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Abstract

This paper extends the treatment of the polarisation tensor for the electroweak plasma to
encompass all the preliminaries needed for a thorough study of its characteristics as they affect
the early Universe. The detailed development of the one-loop polarisation tensor calculated
in a previous paper includes the construction of the basis tensors in terms of which the
polarisation tensor is most conveniently expressed. The polarisation response functions are
obtained next and there follows a detailed discussion of the real and imaginary parts of
the polarisation tensor. These are the essential tools for the subsequent study of the mode
structure and dissipation properties of the electroweak plasma.

1. Introduction

The aim of the present work is to step back from the details of the early
Universe and give a broad general discussion, within the framework of gauge field
theory, of the behaviour of the particles involved using the polarisation tensor in
the one-loop approximation. From the polarisation tensor, the thermodynamics
and dispersion relations of the system can be obtained and the consequences of
the appearance of an electroweak plasma in the early evolution of the Universe
and any phase transitions that the electroweak plasma may undergo can then be
evaluated. By using a systematic approach, the set of particles which make the
main contribution to the phase transition can be obtained, which gives insight
into the development required to extend the calculations.

The procedure used to obtain the polarisation tensor is given in Smith et al.
(1995) hereinafter referred to as Paper 1. There all contributions to the polarisation
tensor of the electroweak plasma have been determined at the one-loop level.

The aim of the present paper (Paper II) is to continue with the analysis of
the detailed mathematical properties of the polarisation tensor up to a stage at
which meaningful investigation of the characteristics of the electroweak plasma
can be undertaken.

The present paper begins by constructing the set of basis tensors in terms
of which the polarisation tensor may most usefully be described. Following on
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from this the polarisation response functions are defined in equation (16) and then
explicitly calculated using equations (55), (56) and (57) for the loop, tadpole and
balloon diagrams respectively. These expressions are given in terms of the so-called
Y and Z functions which turn out to be of great importance in the subsequent work.

In terms of these functions the real parts of the polarisation response functions
are calculated next. The imaginary parts of the polarisation response functions
are obtained from the study of electroweak plasma properties by extending the
work of Tsytovich (1961) for the QED plasma to the electroweak plasma. The
determination of the damping regions in Fourier space is dependent on the masses
of the propagating particles and this leads to the definition of the imaginary parts
of the polarisation response functions given in equation (135). From the real and
imaginary parts of the polarisation response functions, the mode structure and
dissipation properties of the electroweak plasma may be investigated, in principle.

The correspondence between each Feynman diagram and the equations and
functions used to describe it is given in Table 5 of this paper.

2 Construction of the Polarisation Tensor

2.1 Basis Tensors

As we are interested in the first order self-energy shift, the incoming and outgo-
ing particles are the same, so the polarisation tensor for a particular diagram will
be symmetric. The most general symmetric second rank tensor that can be con-
structed for the isotropic system will be a linear combination of the invariants ¢q,
and g*u, and the symmetric tensors g,,, guqu, Uply and quu, + q,u,, Where u,
is the 4-velocity of the frame co-moving with the plasma. It would be possible to
specify the polarisation tensor in terms of this basis set; however, the more conve-
nient choice is to use the set of orthogonal tensors Ly, Ty, Qu and C, given
by

2
u Uy, + QU U, U
L, — 2(q) _ quu_qMV vl 4 g2 e L (1)
¢>—(qu)” | ¢ qu (q-u)
T — g,,y+—2-—1——2{(q~u)(quuy+quuu>—q2<uuuu+q“3”>}, (2)
q* —(qv) q
qud
Qu = ’;2”, (3)
quiy + QU quqv
Chw = - 2. 4
1224 2qu qZ ( )

Here T),, and L, are based on the tensors specified in Melrose (1982), while the
other two are based on the tensors specified in Gross et al. (1981) recalculated to
show explicitly the u, velocity.

A useful relationship between the tensors is

Juv = L;w + T;w + Q;w' (5)

The calculations for the polarisation tensor are performed in the rest frame
of the plasma, where u = (1,0,0,0) and hence ¢-u = w. The magnitude of the
momentum 3-vector of the incoming particle is given by

Q=|q|
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The tensors used are orthogonal with the following properties:

THL,,
THQ,,
T+ C,,
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LFPC,,
Q**C,,
THPT,,
L*PL,,
Q" Qpy
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2.2 Polarisation Response Functions

T

The polarisation tensor will be expressed using the set of tensors defined previously

as

I, = WTTM,, + 7rLL,“, + wQQW + 7TCC,“,.

Using the orthogonality of the basis tensors, the polarisation response functions
used to describe the polarisation tensor are

2.3 Other Tensors

I, T
T, TH’
I, L*
Ly, Lmv’
H;WQ”V
QuQH’

(16)

(17)
(18)
(19)

(20)

Any other tensors can be given as a linear combination of the set described in
Section 2.1. For example, those used by both Kapusta (1989) and Carrington

(1992) are

The set of tensors used by Gross et al. (1981) are

J
P = L,
Agey ~T.,
BSPY —  _ L#
nz vy
w
G = V250w,
DY = Q,,.

(21)
(22)
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The set of tensors used by Melrose (1982) are

T;yVEL = Tl“” (27)
q2
L~ = JL#V' (28)

In the rest frame, the ij components of these tensors are

™ = —”f+§, (29)
‘EMEL _ __EIQ_(;I’ (30)

hence these tensors can be considered as the covariant forms of the transverse
and longitudinal 3-tensors respectively. The three dimensional tensors used by
Tsytovich (1961) are the negative of the ij components of those used by Melrose
(1982).

2.4 Propagators
2.4.1 Free Field Propagator

The propagator for a massive gauge boson for the R¢ gauge and in the absence of
external fields is given by

1 Y v 1
Do = 7 [ - = |+ . pe s (31)
where g, is the wave 4-vector of the propagating particle and m is the mass of the
gauge boson. This is a standard result of gauge field theory, e.g. Itzykson and Zuber
(1980), Bailin and Love (1986) and others, which follows from the electroweak
Lagrangian.

The inverse of a general propagator is defined by

DHDy, =g, (32)

The inverse free field propagator is found by constructing a linear combination of
the basis tensors, substituting this and the free field propagator in equation (32),
performing the contraction and solving for the coefficients of the linear combination.
This gives for the inverse free field propagator

_ 1-—
IDOW} = (q2 - m2)g;u/ + —g_gququ' (33)

2.4.2 Full Propagator

The Dyson equation states that the full propagator is related to the free field
propagator and the polarisation tensor by

D,y = Dg;V —1,,. (34)

Using the form of the free field propagator given in equation (33) and the general
form of the polarisation tensor given in equation (16), the Dyson equation gives
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for the inverse full propagator

D;ul = (‘12 -m?— ”T)T;w + (q2 —m? — WL)LW
+ [672¢* —m? ~ 79 Qu +7Cl. (35)
Here, the relationship between the basis tensors given in equation (5) has been

used. The inverse full propagator is inverted using the same procedure as outlined
in Section 2.4.1. This gives for the full propagator

1 2/ 2 2 1
D = qQ—m—2—ﬂ‘TT“V + dw*(q* — Em* — §7TQ)§L,“,
1 1
+ 4&“(:.:2(q2 —m? - ﬂL)-S-Q,“, + 4§7rcw2§0m,, (36)

where S is defined to be
S =£Q*(n9)? + 4w’(¢* —m? — wl)(¢ — &m® — &), (37)

As a check on this expression, for the case of no interactions, the polarisation
response functions are all zero and equation (36) reduces to the free field propagator
given in equation (31).

2.4.8 Ward’s Identity
The full field propagator satisfies Ward’s identity

qquD#V =¢. (38)

The full propagator given in equation (36) is used with Ward’s identity. Also g,q,
is proportional to @, hence the contractions in equations (7), (9), (11) and (14)
can be used. These show that only the term multiplying Q,, contributes when
Ward’s identity is applied. This gives

2

C)2 — _4%2_

(m (¢* —m? —7t)(m® + 79), (39)

which can be rearranged to give

_4m2w2(q2 _ m2 _ ﬂ.L) _ Q2(ﬂ.0)2

Q=
T 402(q% — m? — nL) (40)
For the case where m = 0, equation (40) reduces to
2(-C\2
m=0: 79 = Q(r”) (41)

 dw¥(g? - mh)

Gross et al. (1981) considered Ward’s identity applied to the case of QCD
gluons. The basis tensors used there are given in equations (23) to (26) and when
the difference in basis tensors is taken into account, equation (41) is equivalent to
equation (4.6) of Gross et al. (1981).
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2.4.4 Infrared Limit

The discrete variable w,, arises from the periodic (anti-periodic) boundary condi-
tions on the path integral and this leads to the definition of w,, = i2nx«T for bosons
and ghosts and wy, = i(2n + 1)7T for fermions. For the analytically continued po-
larisation tensor, the infrared limit is defined by w = 0,q — 0, as the limit w — 0
is ill-defined.

The electric and magnetic masses at the one-loop level are obtained from the
infrared limit of components of the polarisation tensor following Gross et al. (1981):

m% = -M%(w=0,Q—0), (42)
m?mg = iM%w=0,9—0). (43)

The expressions for II%, and II?; are related to the polarisation tensor response
functions by

2 2 2
0 _ Q L W o 2 ¢
II 0o = —?71' + ?'77 - q—27'(' 5 (44)
X w2 QQ QZ
Hzi = 2 T + q—27TL q—27TQ + —q?ﬂ'C. (45)

2.5 Polarisation Response Functions

The polarisation tensor for a particular diagram is expressed in terms of the four
polarisation response functions as stated in equation (16); namely

I, = FTT#,, + 71'LLW + WQQ,“, + wCCP,,. (46)
For example, 77 is given by

r_ 1L,TH

™ - ,
T,,TH

(47)
and the expressions for 7%, 79 and 7€ follow in the usual way.

The polarisation tensors for the tadpole, loop and balloon diagrams can be
expressed as an integral depending on one of the tensors g,., PPy, 9.9y Or Puqy +
qupy. From equation (47) each of these tensors is contracted with 7),,. Hence, the

set of functions required to evaluate 77 is

_ [ dP F(Ep(mi), 1) guTH

YgT[mlaﬂl] = /(271’)3 2Ep(m1) TZVT#V’ (48)
o F(Bplm), i) pup T

Yoplma, ] / E 2§p(7;1) L TMWT’“' , (49)
_ [dPp F(Ep(mi),m) ¢uq, T

qul;[mlyﬂl] - /(2%)3 2Ep(m1) ;pyT”V ) (50)

. F(E s VTMV
Zg[ml,m2,u1] /dsp (Ep(m1), p1) g,

(2m)®  2Ep(m1) T T+
~1
% [4(p-q)2 —(¢® + m% - mg)ﬂ ) (51)
d’p_ F(Ep(m), 1) pup, T
T _ H.
pr[ml,m% /—"1] = /(277)3 2Ep(m1) T/,WTMV
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x [4(p-q)® = (@ +m? —m)?] ", (52)
_ /dSP F(Ep(m1), 1) g0, T*
= (271')3 2Ep(m1) T;“/T[.LV

Zg:;[ml’ ma, :ul]

x [4(p-q)? = (¢® +mi — m%)Q]_l ) (53)
d3p F(E (m ),y) [P v+ U]Tp,u
ZLImi,mo, ] = /(27()3 2Epp(7;1) L. qPud T,J,,(i.ll:f"
x [4(p-q)? = (¢* +m} —m3)?] . (54)

The notation used here is that the Z functions have an integration over a denom-
inator, while the Y functions do not. The subscript on the functions corresponds
to the tensor (from the set of gu., pupy, 9.9y OF Pugy + qupy) that is contracted
with the basis tensor, and the basis tensor is given as the superscript.

The functions used to evaluate the 7~ function are obtained by contracting the
L,, tensor with each of g,., pupv, 9.9, Or Puqy + qup, and this would yield a set
of functions similar to those shown above, with T},, replaced by L,, and hence the
superscript T replaced by L. The same procedure is followed to give the functions
used for the 7@ and 7€ response functions.

The procedure used to calculate the polarisation tensor was given in Paper I
and this can be represented as

Vertices . fur(p) K;
Propagators X (P) = hu(p) — My = W (9)

The polarisation tensor is then expressed in terms of the polarisation response func-
tions given above. As the constants KC; and M; are independent of the integration
variable, they can be taken outside the defined functions.

For example, the most general expression for the loop diagram polarisation ten-
sor with gauge bosons in the external legs is taken from Paper I and the polarisation
response function for this case is

71'J = %{%’C2Y'gj[ml’/~‘1] + %’C‘lYp‘;[ml’#l] + %K6KI£[mlyul]

+ (K1 + §Ka(¢” +m} = m3)2)Z] [y, ma, ]

+ (K3 + 1Ka(q® + m} — m3)?) Z;,[m1, ma, ]

+ [Ks + $Ke(q® +m} — m3)?| 2], [my, ma, 1]

+ K2 Z7 Im1, ma, 1)

+ IMY [, o] + MY ma, o] + MY [ma, o]

+ My + Ma(q® +mi —mi)?| 2] [ma, mu, o

+ M + fMa(g® +m3 — mi)?) Z;), [ma, ma, o]

+ [Ms + Mo(q® +m3 —mi)?| Zgg[ma, m, o)

+ Mz Z} [ma, ma, Mﬂ}v (55)

where J is one of {T, L,Q,C}. This gives a template for the results.
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For example, the most general expression for the tadpole diagram polarisa-
tion tensor with gauge bosons in the external legs is taken from Paper I and the
polarisation response function for this case is

T = KoY [my, 1] + MoYplmy, pa), (56)

while the most general expression for the tadpole diagram polarisation tensor with
gauge bosons in the external legs is taken from Paper I and the polarisation response
function for this case is

T = KsY, [ma, m). (57)

The procedure given above has been implemented for the computer application
Mathematica of Wolfram (1991) and the Mathematica package HIP of Hsieh and
Yedudai (1992) to obtain the K; and M; constants for the most general types of
Feynman diagrams. The K; and M, constants are not shown explicitly but rather
have been combined with equations (56), (55) and (57) to give the polarisation
response functions for diagrams with gauge bosons propagating in the external
legs that are shown in Appendix B.

3 Real Part of the One-loop Polarisation Tensor

The one-loop polarisation tensor for a propagating particle is specified in terms of
the tadpole, loop and balloon diagrams. These diagrams are constructed from the
Y and Z functions and the polarisation tensor is analytically continued. The real
part of the one-loop polarisation tensor is obtained by finding the real part of the Y’
and Z functions using the Plemelj rule. For the real part, the Plemelj rule simply
specifies that the integration is a principal value integration. The Y functions have
no singularity and hence no principal value integration is needed.

3.1 Polarisation Response Functions

The Y and Z functions are specified in equations (48) to (54). In the rest frame
(defined in Section 2.1) we have

q.T" = 0, (58)
2
v P-q
ot = ALy, (59
g TH = 2, (60)
T, T" = 2, (61)
quL* = 0, (62)
1 q\°
pup L* = —-q—i- (Ep(ml)Q — wBQ—q-> , (63)
gLt = 1, (64)
LoI* = 1, (65)

‘I;L(IVQ”V = q21 (66)
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N2
pup Q" = %, (67)
(pu‘b + quu)Q‘w = 2pq, (68)
g;lew = 1, (69)
Qu@" = 1, (70)
9.9.C" = 0, (71)

.q)? Ep(m
pupuclw = _% + (P‘Q)LLL)7 (72)
.q)? Ep(m

(Puv + up)C* = ¢ (—(—pq%)— + (p-q)—-p(w—1)> ) (73)
g“,,C"W = 0, (74)
C CcH  — __Q_2 (75)

i 2w?’

where p-q¢ = Ep(mi)w —p-q.

This has been left in the general form as cylindrical coordinates are used later.
Here, spherical co-ordinates are used, with the z axis chosen to be along q, hence
cos 8 is the angle between p and q. The notation is

= |p|. ~ (76)

3.1.1 YT Punctions

Using equation (58) the qu,; function is identically zero. For the other Y7 functions
the only occurrence of 6 is due to p,p, T"", and hence the 6 integration is simple
and along with the ¢ integration can be performed immediately. The integrals are
expressed in terms of dimensionless parameters

1 m
Y [my, ] = HTQF[?’]H?» <_f1_,_7,%)’ (77)
m
Vilmml = -~ TTEIHs (), (19

where the H; functions were defined by Haber and Weldon (19824,b) and are given
by

A 1
— —r}. (79
yy"') l) $2+y 1/2 (exp [(332 +y2)1/2 -—y?"] 1 +7r 7') (7 )

Here, and generally, the r — —r notation means that the second term in the large
parentheses is given by the first term under this substitution. The Bose—Einstein
distribution function is used as it has been assumed that bosons are propagating in
the loop. When fermions are propagating in the loop, the Fermi-Dirac distribution
function will be used in the expression for H;.
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3.1.2 ZT Punctions

Using equation (58) the Zg; and Z;f; functions are identically zero. For the other
ZT functions the ¢ integration can be performed immediately; however, the
integration is more difficult due to the p-q term in the denominator. For bosons

propagating in the loop

Re Z7 [my,ma, ] =

L ][oo P : + = —p
8m2 P2 4 m2)z (P24m3)E —p ' 1
o ( D7 | exp | Emiiom |y
+1 1
x f d(cos8) - 2 ’
-1 4 [(P2+m%’)5w—PQcos9] — (g% +mf — m3)?

Re Zz;,[ml,mmm] =

1 ][°° P*dP 1 o — —p
. - 1= —H1
167> Jo (P2+md)t | [(P2+m;,)2 ~#1] _1
+1 s20 — 1
x { d(cos8) " — P) :
-1 4 [(732 +m?)2w — PQ cos 9] — (¢ + m} —m3)?

The general form of the integrals over 8 are

+il ; 1 _ 1 In 4a% — (2b—¢)?
][_1 (cos )4(a —bcosf)2—c2  dbc |4a® — (2b+c)?|’
+1 cosf 1 4a—b)* =
_1d(cosg)4(a—bcose)2 — 2 8 n|4(a+b)2 —c?
a 4a% — (2b—c)?
+ In )
4b2c " |4a? — (2b+c)?
+1 cos2 0 1 a 4(a—b)? - ¢?
= —_— —]. = 1.5 9
][_1d(cos 0)4(a —bcos )2 — ¢? 2b2 - " ’ 4a+b)? — ¢
N 4a? + c? o 4a® — (2b —¢)®
16b3¢ 4a2 — (2b+¢)?|’

where these results have been obtained by straightforward integration.

(81)

(82)

(84)
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Hence the expressions for the real part of the Z7 functions are

Re Z![mi,ma, p1] =
1 1
32120 (g2 + m? — m2)

*©  PdP 1
X][ B e T + 1 — =i In Ao, (85)
o (P2+mi)2 exp [(P2+m;,)2—m] 1

Re Z] [m1,ma, 1] =

1 PP 1
][ ( +pu1 = —pm
0

207Q? Jo (P2 +mi)t | [—(Pz_L——m?%—“l] -1
w (P +mp)}
2 2 .2 2 2 2\2
q 1 d4mijw® 4 (¢° + m{ —m3)
= InAg b,
* [P2Q(q2+m? -m3) P 89(¢®+mi—md) } n o
(86)
where

A 4P mbe? — [2PQ - (¢ + m? - mj)]? (57

D AP e - 2PO+ (@t - )|

1 2
4[(P2 + m)tw —PQ| — (g2 + m3 — m})?
Ay = 1 5 . (88)
4[P? +mi)ho +PQ| (g2 +mf - m3)?

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.
3.1.3 YL and Z* Functions

The Y and Z% functions are developed in a similar manner to the Y7 and Z7.
The YZ functions for bosons propagating in the loop are

Yimi,m] = Y [my,pl, (89)
L 1 g, W2 my o
l/;)p[mlnu’l] = ~4:7.[_2(12 Q + _?;- T4F[5]H5 ?, ;l—l-

+ m2Q2TT 3] Hs (% %)] (90)
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The ZL functions for bosons propagating in the loop are

Z:[m17m2),u1] = Zg[mlym2’u1]7 (91)

Re sz/p[mh ma, /’l’l] =

1 ][°° P2dP 1 o y
- 1=~
167220 Jo (Pramd)t | [“(Pz—‘—m;)%__m] -1
2 (D2 2\%
o, wg* (P?+mj)?
x{w + 20 5 In Ay
4 1 4m2q* 2(,2 2 02\2
+|:P > q 5 5 - mlq +"‘;(q —:mlsz)]lnAo .

(92)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

3.1.4 Y9 and Z9 Functions

The Y@ and Z@ functions are developed in a similar manner to the YT and Z7.
The Y@ functions for bosons propagating in the loop are

YR[my, ] = Y [ma, ml, (93)
1 Q2 4 myp
Ylmy,m] = prors [(wz + 7) T°T'[5]Hs ('17 7—n_1>
m
+m32w?TT[3]H3 (Tl, i)] ) (94)
YOmi,m] = @Y [ma,pal. (95)

The Z®@ functions for bosons propagating in the loop are

ZgQ[mhmz,#l] = Z;;"[mhmz,ul], (96)
Zgmimasn) = g5 (¥ s+ (a2 =2 ]
(o7)
Zgglmy,ma, ] = %{YgT[ml,ul]+(q2+mf—mé)sz[ml,mz,m]}» (98)
ZQmy,mo, ] = @227 [ma,ma, ). (99)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

3.1.5 YC and Z€ Functions

Using equations (74) and (71) the Y;JC, Yq(;, ZgC and ch; functions are identically

zero. The other YC and Z€ functions are developed in a similar manner to the
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YT and Z7T functions. The chp function for bosons propagating in the loop are

1 w?[4 m m
c _ 4 1 M1 22 mi K1
Y;,p[ml,ul] = -2?;2— I:ET P[5]H5 (—,17, m—l) + mlT P[3]H3 ( ml)]

The Z€ functions for bosons propagating in the loop are

Re ZZ? [ml,mg,ul] =

P
1 w? ][°° PP 1 o
o9 MO 1 —HM1
812 Q% Jo (P24 m?)t exp[(P2+m;)%—m] 1
1 1 (P24+m2)z 1 (¢ +m? —m2)?
= — InA 101
X{q2+4wQ p Mt pTgE oy, (101
chl;[mhmZHu'l] = qZZZZ)[ml,m2,[J1]. (102)

For fermions propagating in the loop, the Fermi-Dirac distribution function will
be used.

4 Imaginary Parts

The one-loop polarisation tensor for a propagating particle is specified in terms
of the tadpole, loop and balloon diagrams. These diagrams are constructed from
the Y and Z functions. The imaginary part of the one-loop polarisation tensor is
obtained by finding the imaginary part of the Y and Z functions.

4.1 Resonant Denominators

The imaginary parts of the Y and Z functions are obtained by using the Plemelj

rule
1

T +ix

— Pi T im6(z). (103)

The term on the left-hand side is a resonant denominator. The Y functions have
no denominator of this form and hence have zero imaginary part.

The resonant denominator common to the Z functions is expressed in the com-
pact form 4(p-q)?>—(¢>+m?—m3)2. This can be expanded out, under p° = Ep(m1),
using

(Bp(m1) £¢°)° — B} uq(ms) = +2(p-g) + (@ +mP—md).  (104)
As an example, consider a general Z function Zz',lp [m1, ma, 1], where J is one of

{T,L,Q,C},

Z;;]p[mla ma, /"1]

-1 d:ﬁ) F(Ep(ml),lll) PpPuJW
2(g2+mi —m3) J 2m)®  2Ep(my)  JwJ,




788 B. J. K. Smith et al.

X{ 1 [ 1 ~ 1 ]

2Ep_q(m2) Ep(ml) —w — Ep_q(’rYLQ) Ep(ml) —w+ Ep_q(mg)
N 1 [ 1 ~ 1 ] }

2Ep+q(m2) Ep(7n1) +w— Ep+q(m2) Ep(ml) +w+ Ep+q(m2)
(105)

Here w is understood as w = w + ie with ¢ — 0%,
A cylindrical co-ordinate system is used where the z axis is taken along the
direction of the wave vector q. The notation is

p = (P:Pu,9), (106)
q = (Q,0,0), (107)
and in this co-ordinate system
pupyJ* 5
m = pr[Pz, PJ_] (108)

The Plemelj rule is applied and the imaginary part of the Z]{p[ml, ma, p1] func-
tion is

Im ng[ml, ma, ,u'l]

. J
T 8@ +mi— m2)/ F(Ep(m1), 1) ZpplP, P

X{Ep(ml)Ep—q(mz) { w8 (Ep(mu) —w — Ep—q(m2))

— 76 (Ep(m1) —w + Ep—q(mz))]
1
+ Ep(mi)Ep+q(m2)

[_ms (Ep(m1) +w — Epyq(ms))  (109)

+ 7o (Ep(ml) +w + Ep+q(m2))] }

4.2 Absorption Processes

The delta functions in equation (109) express the conservation of energy and mo-
mentum for the physical processes occurring in the plasma. The energy conserva-
tion relations for the physical processes are Tsytovich (1961)

Cerenkov emission: Ep(my) —w—Ep_q(m2) = 0, (110)
Pair production: Ep(m1) —w+ Ep-q(m2) = 0, (111)
Cerenkov absorption: Ep (m1) +w — Epyq(ma) 0, (112)
Pair absorption: Ep(mi) +w+ Epiq(m2) = 0 (113)

It is conventional to describe disturbances in the plasma in terms of positive
frequencies. The reality condition implies that positive and negative frequencies in
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the polarisation tensor specify the same information; hence, following Melrose and
McPhedran (1993), we can specialise to the region of positive w and positive Q.
In this region the pair absorption process has no solutions, as the energies of the
particles must be positive. The pair production process corresponds to the energy
of the propagating particle being used to create two particles, momentum being
absorbed by the medium. The Cerenkov processes correspond to part of the energy
of the propagating particle being absorbed by the particles in the medium, the two
possible processes corresponding to the way in which the energy can be shared.
The energy conservation equations for the processes occurring in the plasma
are all solved by squaring both sides of the equation, re-arranging and squaring
both sides again. This leads to the set of solutions for P, (in terms of the masses,

w, Qand P,)

PA = jo(1+ )y gy (114

w0 - go(i+Z) 2, )

P~ +o(1+m) 4 5y (116)

R e )
where

X= \/iga (1 + ’::2)2 + lp_ia;;’g?. (118)

The expressions P2 and PP relate to the Cerenkov process given by equa-
tion (112), while the expressions PC and PP relate to the Cerenkov process given
by equation (110) and the pair production process given by equation (111), respec-
tively. All of the expressions P! are defined under the condition that x% >0, and
hence these absorption processes have solutions only in a particular region of the
(w, Q) plane. Equation (118) can be re-expressed as

x= \/ g - @ D - @), (19)

where
a = \/PLemit /P emy, (120)
I \/Pi +m3 /P2 +mi. (121)

In the region of the (w, Q) plane where x? < 0, equations (110) to (113) have no
solutions and hence there will be no damping as the particle propagates through
the medium. From equation (119) this region of the (w, Q) plane is given by

z1 > w? — Q2 > 2o (122)
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This condition depends on P, , an integration variable which ranges from zero to
infinity. The region given in equation (122) changes with P, because z; increases
as P, increases, while zo decreases as P, increases. Hence the region of the
(w, Q) plane where x? < 0 for all values of P, is obtained by setting P, =0in
equation (122). This gives

Non-damping region: Q%+ (m1 +m2)? > w > V' Q2 + (my — ma)2.

Hence, in the (w, Q) plane, the curve w = y/Q2 4 (m; 4+ mg)? and the curve

w= \/@ + (m1 — m2)? define the region where x? < 0 and hence the region where
no absorption processes are possible. This region is shaded in Fig. 1. For m; < mg

the dashed line above w = Q is the solution to %;%; = —1 and the dashed line

22
below w = Q is the solution to E’—;—_—g& = +1. For my > my this identification is
reversed. The regions 1, 2 and 3 relate to solution regions given later.

4.3 Energy Solutions

The energy corresponding to a particular expression for P, is found by substituting
this value of P, back into the energy equations. For P2 this gives

m2—m?2
i N
(123)
22
Bqim) = Par P Pi e = [t (1-T2) 4.
(124)

The expressions for both Eﬁ(ml) and Eﬁ +q(m2) involve a modulus sign so we need
to examine the relative sign and magnitudes of the terms on the right-hand sides.

The sign of %—2&;1; depends on the region of the (w,Q) plane and also depends

on whether m; > mg or m; < my. Hence we may have different expressions for
Eﬁ(ml) and Ef} +q(m2) in a particular region for each case. Table 1 gives for

each region shown in Fig. 1 the sign of —Z—LZEg; and the expression for Eﬁ(ml) and
Eﬁ +q(m2) given by equations (123) and (124) respectively, for m; < ma.

The absorption processes detailed in Section 4.2 can now be examined. The
expressions for Ef}(ml) and Ef +q(m2) given in Table 1 show that the Cerenkov
process described by equation {)112), viz. Ep(m1) +w — Epyq(mz) =0, is solved
by P, = P2 for m1 < mg in Regions 2 and 3 only.

The same procedure is followed for the case where my > mg and the results
are given in Table 2. Examining the expressions given for Eﬁ(ml) and Ef)‘ +q(m2)
shows that the Cerenkov process given by equation (112), viz. Ep(mi) +w —
Ep4q(mz) =0, is solved by P, = P2 for my > ms in Region 3 only.

The same procedure is followed for all the P} expressions. The results are
given in Tables 3 and 4 and show the region of the (w, Q) plane where the P,
expression is applicable for the process considered. This work indicates that the
pair production process specified by equation (111) has solutions only for w and Q
in Region 1 and these solutions are given by PE and PP. For w and Q in Region 3
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Region 1.

w=+,/0Q% + (my+m2)?

[my + mg|

my — my| /

Region 2. Reg/i6n 3.

/
/
I

1 > Q

Figure 1. Non-damping region (shaded) for m; < ma.

m2 2
Region —=5# Ef} (m1) E6+q(m2)
) mZ—m2 1 m2—m2
1 | -1<..<0 5w(1+w_g)—x 5W(1—Hw-g)+x
1 m2—m?2 1 m2—m?2
2 <=1 x—gw(1+—%—fw _Q‘) 5“’(1_0}-95)“”‘
L m2—m2 1 m2—m2
3 >0 X—zw(lJr';%z?) Ew(l_w%—gé)—“(

Table 1. Energies for 73;4 in each region for m; < mo
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. m2—m?2 A
Region :5-_—‘2—5 Ep(mi) Epiq(m2)
1 m2—m2 1 2_ .2
10 | do (14225 ) - x | de (1- ) +x
1 m2—m?2 1 2_m?2
m2 —m2 2_,.2
3 ..<0 x—%w(l+:§75?-) %w(l—-—%zf')'i‘x
Table 2. Energies for PA in each region for m; > my
P. Ep(m1) Reg. Process Eq.
m2—m2 m2—m2
Al-te(1+ mmd) +sx | x—dw (1+2i2) | 23 | Cerenkov | 112
m2—m2 m2—m2
B | —to(1+25) - gx | —dw (1+25) —x | 2 | Cerenkov | 112
1 m2! —m; w 1 ng ———m? ) 1 Pair 111
C|+29 <1+ w'-Q ) T ox 2% <1+ Aot ) TX 3 Cerenkov 110
m2—m2 1 m2—m2 .
D | +i0(1+25) - gx | dw (1+2gh) -x | 1 Pair 111

Table 3. Energies in each region for m; < mg
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P- Ep(m1) Reg. Process Eq.
1 m2 —m2 w 1 m2—m2
A —§Q(1+ 15 )+5x X — 3w (1+—;}_—Q§) 3 Cerenkov 112
1 m2—m?2 w
B|-1i0 (1+_.3._;.w e )_5X None
1 mi—m; w 1 m2—m?2 1 Pair 111
Cl+29 (1 t o5 ) tox | v (1 T —Qé ) X 2,3 Cerenkov 110
1 m2—m?2 w 1 m2—m2 _ 1 Pair 111
D} +z0 (1 too ) Tex | <1 + ) X 2 Cerenkov 110

Table 4. Energies in each region for m; > mo

the Cerenkov processes given by equations (112) and (110) have solutions given by
P4 and PE. For w and Q in Region 2 the solutions to the Cerenkov processes given
by equations (112) and (110) depend on the relative magnitude of the masses.

The delta functions of energy given in equation (109) can be converted to delta
functions of P, using the tabulated results and

df (P3|

| 8=, (125)

5(f(P)) =Y

i

where P! are the solutions to the energy equation.
Hence, for m; < mg, the delta functions arising from equations (112), (110)
and (111) respectively are

6(Ep(m1) +w — Eprq(m2))
1
Ox[1 — w?/Q?|

x {Eﬁ(ml)E6+q(m2)6(Pz —-PAe ( Q2+ 22 — w)

+ Ep (m1)Ep.,q(m2)8(P: — P7) [0 (\/m B w) e W)} }’

(126)

8(Ep(m1) —w — Ep_q(m2))
N ng (m1)Ep_q(m2)8(P: — PY)0(Q ~ w), (127)



794 B. J. K. Smith et al.

6(Ep(m1) —w + Ep_q(m2))

= {Eg(ml)Eg_q(mg) (P, — P)0 ( Q2+z)

Qx[1 —w?/Q?
+ Ep (m1)Bp_q(m2)8(P: — P7)6 ( \/Q2+21>}
(128)

where step functions are used to confine the solutions to the applicable regions.
The energies for each region are not shown explicitly as they will cancel out when
inserted in equation (109).

For mj > ma, the delta functions arising from equations (112), (110) and (111)
respectively are

§(Ep(m1) +w — Ep4q(ms))
1
WES (m1) Ep1.q(m2)8(P; — P1)6(Q — w), (129)
8(Ep(m1) —w — Ep-q(m2))
1
Ox|1 —w?/Q?|

x{Eg(ml)Eg_q(mQ) (P, — PS8 (\/Q2+z —w)
+ EB(m1)EB_q(m2)s(P- [9 (,/Quz —w) —6(Q— w)}}

(130)
5(Ep(m1) —w+ Ep_q(mg))

- —1—{Ep(m1)Ep q(m2)6(P. — P)8 ( Q2+z)

Ox|1 — w?/Q?|
+ Ef (m1) Ep_q(m2)8(P. — PP)0 (w —4/Q2 + Z%) }
(131)

These delta functions are inserted into the expression for the polarisation tensor
to give

Im Z [my, ma, pu]

_ ol miz /°° PLdP,
T 8¢2 w2 — 4rQ Jo x|1 —w?/Q?

x/ dP.F(Ep(my), u1) Z;, [Pz, PyL]

x{—a (w —4/Q? +z%) [6(P. = PY) +8(P, — PP)]
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+[o(V@rraz—v) 0@ -] s~ ma

x [6(P; = PY) +8(P. — P)]

- [0 (/ér% —w) ~9<Q—w)] 6(ma —m1)

x [6(P, — P +8(P; — P7)]
+6(Q —w) [8(P. - P) — §(P; —P;“)]}. (132)

The integrals over the delta functions is performed and the energies for each P}
expression are used. This gives

Im Z [ml,m2,ﬂl]

_ 1 1+m% / P, dP,
T 82 Q2 47 Q x|l —w?/Q?
x{—0 (w— \/ Q2 +zf>

x (ng[Pf,m]F[% o(1+

=) ]

+ZJ ’PD PLF % ( ; Qz) X,ul])

|
BT ) oo

x(ng['ch,'PL] [-—w(l-l— i

)-I—X Nl]
+Z7 [PP,PLIF [-—w(1+ : gg)—x,m])

- [9 (\/52—"'_23 —w) —-6(Q —w)] 6(mg —m)

N (ng[Pf,PJ_]F[—%wO + mf—

2

my
02 ) + X NI:I

+ Z3 (P2, PLIF [ do(1+ 122)—““})

+9(Q—w)x( [Pg,P_dF[X—F w(1+ : m§> #1]

—zlpA PL]F[X— —w(l-l— i ’”2) m])}
(133)

The integration variable is changed to x using
dx P

aPL ~ X108 (134)
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In region 1, defined by 8 (w — /9% +21), x is a decreasing function of P, .
Hence x ranges from x, at P, = 0 to 0 at an upper limit of P,. That is, the
restriction of w > /O + z; places an upper limit on P, as 2; is an increasing

function of P,. While w > 1/Q? + z1|p, —o then there will be some range of P
in which the delta function is non-zero.

In region 2, x is still a decreasing function of P, hence the limits on x will
be the same. The restriction w < /Q? + z; places an upper limit on P, ,as 2o is
a decreasing function of P,. While w < \/Q? + 23]p, —o then there will be some
range of P, in which the delta function is non-zero.

In region 3, x is an increasing function of P , hence as P, ranges from 0 to co,
X ranges from x, to co.

Taking account of the modulus sign and rearranging the integration limits gives

ImZ M1, M2, pa]
-1
= ‘8_22(”212%:32%) 4739
X{O(w—\/Q2+(m1+m2)2)
X/Oxodx(Z [PS(x), X]F [% ( += —~ Q2)+x,u1]
+ Z3,PP (), F [$w(1+ i ) x,m])
+[6 (V@ (mi—ma)2 - w) - 6(Q )]( ma)
< [ ax( 23,00 F [ (14 2 4
+ Z2 PP (x), F[éw(u 1 Qz) X”“D
. [e (\/Q2+(m1 “ma)? —w) — 90— w)] 8(ma — my)
[ ax( 23 P00 0F [ (14 B ]

+ Z;,’p[PzB(x),x]F[—%w(l * 7:3:;3) - x,m])

—0(Q—w)
X /oo dx (Z;,';,[Pf(x),x]F{x + %w<1 + T:—f:ﬁ) /1'1]
X

= Z3,[PA00F [ - dw(1+ ’jfj;‘f )’“‘D }
3

(135)
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4.4 Polarisation Response Functions

The result given in equation (135) can be generalised to give an expression for
the imaginary part of each of the Z functions using the contractions defined in
equations (58) to (75). Under each of the delta functions

. +09x (1 —w?/Q?) for PA,PC,
Bpmye =P = { TNOTHS) mppr, ()
~1g?[1 4+ ™=m2] for PA,PE,
pq = 2 S (137)
+34° 1+%&_—g& for PS, PP,
P = (1-w?/Q%) (¢ —xd) (138)
where
1 m2—m?2 2 m%
= =4/39% 1+ —= . 139
Xo X]PFO 19 [ +w2—g2] +1_w2/Q2 (139)
Hence we have
ZIPix)x) = 1, (140)
Zpp(Pi00,x) = —5(1-w?/Q%) (X - xP), (141)
ZEPi)x) = 1, (142)
. 2
ZE(Pix),x) = —é—x? (143)
Z2(Pix),x) = 1, (144)
2_,,2 2
Z3(Pix)x) = i [1+7:2‘_Qj] : (145)
2_ 2 2
ZR(Pix),x) = 3q* [H’Z;_Qj} , (146)
Z3Pix),x) = o (147)
- —wx (1-w?/Q%) |1+ Z=5]  for PA,PP,
Zg(PL00X) = b5 ()
twx (1 -w?/Q%) |1+ TH=Z2 —o#| for P2, P,
Zg(Pi):x) = @*Z5(PLX), ), (149)

and the imaginary part of a particular Z function is obtained by substituting
the expression for Z(Pi(x),x) in equation (135). The Z(Pi(x), x) functions not
explicitly shown here are identically zero.

5 Grand Table of Results

The aim of the two papers in this series is to calculate the finite temperature
self-energy polarisation tensor for the electroweak model in the R¢ gauge. The
polarisation tensor is expressed in terms of the basis tensors and the polarisation
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response functions. The diagrammatic expansion has been used and the diagrams
needed for the calculation of the photon polarisation tensor to e? order are

5
ik

é = e§e+W{Z‘éw+W§‘;G+G(§)G+n{éf‘n+ %{C}W‘i‘ %’fj)a

5

The diagrams needed for the calculation of the Z boson polarisation tensor to g2
order are

ZO
é = (? é}eJrWé}w+Z§_‘;H+Wé)GJrGOé)HJrG(‘?G
ZO

+ zn+§{}w+§ G+§ GO+ %'_‘)H+§,{}W+;{C}Z

b HOGT RO ROH R i 04 5Oe

The diagrams needed for the calculation of the W boson polarisation tensor to g2

order are
w
é = e§u+W§7+W€}Z+7§G+Z§EG+W§ H+ G i
w
+ §H+n ?) +n i n+ %i}wr %{}th ?}W+§i’_‘)a
+ %’QGO + ;‘)H + ; <TW + %{Q} Z+ %’\’;:GO
+ %,«i’_‘,‘-G + ;{:"H + ; n+ ; 7+ %,Oe

In view of the great number of Feynman diagrams that are taken into account,
the calculations have been arranged systematically and this is shown in Table 5. In
this table each generic type of diagram is shown along with the equation number
for the polarisation response functions, the table in Paper I which tabulates the
vertex factors relevant to this diagram and the list of Y and Z functions used to
describe the polarisation response functions where J is one of {T, L, Q,C}.

In Table 6, the equation number for the real and imaginary parts for each Y and
Z function is given. The Y functions all have an imaginary part that is identically
zero. Some Y and Z functions are identically zero due to orthogonality between
tensors.
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Equation for Vertex factor
Diagram polarisation Y and Z functions
. from Paper I
response functions
o (B4) Table Al Y/, z],z},Z],
Y v v
B9), (B10) g ppTqq
o (B9), Table A2
(B11), (B12) z],z),27 .77
i (B5) Table A3 z,Z
oy (B6) Table A4 z}, 73,23,
o, g (B7), (B8) Table A5 z],z), 23, Z]
O (B14) Table A5, Bl Y,/
£ (B13) Table A5, B2 Y/
(B15) Table A5, B3 Y,/
% (B16) Table A5 Y,/
o (B2), (B3) Table CO Y)Y
e (B1) Table C1 Y,/
Table 5. Grand table of diagrams
Function T Q c
Im Re Im Re Im Re Im Re
Y, zero | (77) | zero | (89) | zero | (93) | zero | zero
Yoo zero | (78) | zero | (90) | zero | (94) | zero | (100)
Yeq zero | zero | zero | zero | zero | (95) | zero | zero
Zg (140) | (85) | (142) | (91) | (144) | (96) | zero | zero
Zpp | (141) | (86) | (143) | (92) | (145) | (97) | (148) | (101)
Zpq zero | zero | zero | zero | (146) | (98) | (149) | (102)
Zqq zero | zero | zero | zero | (147) | (99) | zero | zero

Table 6. Grand table of Y and Z functions
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6 Summary and Discussion

For the standard electroweak theory of (Glashow 1961; Salam 1968; Weinberg 1967)
the finite temperature part of the polarisation tensor for the W=, Z° and v gauge
bosons has been calculated in a systematic manner using gauge field theory and the
Re gauge. The polarisation tensor gives the shift in the propagator of the gauge
bosons due to interactions and is expressed in terms of the polarisation response
functions which are given by 77, &, 7% and 7€,

Finite temperature field theory is used in the imaginary-time formalism which
means that the perturbation expansion used for the zero temperature theory can
be carried over to the finite temperature calculations under the application of the
finite temperature Feynman rules. These rules prescribe a Matsubara summation
due to the periodic boundary conditions.

The contributions to the polarisation tensor due to the interactions described
by the electroweak model are expressed in terms of Feynman diagrams. Each
Feynman diagram is one of three distinct types—loop, tadpole or balloon—and for
each of these types, a procedure is given to calculate the contribution of the general
diagram. This procedure is followed for the combinations of particles possible for
each diagram and the results for the general case are given in the Appendices. By
calculating the Feynman diagrams in this systematic manner the symmetries of the
system are exploited and the results for each diagram can be constructed from a
particular set of functions, which can then be cross referenced.

The full set of tensors used to describe the polarisation tensor have been ex-
amined and the propagator for the gauge bosons in the presence of interactions
has been obtained. Ward’s identity has been applied and this yields a relationship
between the polarisation response functions which are given by 77, nl, 7% and
7C.

The leading characteristics of the electroweak plasma, in particular the mode
structure, can in principle be developed from a knowledge of the real part of the
polarisation tensor. In Section 3 the real part of the Y and Z functions has been
expressed in terms of the Y and Z functions.

The calculation of the imaginary part of the polarisation tensor gives the dis-
sipative processes occurring in the plasma and these processes are defined by the
equations of energy and momentum conservation. For the electroweak theory the
particles propagating in the loop diagram may be different and the solution pro-
cedure used for the equations of energy and momentum conservation has to be
extended from the results of the QED case given by Tsytovich (1961). This leads
to damping regions dependent on the masses of the particles propagating in the
diagram.

The correspondence between each diagram and the equations and functions
used to describe it is given in Table 5 of the present paper.

7 Further Work

With the techniques available as detailed in previous sections the way is now open
for the future study of the physical properties of the electroweak system. The po-
larisation tensor corresponding to the propagation of a particular gauge boson has
been obtained by adding together the contributions from the appropriate Feynman
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diagrams. This has been done in the high temperature limit by considering the
high temperature expansions of the Y and Z functions and will appear in a subse-
quent paper. This will show the ¢ independence of the polarisation tensor in the
high temperature limit for the electroweak system.

The most immediate use of this work would be the calculation of dispersion
relations which would provide information about the modes and damping for the
propagation of particles through the system. Physical properties such as the modes
of propagation, damping, excitations and screening length in the plasma could all be
considered. The classical field equations could be calculated from the electroweak
Lagrangian by the Euler-Lagrange equations for each field and then linearised,
where each field would be expanded as a classical part and a fluctuation part and
only first order terms in the fluctuations would be kept. The one-loop contributions
would be used for the fluctuations and the classical field equations solved. The solu-
tions to the classical field equations give the equilibrium state of the plasma about
which the fluctuations yield the modes, excitations and quasi-particles. Compari-
son of these properties with those expected from the QED case would be of great
interest.
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A Notation

The notation used in this work is standard (except for the labelling used for the
vertices) and is given in Paper L.

A.1 Photon Mass

The finite temperature photon propagator is

5 e - -2, (A1)

while the finite temperature propagator for a general gauge boson is

(Qaﬁ - ) 7 - Bam)] "+ R [ - B3(ehm)] . (A)

For a photon propagating in the loop of a diagram the result for that general

diagram is used with the transformation £%m7 — my made only in the Y and
Z functions and then the high temperature expansion is performed. This repro-
duces the form expected. The same transformation in the whole expression totally
removes the ¢ dependence from the result.

B Polarisation Response Functions

The procedure given in this paper and Paper I has been used to calculate the K;
and M, constants and equations (56), (55) and (57) have been recast using these
constants to give the polarisation response functions for the tadpole, loop and

balloon diagrams respectively. The K; and M; constants are not given explicitly.
The generic superscript J is used where J is one of {T,L,Q,C}.

B.1 Tadpole: Higgs

Diagram:

Vertex: Cigw

-1
Propagator: - [p°2 - Ef)(ml)] .

The polarisation response functions are given by

TI'J =ClYgJ[m1,,u1]. (Bl)
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B.2 Tadpole: Gauge

Diagram:

Vertex: Co [29uv9a8 — Guafup — 9uBIval

The polarisation response functions for this diagram consists of 2 parts, corre-
sponding to the 2 parts of the gauge boson propagator. The first part of the gauge
boson propagator is

-1
Propagator: (gaﬁ _P :f;ﬂ ) [p"z - Ef,(ml)] .
- 1
The polarisation response functions for this part are

1
™ = “200{2ng[m11“1]+ Y}i[ml,/h]}- (B2)

mi
The second part of the gauge boson propagator is

-1

Propagator: P :f%ﬁ [p°2 - Ef,(ééml)]
The polarisation response functions for this part are
1 1 1
715] = 2C0{—{;‘Y9J[£2m1,,u1] + W%ﬁ,[ﬁzml,ﬂl]}. (B3)
1

The total expression for 7/ is the sum of the two parts.

For the W# tadpole contribution to the W= polarisation tensor, some care will
be required in selecting the correct legs of the vertex to contract together. This
effectively will multiply the expression by —%.

B.3 Loop: Fermion—Fermion

Diagram:

Vertexl1: Yu( Aol + A1s)
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Propagatorl: —(p+m) [p"2 _ E%(ml)]

, -1
Propagator2: — (p' + mg) [po 2 EIZ), (mg)]
Vertex2: 7, (AL + Ajvs).

When the expression for this diagram is calculated a trace over the gamma
matrices is performed. The anti-symmetry of the vy matrices is the reason that
the expression for 7/ is not proportional to the AgAj + A;. A} combination. The
polarisation response functions are

= Y] [m1, m]2(AcAfy + ArLA})
+  Z][my, ma, m)2(¢* + mi —m3)
x (Ao [¢% — (my — m2)?] + A1 A} [¢* — (m1 +m2)?])
+  Z7] [m1,ma, 11]8(q +m3 —m3) (Ao AG + ArA})
—  ZJ [my,ma, p1]8(Aodl + AL A})
+ my e ma, o p. (B4)

B.4 Loop: Ghost—-Ghost

Diagram: VVVY VVV\

Vertex1: Aspy

-1
Propagatorl: - {p"z - Elz)(ml)]

Propagator?2: - [p“'2 - Ef,, (m2)]
Vertex2:  Ajp,.

The polarisation response functions are given by

- .AgAé{—Z,fp[ml, ma, p1)(q® + m3 — m3)
_Zi;]p{m27 mi, y’l](q2 + mg - m%)

+2ijq[m1,m2,u1]}. (B5)
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B.5 Loop: Higgs—Higgs

—

Ve

/
Diagram: \/\/\/\/\\

N

—

Vertexl:  As(p+p'),
[ - B3 ()]

-1
[p012 — E2 ’ (mg)]
Vertex2: AP’ +p)-

-1
Propagatorl: —

Propagator2:

The polarisation response functions are given by

v = A {42 1 ma, (@ + md - md)
—4Z3 [mq, ma, ]
+Zgglma, ma, ] (® + m - m3) }

+ my e mg, u1 & ps.

B.6 Loop: Gauge—Higgs

Diagram:

Vertexl:  Asg,,
Vertex2: ALgun.

A

/

805

(B6)

The polarisation response function for this diagram consists of 2 parts, corre-
sponding to the possible combinations of the gauge boson propagator and Higgs

sector propagator. The first combination of propagators is

-1
Propagatori: (g,\p - p;f;) [PO2 - Ef)(ml)]
1

-1
Propagator2: - [p°/2 - EIQ), (mg)] .
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The polarisation response functions for this part are

/
J As Ag
2

o= o {"Z;[mlym%#l]m%(qQ +m} —m3)

+Zpp[m1, ma, pa)(g® +mi —m3)

—Z;/[ma, ma, pami(q? + m3 — mi)

+Zpp[ma, ma, p2)(¢® +m3 —m3)

- {qu[mmmhm]?

+ 25, [ma, m1, p2)(¢? +m3 — m%)} (B7)
The second combination of propagators is

. P)Pp [ 02 2 (pd ]*1
P torl: —r — E;(¢&
ropagator [P B(E7m)

, -1
Propagator2: - [p" 2 Ef,,(mz)] .

The polarisation response functions for this part are

As AL 1
o= - ;ﬁs {Z{s’p[ﬁzmh ma, p)(q® + €m} — m3)
+Z7 [ma, €2my, p2](q* + m3 — Em3)
—Z;) [ma, €8 my, o]
1
23, [, € ma, i) (g + md — gm?) | (BS)

The total expression for 77/ is the sum of the two parts.

B.7 Loop: Gauge—Gauge

Diagram:

Vertex1: 'A2 [(_pl - p)pgka + (p - ql)agp)\ + (q/ + p,)/\gau]
Vertex2: Ay (0 + 9)p9us + (P — @)pgpv + (=P" = P)ugpol -
The polarisation response function for this diagram consists of 4 parts, corre-

sponding to the possible combinations of the gauge boson propagators. The first
combination of propagators is

-1
Propagatorl: (gx,, - p%?) [P°2 - Ef)(m1)]
1
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Propagator2: (gaﬂ - p:;ff) [LDO,2 - EIQ)' (mz)] )
2

The polarisation response functions for this part are

Ay AL

= m%mé Y/ [my, pa](m3 — ¢*)m}
_Z;]][mlv ma, Nl](m% + mg)(q2 + m% - mg)

X [q2 — (m1 + m2)2] [42 - (m1 — mz)g}
_Yz;;[mla :u'l]m%
+Z];Ip[ml» ma, ,ul](q2 + m% - m%)

X [m‘{ + 10m3m32 + m3 — 2m2¢® — 2m2¢® + q4]
+Z1;]q [m1, ma, p1][m} — 10m3m2 — 3m3 + 4m2q® — q*]
+Y 0 [ma, ] 3 (q% + m? — m3)

+Z(}]q[m17 ma, ] (g +m3 —m3)
X [q4 — Tmi 4 6m2q® + mi(m2 — 14m? — 2q2)] }
+  my & ma, uy &> po. (B9)

The second combination of propagators is

-1
Propagatorl: (gxp - p;f;,;) [p“z - Ef)(ml)]
1

PaPB [ o2 1 -1
Propagator2: ;—f [pO' — EIZ), €3 fmg)]
2

The polarisation response functions for this part are

T

A A .
DS g { 23 lms, €bma, (@2 — m3)Pm (¢ + md — €m3)
1772
1
—Z[ma, €2 ma, p1)(q? — m2)%(¢? + m? — €m3)
1
+Z,[ma, €ma, u1)(q® — m3)(g® + m? — €m3)
=Y, [my, 1] 2 (4 + m? — ¢m2)
1
—Z7 [m1, E¥ma, p1] H(g® + m2 — em3)
x [q4 — Tmi + 6miq® + Em3(ém3 — 2m] — 2q2)]
1
+Y, (€2 ma, po)(q® — €mE — m2)m?
1
+Z;,I [€2ma, my, pa)(q® — m2)2m2 (g% + Em3 — m3)

1
+Y, ) [€2ma, po]m?
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1

2, [Ema,ma, pa)(a® = m})(¢” + &m3 — m?)

1
+Z,[63ma, ma, pa) (@ — mi)(¢® + €m3 — 3m])

1
~Yl€¥me, ual§(a® +&m3 —m)
“Zqu[f%mm my, pa] L (q* + Em3 —m})

X [q4 +m} —2mig® + Em2(em2 — 6m? + 2q2)] }
(B10)

The third combination of propagators is

. DrPp [ 02 2 ot ]_1
P torl: —£ - E5 (&
ropagator m3 P p(§2m1)

PaPy 2 -1
Propagator2: (gaﬁ - :nf) [pO' - Ef,,(mz)] .
2

The polarisation response functions for this part are

Az Al 1
J 2 1
3 = mgm% {Y;J[€2m1? p1)(g® — €m? — m3)m3

+2] [€ma, ma, (@ — m3)*m(¢® + Em? —m3)
+Y (e my, pa)m3

—Z] [ m1, ma, pn)(g® — m3)2(q? + €md — m3)

+ 27 [ my, mo, ] (¢? — m3) (g + €m3 — 3m3)
—Y, [ my, ] 3 (q? + Em? — m3)

- (,Jq[ﬁ'%ml,mz,ﬂl]i(f +ém? — m3)

x[g* + m4 — 2m3q? + Emi(em? — 6m3 + 2%)|
+2] [ma, £m, pa)(q* — m3)*m3(q® +m3 — €m3)
—Z] [ma, €8my, p2)(¢® — m3)?(g* + m3 — ém})

+ 77 [ma, €5 my, pa)(¢® — m3) (g + m§ — ém)
~Y,)[ma, 2] 3 (g% + m3 — Em3)

1
_Z:]Iq[m2v £§ml) “2]%(‘12 + mg - gm%)
ot~ omie + em(em —amd - 22

(B11)

The fourth combination of propagators is

-1
Propagatorl: % [p"2 — E%(S%ml)]
1
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!/ N
papﬂ [pol 2 2

P tor2:
ropagator w3

The polarisation response functions for this part are

A AL 1 1
ﬂ.‘{ = mgm% {ng[gémlygém%/‘l]q‘l(qz +£m% —Emg)
“qu[gémlygém% Nl]q2(q2 + {m% — §m§)
1
Y, [63my, )5 (% + Em] — Em3)
1 1
+Z7 1€my, €2ma, u1) 3 (g% + em? — gmg)s}

+ my e mg, u1 & po.

The total expression for 77 is the sum of the four parts.

B.8 Balloon: Higgs—Higgs

Diagram: T

Propagatorl: - [p°2 - Ef,(ml)]
Vertex1:(p’ — 0) B
Propagator2:(p’ — 0) 1/m%
Vertex2:(p’ — 0) Asgu-

The polarisation response functions are given by

J 82 A5
T = 3
H

}/_(]J [mh :u'l]

809

(B12)

(B13)
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B.9 Balloon: Higgs—Fermion

Diagram:
|

AVAVAVAVAVAVA

-1
Propagatorl: - (p +my) [P02 - E%)(ml)]

Vertex1:(p' — 0)  Bol + Bivs
Propagator2:(p’ — 0) 1/m%
Vertex2:(p’ — 0) Asgu

The polarisation response functions are given by

By A
7'("] =4 OzslegJ[ml,,ul]. (B14)
my
B.10 Balloon: Higgs—Ghost
Diagram: T
|
02 2 -1
Propagatorl: — [p — Ep(ml)]

Vertex1:(p’ — 0) Bs¢
Propagator2:(p’ — 0)  1/m%
Vertex2:(p’ — 0) Asguu-

The polarisation response functions are given by

J_ _ BsAs

[ —

? &Y [ma, - (B15)
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B.11 Balloon: Higgs—Gauge

Diagram:
|

=1
Propagatorl: <g)\,, - p;gp ) [p°2 - Ef,(ml)]
1

DADp [ 02 E2 % ]—1

+'m% p p(& ml)
Vertex1:(p’ — 0) 597p

Propagator2:(p’ — 0) 1/m%

Vertex2:(p’ — 0) Asguu-
The polarisation response functions are given by

ﬂ'J A

At 1
= 2 (3% lms, ] &Y (ehma, ]} (B16)
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