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Abstract

Modification of the long-range forces between atoms by laser light has been considered
by Thirunamachandran (1980). More recently, Grossel and van Labeke (1994) treated the
modified interaction between a conducting surface and an atom. In the present paper
we establish the formulas for laser-modified Casimir forces between neutral atoms using a
semiclassical formalism. These forces appear as a result of interaction of atomic dipoles with
the background vacuum, in which spectral density is modified by the laser field. In particular,
the interaction potential between two neutral atoms displays non-monotonic behaviour in an
external field for certain polarisations. The averaging of this result over the mutual position
of the atoms coincides with Thirunamachandran’s result for the laser-modified Casimir forces.
We give estimates for the value of this interaction, which may dominate the Casimir force
for distances comparable to the wavelength. The validity of the semi-classical method is
proven by comparison with the results of second-order perturbation theory. Furthermore,
the method is used to calculate the external field modification of dispersive forces between a
magnetically polarisable body and an electrically polarisable one and a chiral system coupled
to both electric and magnetic fields.

1. Introduction

Several effects of cavity QED are well known and have been studied in recent
years: modification of the spontaneous emission rate by an external cavity
(Dehmelt 1975; Haroche and Raimond 1985; Gallas et al. 1985), collapse and
revival in two-level systems (Narozhny et al. 1981; Rempe et al. 1987), and
Casimir forces between atoms and surfaces (Hinds 1991). The effect which will
be studied in this paper can be also addressed in a similar way, because it
arises from the different spectral density of photons in an external field and in
free space. A laser field acting on atoms is scattered by them. Because the
spectral density of photons in a laser field is much greater than the quantum
noise induced by zero-point fluctuations, a laser-induced interaction of the dipole
moments can under certain conditions dominate the interaction of the dipoles
induced by the scattering of the quantum noise, i.e. conventional dispersion forces.
The wavelength of the laser field introduces a new linear scale in the problem
of intermolecular interaction. Typically, the wavelength of laser radiation is four
magnitudes higher than the characteristic linear dimension of atomic systems.
The effects of retardation will be manifest at a distance comparable to the laser
wavelength, so that the near-zone fields as well as the far-zone should be included
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in the formula for the dipole radiation, since the laser-induced effects will always
occur in the region where long-range forces have already changed a van der Waals
dependence into a Casimir form (this crossover happens at distances around
27-137-a9, where ag is the Bohr radius).

The classical period of development of the theory of dispersive forces has
been reviewed, and more recently the formulation of dispersive forces within
quantum electrodynamics has been developed (Andrews and Thirunamachandran
1978; Mahanty and Ninham 1986; Craig and Thirunamachandran 1984; Meath
and Power 1989). This allows a deeper understanding of the origins of dispersive
forces, as well as their connection with other phenomena, such as the Lamb shift
(Milonni and Shih 1992).

In the present paper we provide a quantitative deduction of the laws governing
long-range forces for the cases of electrically and magnetically polarised bodies,
for the single-mode laser field of linear, circular and general elliptic polarisations,
as well as for isotropic radiation. These expressions for the forces can be
deduced from the laws of classical electrodynamics governing the propagation of
dipole radiation, or from a second-order perturbation theory based on quantum
electrodynamics. In the first case, the only quantum concept which enters into
consideration is that each mode has intrinsic quantum noise with intensity equal
to % quanta per mode. If we do not want to reproduce crossover between
laser-induced forces and the dispersion forces in the Casimir regime we can
disregard the quantum nature of the entire problem! This result is even more
surprising, because to obtain an expression for the shorter-range London force
we seemingly need the energy of zero-point fluctuations as well (Born 1962).

2. Long-range Forces for the Single Polarised Mode and Static Atoms

Following Milonni and Shih (1992, see equations 9 and 76), we write the field
acting on atom A in the form

Er(x4,t) = Eor(x4,t) + Epr(xa4,t), (1)

where Eqj is a source electric field in the mode k (laser field plus vacuum
fluctuations), while Ep  is the field scattered by atom B. The interaction energy
between two atoms is given by the usual expression for the energy of interaction
between induced dipoles

Wap = — 3(Zxaa(wr)(Eok(xa,t) . Ep(xa,t))

+ ap(wk)(Eok(x8,t) - Eak(xB,1))), (2)

where the indices A, B refer to the scattered field at the position of a given atom
by the atoms B and A respectively and a4 p(w) are the respective dynamical
polarisabilities. The scattered fields F 4, and Epj can be expressed in terms
of the induced dipole by well-known formulas (Jackson 1975), which involves
separation of the fields Eg, E into positive-frequency and negative-frequency parts

E=E® + E(—),

1 . » k2 ) r
E(B-':I)c = ,,‘_3(1 —ikr) |3(uBSS — pup) + 7(8 X up X s)]pB <t — Z)’
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o1 ) » k% . T
Ej) = 5 (L+ikr) [3(szs — uB) + —(8 x pup X s):l pB (t - Z)’ (3)

where 7 =| x4 —Xp | and § is a unit vector pointing from atom B to atom
A. Similar expressions can be immediately written for the scattered field at the
location of the atom B as well. The induced dipole moment can be expressed
through polarisability as

uBpp(t —r/c) = Trap(wk) <Egj}c)(x;3,t —r/e)+ E(()’_k) (xp,t — r/c)) . @

If we then express the electromagnetic field in the second-quantised form:

1
. 27rhwk 2 ) -~ . e
Eor = Z( [ak)\e zwktezk xe*k,\ _ aTk)\e""’“te ik xek)\] (5)

and insert this expression into equations (2)—(4) we obtain

2
Wap ~ — WRCEkz\aA(Wk)aB(wk)

X [3|ek)\-§|2 — l]hwk(l —ikr) [nk)\e—ikr + (nk,\ + 1)6“”] cos(k-r)

+ (kr)?[1 — |exa8| 2 hwk [ricae ™" + (i + 1)e™*7] cos(ker) (6)

where niy is the expectation value for the photon number in the mode with
wavevector k and polarisation A and cos(k - r) reflects the overall symmetry
between A and B. For the large population numbers typical of a laser field, one
can omit unity in the square brackets of equation (6).

The far-field terms in (3), proportional to r~2 (induction-zone term), 7~
(wave-zone term) are also necessary to obtain the Casimir result for the interatomic
potential in a vacuum without the laser field; in short, all terms are required to
get the right answer. It is instructive to introduce explicitly the mean square of
the field strength Exn2 = (4mhwy /V) (nkx + %) for a given mode. The formula
(6) can then be rewritten in the following form which clearly demonstrates the
origin of the Casimir forces:

1

cx(wk)a(wk)Ek)\2
2

Wap ~ —Zi F(r, 0, ¢x), (7)

where 0y, ¢k are the polar and azimutal angles of the vector k in a coordinate
system where vector § is taken as the direction of the z axis. For a single mode
of the laser field we have

B aA(wk)aB(wk)Ekf 3sin®fsin®p —1
2 r

Wap =

1 —sin?@sin?

x [cos(kr) + krsin(kr)] — cos(kr)| cos(krcosf). (8)
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For a laser frequency well below the difference between the ground and the
first excited state it is a good approximation to use the static polarisabilities
a4(0) and ap(0) in (8). A discussion of this approximation is given in Section 3.

The result for a circularly polarised field is readily obtained from the previous
one. For circularly polarised light we have

el/R=2712g £, (9)

and

aA(O)aB(O)Ek,\z

Wag = —
AB 9

[T LI ———

2 2
- w cos(kr)| cos(kr cos 9). (10)
This formula coincides with that for the directional average of the relative position
of the vector of interatomic separation in the case of linear polarisation. Indeed,
for circular polarisation, the field defines only one spatial direction—the direction
of the wavevector. Averaging over ¢ corresponds to averaging over all directions
orthogonal to k.

3. Estimates for the Laser-mediated Dispersion Forces

The interaction energy, which is given by the expression (8), is not monotonic
for all angles 6,¢. As the term contributing to energy of order 7~ vanishes
after averaging over all possible mutual positions, recovering the usual r—%or r=7
asymptotics of the van der Waals-Casimir effect, it suggests that the angular
distribution of the function F(kr,#, ) should have ‘lobes’ with negative values of
the interaction potential (attraction), almost compensated by other regions with
a positive value for this interaction (repulsion). This lobed structure is portrayed
in Fig. 1 for a particular ¢. Similar profiles for circular polarisation (or for linear
polarisation after summation over ¢) are given in Fig. 2. The overall pattern
is very similar with the exclusion of the central lobe. Fig. 3 demonstrates that
the change in ¢ provides relatively little qualitative difference on a large scale,
while the central lobe of the potential surface is reconstructed completely by a
change of . There are regions, in which the field-modified interaction potential
behaves in a non-monotonic fashion. This behaviour is illustrated in Fig. 4 for
fixed 6 values of the polarisation angle and in Fig. 5 for a fixed kr.

Consideration of the field-modified potential has most relevance if the laser-
induced dispersion forces sometimes dominate the Casimir forces. To estimate the
effect, one should first evaluate characteristic lengths of the problem. The smallest
is the atomic diameter, which for the most atoms, is close to the Bohr radius
ag. The crossover between van der Waals and Casimir regimes is encountered
at typical distances of 27 x 137ag, since the velocity of light, which defines the
occurrence of retardation effects is 137 in atomic units (Berestetskii et al. 1982).
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Fig. 1. Dimensionless energy of interaction F(r, 8, #) (in units of 0-5aaap k3 E?, see equation
7). This function is plotted for F = F(z=kr cos 0, y=krsin 6, p=3m/8) for linear polarisation
of the laser light.

Fig. 2. Dimensionless energy F = F(x=kr cos,y=krsinf) for circular polarisation. In this
case F' is independent of ¢.
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Figs 3a and 3b.
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_4.'

Fig. 3 Reconstruction of a central cell with a change in direction of laser polarisation with
respect to the azimuth angle ¢ between k, the direction of the wavevector and s, the vector
of interatomic separation: (a) ¢ = 7/8; (b) ¢ = 7/4; and (c) ¢ = 37/8; same as in Fig. 1.

This typical length is half the wavelength of the transition from the ground state
47 x 137ag = 1243 A, since this is the smallest discrete wavelength emitted by
a valence electron. The wavelength should be larger than this value. The use
of short-wavelength radiation for the testing of this effect cannot be justified,
because it would cause one-photon ionisation of atoms into the continuum. This
means that the laser wavelength is the largest linear scale in this problem:
ap K 41 x 137ap < 2mc/wy,. As follows from (6) the real small parameter of
the problem is, thus, wyr/c and the expression for the laser-modified force is
the power of this parameter times the London force. This does not mean that
the effect cannot be large, in comparison with the Casimir forces, because this
parameter can be offset by large population numbers for quanta in the laser
modes and a slower law of fall off of the interaction energy with distance (r—3
instead of r=7).

Estimates for the ratio of the laser-modified force and the usual, vacuum-induced
contribution easily follows from (6):

(Casimir regime) : I}Vlatser/vvvacuum ~ Ez(kr)nr4/0ha

(van der Waals regime) : Wiaser/ Weacuum ~ E2(kr)"r3/Ey

where Ej is the energy of the ground state and n is either 0 or 2, in the case
of the ordered or spatially-averaged position of atomic dipoles (see Section 4).
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Fig. 4. Dependence of the dimensionless energy on angle ¢

for a fixed distance and fixed 8. Values chosen are at kr = 10-0
and 0 = 37/8 for case A (purely electric).
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Fig. 5. Dependence of the dimensionless energy F(kr,0=mn/4,p=2m x 0-085)
on distance for fixed 6 and ¢.

For the van der Waals regime a typical value of kr is around 10~2 and the
necessary laser fields in the case of isotropic radiation to overcome the usual van
der Waals forces are of magnitude 102 —10'* Wem™2 and they necessarily will
cause ionisation. This example shows how strong the vacuum fluctuation forces
are: because the typical frequencies of electromagnetic quanta which transmit
van der Waals interaction are ~c/r and the radiation depends on the third
power of the frequency, one needs large real fields with population numbers of
order 10%° in the Fourier-limited gigawatt-range nanosecond pulse to counter this
conventional dispersion force with a typical 1 photon per mode! Unlike real
fields of high frequency which immediately result in photoionisation, zero-point
fluctuations, by definition, cannot cause real transitions. Yet, in the case of
dipoles with positions ordered with respect to the wavevector of the radiation,
the critical intensity for which van der Waals and laser-field forces become equal
is 108 — 10°W cm™2 (the population numbers are still enormous: ~10'® under
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the same conditions). This is quite practical to allow an experiment without
substantial ionisation. In the Casimir regime the picture is somewhat more
optimistic. One can provide (kr) ~0-1 —1 and fields of intensity 10*W cm™2
would be sufficient to overcome the influence of fluctuation forces. The problem
is that at those distances, of the order of 10® atomic units, both the laser-induced
and fluctuation-induced long-range forces between single atoms are extremely
small and provide no possibility of direct experimental observation. Nevertheless,
in the large samples of interacting particles in the modern laser traps, these
effects could be, in principle, within the practical limits of verification. However,
as with the case of Casimir forces (Hinds 1991), the most hopeful possibility for
the discovery of these forces appears not in the interactions between atoms, but
in the interaction between atoms and solid bodies or between solid bodies.

4. Reproduction of the Casimir Law and the Case of Isotropic Radiation

Our starting point in this section will be expression (2) which is valid for the
multimode case and arbitrary polarisations of the field. However, if the laser
field is unpolarised we can sum over all directions of polarisation of the laser

field. For this purpose one can make an angular integration over the angle ¢ of
the laser field

Ta(Ble-d|2 — 1) = 3(8;; — kik;)3:8, —2=1—3(k-8)?, (11)
where k is a unit vector in the direction of the wavevector and similarly
Sa(1~les’) = —(1 + (k8)?). (12)

In the convention for angles described in Section 2 the product (f<§) is just
cosf and we obtain the formula (8), previously introduced for the field with
a circular polarisation. This is quite understandable, since the average of all
linear polarisations with given intensity is characterised only by the direction of
the wavevector, as is a circularly polarised field. This is untrue, for instance,
in the case of arbitrary elliptic polarisation, since there is another quantity of
importance: the direction of the main axis of the polarisation ellipsis.

The simple limiting case immediately follows from equation (8). Namely,
suppose that kr < 1. Then (8) reduces to

Wap = —E2E8 (1 — 3c0s26) , (13)
T

where pa B = a4 (0)Eg are the induced dipole moments of the atoms. In this
case we recover the dipole-dipole interaction, precisely what is expected in the
near zone.

The averaging of equation (8) over all respective directions between the
wavevector of the field and the atomic separation, assuming the occupation
of modes is independent of wavevector k, with subsequent summation over all
frequencies can be easily performed to give the following expression for the
interaction energy (see equation 6):



858 P. B. Lerner

Wap = — 3—hﬁ ~ dwas(w)ap(w)(2n(w) + 1) sin(2wr/c)
™ 0

+

;Zs /O " dw wag(w)ap(w)(2n(w) + 1) cos(2wr/c)

5h
mcrd

2h
ncr®

__h

7!'047‘2

/00 dw w?aa(w)ap(w)(2n(w) + 1) sin(2wr /c)

0

/oo dw wia(w)ap(w)(2n(w) + 1) cos(2wr/c)
0

/00 dw was(w)ap(w)(2n(w) + 1) sin(2wr/c) . (14)
0

In this formula we restore the w-dependence of atomic polarisability for generality,
though unlike the usual van der Waals effect, laser-modified forces are basically
influenced by static polarisability of the ground state. If one puts the population
density of modes n(w) equal to zero, this formula obviously reproduces the usual
Casimir formula. This can be demonstrated by replacement of the integration
contour by turning it through 90° in the complex plane and then simple
regularisation: 7 — r—40. If one separates the contribution of the vacuum
fluctuations (which have small population number, but are distributed with
spectral density 1 in all frequencies) and the extremely intense, but spectrally
localised laser-induced contributions,

Wap =Wapw+WaB,L, (15)

one can consider again that the field in Wyup 1 is quasi-monochromatic. In
the region 27 x 137ag = Aq¢ < r < A where one can expect observation of the
Casimir forces (since for distances larger than 10* atomic units, typical for laser
wavelengths, the Casimir energies are smaller than 107%°eV), the oscillatory
factors in equation (14) can be expanded in a Taylor series providing the original
result of Thirunamachandran (1980):

4
WaB,L = —-—W'honOZA(O)aB(O) ) (16)

where n,,, is the spectral density of the photon field defined by n(w) = 1, (w—wp).
One sees that this 7~ law has nothing in common with the usual r~7 power law
for Casimir forces. If one considers, as earlier, (wr/c) to be a small parameter
(this assumption we have already made in the deduction of equation 13), equation
(16) arises in fifth order of perturbation over this small parameter. This is very
unusual and happens only because a high symmetry of the problem for isotropic
radiation leads to cancellation of all lower orders. We refer to Section 2 for the
opposite case of single-mode radiation. Also, we note that because of the high
order of expansion of the oscillatory terms, the Thirunamachandran formula is
expected to work well up to the distances kr ~ 1 with an accuracy not worse
than parts of a per cent (this is the accuracy of the power expansion up to
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the third term of sine and cosine). Because of the ‘Coulomb’ nature of the law
equation (16), one is tempted to compare this force with gravity between atoms.
A comparison of the gravitational force between two Rb atoms and the force
induced by a 1 mW CO; laser sees the laser-modified Casimir forces dominate by
eight orders of magnitude. This estimate presents a strong caution against the
interpretation of any forces observed in precision experiments as a modification of
gravitational interaction, until all laser modifications of intramolecular dispersive
forces are ruled out.

5. Laser-modified Long-range Forces between Magnetisable Bodies

If one of the particles has a magnetic polarisability, the fluctuation forces will
induce long-range magnetic interaction. The magnetic forces are a priori weaker
than the electric forces, since they appear in some power of the small factor
& = vgt/c. There are few possibilities for the Hamiltonian of such an interaction
(compare with the classification of field-induced optical activity in Baranova et
al. 1977). In the dipole approximation, there are two forms for the interaction
Hamiltonian, quadratic in applied fields E and B:

(scalar coupling constant) :

W, = aE-E—I—uB-B’
2
(pseudo-scalar coupling constant) :
Wy= —2(B-Bla+(E-B)s).  (17)

The scalar constant has approximate order €2 ~ 10~* with respect to the electric
field-induced effects, since this effect appears in the same order in ¢~! as atomic
diamagnetism. The last remark suggests that this effects always appears, for
every atom.

The pseudo-scalar coupling manifests itself only with atoms and molecules,
having permanent magnetic moment. The pseudo-scalar coupling constant has
order pgHo/Eo, where Hy and Ej are atomic values for the magnetic field and
energy. The comparison with the electric-field-induced effects provides the ratio
€* = \./ap ~ 1073, where ). is the Compton length for the electron and ap is
the Bohr radius, for their respective strength. This means that for molecules
with intrinsic chirality the pseudo-scalar coupling dominates the scalar one.

Let us start with the somewhat more transparent case of the scalar coupling
constant and long-range force arising between two polarisable bodies: one with
electric and the other with magnetic polarisation. Of course, all combinations are
possible, but they will be in the next order in £. We suppose that the induced
magnetic and dipole moments are related to the corresponding field through

m = uB, p=caE. (18)
The formulas for electric field radiation by the induced magnetic moment

and magnetic induction radiation by induced electric dipole are given in
Thirunamachandran (1980):
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E = —k%(s x m) " (1 - i), B = k(s x p)° (1 - ,L) . (19)

r ikr T ikr

The mutual interaction energy (which in first order in magnetic polarisability is
additive to attraction of electric dipoles) is provided by the expression

kZ ikr 1
W = — 2 (s (Bg0 xBpo) +5- (Bao X EB,O))Re{ £ (1 - —)}
2 r ikr
2 .
= - Amauk’S (cos(kr) + sm(lcr)) sin(kr cos 0) cos(8), (20)
"

where the index 0 refers to the strength of the source field and S is the absolute
value of the field’s Poynting vector.

Note that in this case the answer is independent of polarisation, whether it
is circular or linear. This is true in the general case of elliptic polarisation (see
Section 6). In the case of magnetically polarisable bodies, unlike the case of
electric dipoles, the 1/r dependence appears without integration over position
angles and asymptotic expansion. Indeed, fluctuations of the magnetic field
fall off much slower than the fluctuations of the electric field, though they are
suppressed by a £* factor (Passante and Power 1987). We give a picture of the
energy surface in Fig. 6.

il

-4

-‘4 -2 0 2 4

Fig. 6. Energy portrait for the case of magnetic polarisation and scalar interaction (case B
in the text). The singularity for » = 0 is absent (see equation 20).
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We recall that the case of a pseudo-scalar coupling constant (in Section 6 we
shall cite the purely electric case as case A, the scalar magnetic case as B, and
the pseudoscalar coupling case as C) or, equivalently, the intrinsic chirality of
a molecule is supposed to produce stronger magnetic-related effects, though for
most atoms this effect is identically zero. Now we approach a demonstration
of the modification of the laws governing long-range forces in this last case.
Since magnetic and electric fields enter symmetrically in the Hamiltonian we can
consider this force as a result of an electric field scattered by an electric dipole
induced by a magnetic field or, vice versa, a magnetic field scattered by an
electrically induced magnetic moment. Note that the contribution of the source
field for all transverse EM waves is identically zero, because of the scalar product
(E-B).

We shall adopt the first choice, i.e. calculate the effect by considering that
the source field induces the magnetic moment (Lifschitz and Pitaevskii 1986):

p=¢B, (21)

which then acts as a scatterer of electric fields according to equations (3). For
simplicity we consider the case of linear polarisation, with vector b = e x e*
having a constant direction in space. The electric field produced by the magnetic
field-induced electric dipole is thus

Fig. 7. Energy portrait for pseudo-scalar coupling (case C in the text) and angle ¢ = 37/8.
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2
EG) =21 - ikr) [3(b§§ —b)+ k—(s x b x é)] Bo(xa,t —1/c),
’ T

2

ESB_,)c = %(1 + ikr) [3(b§§ —b) + -k?(é x b x é)] Bo(xa,t —r/c), (22)
’ T

where By is the amplitude of the source magnetic field. We obtain for the energy
of the electric dipole induced by the source magnetic field

2
wh = — m);gS sin? O(sin? ¢ — cos? ) cos(kr cos 8)
r

X [3(cos(kr) + krsin(kr)) — (kr)? cos(kr)] . (23)

The general expression for elliptic polarisation will be given in the next section.
Note that if we start from the induced magnetic moment

m = gE, (24)

we come to precisely the same formula as a result of the magnetic-dipole emission
formula (Thirunamachandran 1980).

Also worth mentioning is the fact that Planck’s constant does not enter
explicitly either equations (8) and (10), (20) or (23). This can be considered as a
demonstration of the classical nature of the effect, in spite of the fact that we can
demonstrate crossover to the Casimir case! The appearance of Planck’s constant
in the Casimir law can be attributed to the quantisation of the electromagnetic
field in the mode and then setting the energy density of the field equal to the
energy density of zero-point fluctuations equation (14). The quantum nature of
the Casimir effect can be thus ascribed to the explicit extraction of a discrete
number of photons due to the ‘one photon per mode’ law for the quantum noise
(Louisell 1964). This occurrence of h only through explicit introduction of the
photon number, ‘granularity of the photon field’” (Cummings 1965) is typical of
cavity quantum electrodynamics. The energy surface in this case is shown in
Fig. 7.

6. Deduction of Laser-modified Long-range Forces by Explicit
Perturbation-theory Method

In Sections 2-4 we provided an illustrative example of how the induced dipole
moment produces long-range forces between atoms. Now we shall deduce these
formulas out of second-order perturbation techniques.

The interaction of the spherical molecules in external field can be described by two
diagrams (see Figs 8a and 8b) using the methods of Craig and Thirunamachandran
1984). The interaction Hamiltonian is the usual electrostatic Hamiltonian

Hiny = —1a(A4)D*(R4) — 3a(B)D*(Rp), (25)

where D(R) is the electric polarisation vector at the point R. The effect appears
in second order perturbation theory, because the first-order perturbation provides
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(a) (b)
k
P k
p
k
k \,LL
() (d)
Fig. 8. Diagrams contributing to the dispersive forces (adapted from Craig and Thiruna-
machandran 1984), owing its origin to the interaction Hamiltonians H{™* = —%aDz and
Hipt = —-é—xFG {equation 26 in the text). Straight lines correspond to atoms and the wavy

lines to photons.

only for the processes with real excitation of atoms, which we try to avoid. For
the magnetisable bodies these two diagrams are not enough. The contribution
of all diagrams in Fig. 8 should be included our treatment. The form of the
Hamiltonian would then more general with field operators F and G, representing
any of the functions D and B:

Hint = —30(A)D? — ix(B)F -G = H; + Hy; . (26)
The correction to the ground-state energy of atoms is given by the expression
1 —
i|Hrr|1) ————— (1| Hyé i|Hr|2) ———(2|H1l3
(1|Hir] >hck——hcp< |Hrli) + (i| H| >hck+hcp< |H1li)
1 —
i|Hy|3) ———— (3| Hypli i|Hrr|4) ————(4|H i), 27
+(i|H| >hck-—hcp< |Hrrlé) + (il Hi] >hck+hcp< |Hrld) (27)

where [1), |2),(3), |4) are the wavefunctions describing absorption and emission of
the photon with wavevector p by the atoms, such as the first atom emits the photon
and the second one absorbs or, vice versa, respectively for |1),|3)and|2), |4).
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We adapt the conventional expression for electric induction vectors F and G
(compare equation 5):

(2w \ 2 .y o
F= ’I,( - k) [f]:)\ak/\e—zwktezk'x _ fk)\atk)\ezwkte—zk-x] ,

orhawy ) 2 .y o
G = l( ﬂ'Vwk) [g;}\ak)\e—-zwktezkx _ gkxai)‘ezwkte—zkx] ) (28)

The matrix elements of the interaction Hamiltonian Hj are given by

) onck\ ¥ [ 2mep )
L e e L a1

R omek\ ¥ 2mwep 3 i(p+k)-R 1
(ID*(R)2) =2( = ) eeike P (e +1)7,

. 27rck%27rcp% v i(o—K)-
a0 =255 (B2 eweic ™ ™nt,

! ; |
DR =252 ) (B2 eieie ™ Rt D1,

and matrix elements of the Hamiltonian Hjj are given by

. 2mwck 3 2mep 3 " « \ _—i(p—k)R,_ %
(P - Gl1) =2( = 7 ) (Bigip + fipgji)-e g s

3 )
GlE-GI2) = 2( ) (B + Eipsi) ¢ PHOR(my + 1)},

1

2m 2 —i .
cp) (fjxgjp + fipBik)-e (pt) R(nk + 1)% .

. omck\ * (2 . . (o) R}
<’L|F GI?)) :2( ) < Cp) (f]kgjp"rf]pg]k)e (p—k) Rnliv

(G|F - Gl4) = 2(

We now assume the polarisation vector for the general elliptic polarisation of the
laser field to be in the form

el = ei"‘/2cos§el' + e_i“/zsing-eR, (29)

where el ef are the polarisation vectors for right- and left-circularly polarised
light respectively. The substitution of these matrix elements into expression (26)
for the energy gives us the formula (following Thirunamachandram we suppose
n > 1 for the only mode we are interested in)
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¢i(P—k)-(Ra—Rp)
X [(ffkgjp + fjpg§k)eikei‘pm
e~ i(P+k)-(RA—Rp)
+ (Eigjp + fipgin)ejpejn—sr o~ hiep
¢—i(P—k):(Ra—Rp)
+ (Fx&jp + fipgik)ejpei hok —hep

+ (f;kg;p + fjpgjk)e;pe;k (30)

et (P+k)-(Ra—Rp)
— heck — hep }

Summation over all values of the momentum transfer is accomplished through
the formula (here r = R4 — Rp|)

27p . . [ePR PR cos(kr)
Zp 2L (615 — - ) [k - feinesn = (v, + vy
2rp , [ePR PR cos(kr)
Ep—véijkpk [m + m €;p€jp = —keijkvk " . (32)
Straightforward differentiation leads to the formula
k
Vij = — (V26 + Vivj)cos( r)
cos(kr k cos(kr k2 cos(kr
= Bij (3 ) + Bij 2( ) — Qg (kr) ) (33)
r T r
where
ﬁ,’j = (5,']' - 3§, . §j, aij = 5ij - §z . §j . (34)

To convert the expressions for the angular part into a more conventional form it
is useful to introduce the following notation :

*

*
eiejéij = 1, e,-ej

AA — % A
85, =E, ei€jei sy =1,
* A A A
e;b36;5 =11, eib;fsisj = Z, eib;eijksk = cosf. (35)
The first and the last expressions are, of course, simple geometric equalities. The

factors Z, X, II, Z can be expressed through components of the electric field
and vector s as
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1
E=——{E%s2 + E252 + 2E,Eys;5y cos 6}, (36)
EZ+E: vy o
5 = j2BaBysssing (37)
E; + E,
II=1icosf, (38)
1 : .
2 = o ((BL = E})sesy — BBy (52 — s3) cosd — BBy (s + s})siné}, (39)
e T By
with 6 defined by
tand = —seca cot 3 (40)

and o, B from equation (29).
Finally, for case A, we get the expression, similar to equation (6) of the Section
2,

Wap = —a(A)a(B)E} ceie;, Vij cos(kr) . (41)

In this section we use the following geometry. Vector k is taken along the z-axis.
The angles 6 and ¢ are the polar and the azimuth vectors of § in the coordinate
system formed by a triple (e, b, k).

Straightforward, yet tedious calculations, provide the following expression for
a geometric factor:

(42)

r

coskr ksinkr _Kk?coskr
-(1- :)—T—

eejVi; = (1— 35)( 3 +—

For the cases A and B we shall write down the equation explicitly, in terms
of angles 6 and ¢. For the case C we shall restrict ourselves to the aggregate
expression through II and Z. The mutual interaction energy in the case A is
given by

Wag = — a(A)a(B) cos(krss)

coskr ksinkr
r

X {[Eﬁ + E2 — 3(33E2 + $3E7 + 28182 B, Ey cos 6)] ( S+

—[E2 + E? — (S3E2 + 83E] + 28182 E; Ey cos 0)]

2
k coskr}. (43)

Expressing the previous formula through the angles 8, ¢, we obtain for the energy
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Wap = a(A)a(B) [(Eg(l — —3sin?f cos? ¢) + Ez(l — —3sin? @ cos? §)

ink
—6E,E, cos §sin®  cos ¢ sin ¢) (COSakr + k sn; r)
r r
—(E;(1 —sin® @ cos® ¢) + Ej (1 — sin® §sin” ¢)

k2 coskr

—2E,E, cos §sin? § cos ¢ sin ¢)
r

] cos(kr cosf). (44)

If we average the previous expression over the angle ¢ the term which contains
6 will also average out to zero:

Wap = a(A)a(B) cos(kr cos §)

X [(Eﬁ(l — 3sin®0) + EZ(1 — 3 sin? 0))(coskr N ksmkr)

3 2
k2 cos k
—(E2(1 ~ Lsin?6) + E2(1 — 4 sin? o))—coﬂ] . (45)
r
Obviously, for E2 = E? (circular polarisation), we return to equation (10).

Additional averaging over the angle @ applied to the case of general elliptic
polarisation gives the same result as equation (10) with the replacement of E2
to (E2 + EZ) which is expected, i.e. in the case of a nonresonant effect with
isotropic atoms, the result should depend only on the total intensity.

For the case B the solution, similar to (20), will be

W2 = —2koax el sin(k - r)eix Vi cosk(kr) : (46)
;

In the case C the solution is given by the equation

cos(kr)

w§ = —aaxpl{kexe]y sin(k - r)e;;; Vi + exbjy cos(k - r)Vy;}, (47)

T

where V;; is defined by equation (43).
The spatial dependence in equation (47) and in the first term of equation (48)
can simplified using

cos(kr) < kcoskr cos kr)
% =cosf| — -—— ).

(48)
T T

€ik b;k €ijk Vi

The final solution for Wyp is given by adding the complex conjugate to
the expressions cited above. Thus, the solution for the general case of elliptic
polarisation can be then expressed in the form
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Case B
W ip = 20axs ficsin(kr cos ) cos(0) (kSif Ty Coffr) ’ (49)
Case C
Wip = aAXBIk{ksin(kr cos 0)% (ksi: b, co;kr)
— cos(kr cos ) [(H ~2) ﬁg}Sﬂ
_(H_3Z)<ksigkr N coj,kr)]}‘i- L .

Note, that = is real, &, II are imaginary and Z is complex, and this produces
the complex expression only in the case C.
The formula for case C for general elliptic polarisation is given by

Mo
WAB'_'—

4—7r(iA:,,—X-B—€ cos(kr cos 6)

x[3(cos(kr) + krsin(kr)) — (k?‘)2 cos(kr)]

0-5(E% — Eg) sin? @sin 2¢ — cos 6 E, E, sin” 6 cos 2¢

X
E2+E:

(51)

This concludes the derivation of the laser-modified long-range forces for arbitrary
elliptical polarisation for the most general Hamiltonian (27), quadratic in the
fields E and B, which does not depend on derivatives of the field.

We recapitulate the physical differences between our cases A, B and C. They
result from a different symmetry of interaction. Unlike the case A, both cases
B and C involve the reaction of a magnetic dipole induced by an electric field.
Because the electric field is a polar vector, while the magnetic field is an axial
one, this results in the fact that different spatial components of the field give
rise to the dispersive forces. The scalar (case B) and pseudo-scalar (case C)
character of the coupling constant (equation 17) modifies the spatial symmetry
of the interaction as well. As a result, the long-range forces obtained in cases
A, B and C all have distinct functional forms. Thus, a distinction between the
cases A, B and C bears its origin in classical electrodynamics.

7. Conclusion

In this paper we have established the quantitative laws of the laser-modified
long-range forces between neutral atoms. We pointed out that these forces can
be influenced by magnetic, as well as an electric, component of the laser field.
This effect is particularly important in the case of chiral molecules because it
represents a long-range force, which has a different impact on the chiral isomers.
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Laser-modified long-range forces can overcome conventional long-range (van der
Waals and Casimir) forces, arising from fluctuations of the electromagnetic field
of the atoms in the ground state, though under very stringent conditions. We
express hope that swift progress in obtaining ultra-cold samples of neutral particles
in traps will make feasible an experimental observation of laser modification of
long-range forces. It may manifest itself as a small additional nonlinear refraction
in the samples of the neutral, symmetric particles.
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