expected. The same transformation in the whole expression totally
removes the edependence from the result.

B Polarisation Response Functions

The procedure given in this paper and Paper I has been used to calculate the JCi

and M i constants and equations (56), (55) and (57) have been recast using these
constants to give the polarisation response functions for the tadpole, loop and
balloon diagrams respectively. The JCi and M i constants are not given explicitly.
The generic superscript J is used where J is one of {T, L, Q, O}.

B.1 Tadpole: Higgs

" /
W\MIV'

Diagram:

I

\

/' -,

Vertex:

Propagator:

C1g/-LV

_ [p02 - Eb(mdr
1

.

The polarisation response functions are given by

1r
J = C1ygJ[ml,Jll]. (BI)
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B.2 Tadpole: Gauge

Diagram:

Vertex: Co [2gj.tyga,8 - gj.tagy,8 - g/L,8gya]

803

The polarisation response functions for this diagram consists of 2 parts, corre­
sponding to the 2 parts of the gauge boson propagator. The first part of the gauge
boson propagator is

Propagator: (
paP,8) [02 E 2 ( )]-1.ga,8 - mr P - p ml .

The polarisation response functions for this part are

7f{ = -2Co{2Y;[ml,lLd + ~~Y~[ml,1L1J}.

The second part of the gauge boson propagator is

(B2)

Propagator: PaP,8 [p0 2 _ Ep(e!ml)r l
.mr

The polarisation response functions for this part are

J { J 1. ] 1 J[ 1. ]}7f2 = 2Co -eYg [e 2 mil ILl + m~ Yp p e2 mil ILl . (B3)

The total expression for 1r
J is the sum of the two parts.

For the W± tadpole contribution to the W± polarisation tensor, some care will
be required in selecting the correct legs of the vertex to contract together. This
effectively will multiply the expression by -~.

B.3 Loop: Fermion-Fermion

Diagram:

Vertex1: 1'/L(AoI + A11's)
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Propagator1:

Propagator2:

Vertex2:

B. J. K. Smith et al,

[
2 2 ] -1- ()is + m1) pO - Ep (m1)

- (J6' + m2) [po/2 - E~, (m2)rl

I'v(A~I + A~1'5)'

When the expression for this diagram is calculated a trace over the gamma
matrices is performed. The anti-symmetry of the I' matrices is the reason that
the expression for 1r

J is not proportional to the AoAb + AlAi combination. The
polarisation response functions are

1r
J == yg

J [m1' J-l1]2(AoA~ + A1A~)

+ Z;[m1, m2,J-l1]2(q2 + mi - m~)

x (AoA~ [q2 - (m1 - m2)2J + A1A~ [q2 - (m1 + m2)2J)

+ Z;p[m1,m2,J-l1]8(q2 + mi - m~)(AoA~ + A1A~)

Z;q[m1' m2,J-l1]8(AoA~ + A1A~)

+ ml ~ m2,J-l1 ~ J-l2·

B.4 Loop: Ghost-Ghost

(B4)

Diagram:

Vertex1:

Propagator1:

Propagator2:

Vertex2:

J\/\I\r;

A3P~

[
2 2 ] -1- pO - Ep (m1)

[ ,2 2 ]-1- pO - Ep ,(m2)

A~p~.

.\/\/W

The polarisation response functions are given by

7r
J

- A3A~{ -Zp'p[ml' m2, Jil](q2 + mi - m§)

-Z;p[m2, m1,J-l1](q2 + m/~ - mi)
+2Zp'q[ml'm2, Jill}. (B5)
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B.5 Loop: Higgs-Higgs

805

" /

Diagram:

Vertexl:

Propagatorl:

Propagator2:

Vertex2:

JVVV{
\

A4 (p + p')JL

_ [p02_ E~(ml)rl

_ [pO/2 _ E~/(m2)rl

A~(p' + p)v.

/' -,

VVVV'

The polarisation response functions are given by

7(J - A4A~ {4Z;p[ml, m2, J.L1](q2 + mr - m~)

-4Z;q [ml, m2, JLl]

+Z;q[ml,m2,JLl](q2 + mr - m~)}

+ ml ~ m2, JLl ~ JL2·

B.6 Loop: Gauge-Higgs

/

(B6)

<,

Diagram:

Vertexl:

Vertex2:

AsgJLp

A~gvA'

The polarisation response function for this diagram consists of 2 parts, corre­
sponding to the possible combinations of the gauge boson propagator and Higgs
sector propagator. The first combination of propagators is

Propagatorl:

Propagator2:

(gAP - P::r) [p02 - E~(ml)rl

[ ,2 2 ]-1- pO - Ep , (m2) .
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The polarisation response functions for this part are

B. J. K. Smith et ale

1r
J
1

A5A~ {J[ ] 2 2 2 2--2- -Zg m1,m2,J"'1 m1(q +m1-m2)m 1

+Zp'p[m1' m2,J"'1](q2 + mi - m§)

-Z;[m2' m1,J"'2]mi(q2 + m§ - mi)
+Zp'p[m2' m1,J"'2](q2 + m§ - mi)
-Zp'q[m2' m1,J"'2]2

+Z;q[m2lml, /-L2](q2 + m~ - mf)}.

The second combination of propagators is

(B7)

Propagator1:

Propagator2:

PAPp [po2 _ E~(~!md]-l
m2

1 -1

_ [por2 _ E~r(m2)] .

J
1r2

The polarisation response functions for this part are

A5A~ { J [ 1 ] 2 2 2---2- Zpp e2m1,m2,J"'1 (q + em1 - m2)
m 1

+Zp'p[m2' e~m1' J"'2](q2 + m§ - emi)
J .!.

-Zpq[m2' e2m1,J.l2]

+Z;q[m2l~!ml, /-L2](q2 + m~ - ~mf) }.

The total expression for 1rJ is the sum of the two parts.

B. 7 Loop: Gauge-Gauge

(B8)

Diagram:

Vertexl:

Vertex2:

A2 [( -P' - P)j.LgAa + (p - q')agj.LA + (q' + p')Agaj.L]

A~ [(p' + q)pgv(3 + (p - q)(3gpv + (-p' - p)vg(3p] .

The polarisation response function for this diagram consists of 4 parts, corre­
sponding to the possible combinations of the gauge boson propagators. The first
combination of propagators is

Propagatorl: (
PAPP) [ 02 2 ( )] -1gAP - mi p - Ep m1
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Propagator2:
(

P' p' ) 1a (3 0,2 2 -
ga{3 - m~ [p - E p /(m 2 ) ] •

The polarisation response functions for this part are

J A2A~ {J[ ] 2 2 2
7r1 = -2-2 Yg m1,J-t1 (m2 - q )m2m1m2

-Z;[m1' m2,J-t1](mr + m~)(q2 + mr - m~)

x [q2 - (ml + m2)2J [q2 - (m1 - m2)2J

-Y~[m1' J-t1]m~

+Z;p[m1' m2,J-t1](q2 + mr - m~)

x [mt + 10mrm~ + m~ - 2mrq2 - 2m~q2 + q4J

+Z;q[m1' m2,J-t1] [mt - 10mrm~ - 3m~ + 4m~q2 - q4J

+Yq~[m1' J-tl]~(q2 + mr - m~)

+Z;q[m1, m2,J-t1](q2 + mr - m~)

x [q4 -7mt + 6mrq2+ m~(m~ - 14mr - 2q2)] }

+ m1 ~ m2,J-t1 ~ J-t2· (B9)

The second combination of propagators is

Propagator1:

Propagator2:

( - P>"PP) [p0
2 - Eb(m1)r

1
gAP mi

]

- 1' , 1

PaP{3 [p of2 _ Eb/(~2m2) .
m~

The polarisation response functions for this part are

J
7r2

A2A~ {J[ .! ] 2 2 2 2 2 2 2-2-2 Zg m1, e2m2,J-t1 (q - m1) m1(q + m1 - em2)m1m2

-Z;p[m1, e!m2, J-t1](q2 - mr)2(q2+ mr - em~)

+Z;q[m1, e!m2, J-t1](q2 - mr)(q2 + mr - em~)

-Yq~[m1' J-t1]~(q2 + mr - em~)

Z J [ t! ]1( 2 2 c 2)- qq m1,~ m2,J-t1"4 q +m1 -~m2

x [q4 - 7mt + 6mrq2+ ~m~(~m~ - 2mr - 2q2)]

+ygJ[e!m2, J-t2](q2 - em~ - mr)mr

Z J [t'! ]( 2 2)2 2(2 c 2 2)+ 9 ~2m2,m1,J-t2 q -m1 m1 q +~m2-m1·

J .! 2+Ypp[e2m2,J-t2]m1
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-Z:p[~!m2' m1, Jl2](q2 - mi)2(q2 + ~m~ - mi)

+Z:q[~!m2'm1, Jl2](q2 - mi)(q2 + ~m~ - 3mi)

-Yq~[~!m2' Jl2]~(q2 + ~m~ - mi)

Z J [t! ]1(2 c 2 2)- qq~ m2,m1,Jl2 '4 q +~m2-m1

X [q4 + mf - 2miq2 + ~m~(~m~ - 6mi + 2q2)]}.

(BIO)

The third combination of propagators is

Propagatorl:

Propagator2:

P>..Pp [02 E 2 (t! )] -1
-2- P - P ~ m1
m 1

(
I ')

PaPf3 0,2 2 -1
gaf3 - m~ [p - Ep/(m2 ) ] .

J
7r3

The polarisation response functions for this part are

A2A~ { J .1 2 2 2 2
~ Yg [~2m1,Jl1](q -~m1 -m2)m2m 2m1

Z J [tl ] ( 2 2) 2 2 (2 c 2 2)+ 9 ~2m1,m2,Jl1 q -m2 m 2 q +~m1 -m2
J 1 2

+Ypp[~2m1' Jl1]m2

-Z:p[~!m1' m2, Jl1](q2 - m~)2(q2 + ~mi - m~)

+Z;q[~!m1,m2,Jl1](q2 - m~)(q2 + ~mi - 3m~)

-~~[~!m1' JL1]~(q2 + ~mi - m~)

Z J [t! ]1(2 c 2 2)- qq ~ m1, m2, Jl1 '4 q + ~m1 - m2

X [q4 + m~ - 2m~q2 + ~mi(~mi - 6m~ + 2l)]

Z J[ t.l ]( 2 2)2 2( 2 2 c 2)+ 9 m2,~2m1,Jl2 q -m2 m 2 q +m2 -~m1

-Z;p[m2, ~!m1' Jl2](q2 - m~)2(q2 + m~ - ~mi)

+Z:q[m2,~!m1,Jl2](q2 - m~)(q2 + m~ - ~mi)

-Yq~[m2' Jl2]t(q2 + m~ - ~mi)

Z J [t! ]1 ( 2 2 c 2)- qqm2,~ m1,Jl2'4q +m2-~m1

X [q4 -7m~ + 6m~q2 + ~mi(~mi - 2m~ - 2q2)] }.

(BII)

The fourth combination of propagators is

P>..P [2 2 1 ]-1Propagator1: m{ pO - Ep(~2ml)
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p~p' [ 12 .!] -1
Propagator2: m{ pO - Ef>,(e2m 2) ·

The polarisation response functions for this part are

J A2A~ { J [ .! .! ] 4 2 2 2
1t4 -2-2 Zpp ~2ml, ~2m2, /11 q (q + ~ml - ~m2)

m 2m1
J 1 1 22 2 2

-Zpq[~2ml, ~2m2, /11]q (q + ~ml - ~m2)

+Yq~[~~ml' /11]~(q2 + ~mi - ~m~)
J 1 1 1 2 2 2 3}

+Zqq[~2ml'~2m2, /11] 4(q + ~ml - ~m2)

+ ml ~ m2, /11 ~ /12·

The total expression for 1r J is the sum of the four parts.

B.8 Balloon: Higgs-Higgs

(B12)

I
I

I\J\NVV\J'

" /
Diagram:

I
\

/"

"'

Propagator1:

Vertex1:(p' ~ 0)

Propagator2:(p' ~ 0)

Vertex2:(p' ~ 0)

- [po
2 _ Eb(mdr 1

B2

1/m~

AsgJL v •

The polarisation response functions are given by

B2As y J [m 1' Ill]'J== --2 91r m
H

(B13)
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B.9 Balloon: Higgs-Fermion

Diagram:

Propagator1:

Vertex1:(p' -t 0)

Propagator2:(p' -t 0)

Vertex2:(p' -t 0)

I

ANV\NV'
- (J6+m1) [p0

2 - E~(m1)r1

BoI+ Blrrs

1/mk
Asgjlv,

The polarisation response functions are given by

J BoAs J[ ]
1r ==4--2 - m l Yg ml,jLl.

m H

B.l0 Balloon: Higgs-Ghost

(B14)

Diagram:

Propagator1:

Vertexl:(p' -t 0)

Propagator2:(p' -t 0)

Vertex2:(p' -t 0)

r
I

ANV\NV'
_ [p02 _ E~(md]-l

B3e
1/m'k
AsgjlV'

The polarisation response functions are given by

B3 A s~yJ[m1' ILl].J __ -2 9
1r - 'm

H
(B15)
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B.ll Balloon: Higgs-Gauge

811

Diagram:

Propagator1:

Vertex1:(p' ~ 0)

Propagator2:(p' ~ 0)

Vertex2:(p' ~ 0)

I

'V\M/\/V'
(

p>..Pp) [ 02 E 2 ( )] -1g>..p - mi . p - p m1

+P;:: [p02
_ E~(~~ml)rl

1

A~g>..p

1/m'k
Asgj-LVO

The polarisation response functions are given by

«' = - A5~~ {3Yg' [ml' ILl] + ~Yg'[~!ml' ILd} .
m H

(B16)
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