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Abstract

We investigate the evolution of the apparent horizon in three families of numerically generated

spacetimes: the 'black hole plus Brill wave' spacetimes of Bernstein et al., the non-time

symmetric generalisation of this by Brandt, and the Misner two black hole spacetime. Various

measures of the curvature and shape of the horizon are shown as a function of coordinate

time at infinity and it is found that the horizon oscillates at the lowest quasinormal mode

frequency of the hole. In addition, in the spacetimes with angular momentum the total

angular momentum of the final hole can be read off from the oscillations of the horizon

directly without having to extract it from the gravitational radiation emitted by the hole.

1. Introduction

The numerical relativity group at the National Center for Supercomputing

Applications has been investigating the dynamics of vacuum black hole spacetimes

with numerical techniques since the mid 1980s. These efforts have now produced

several interesting results which have recently been published (Abrahams et ale

1992; Anninos et ale 1993a, 1993b, 1993c, 1994a, 1994b; Bernstein and Tod

1994; Bernstein et ale 1992, 1994a; Seidel and Suen 1994). This paper may be

considered as a summary of several of those publications (in particular Anninos

et al. 1994a). One of the main areas of research is in the evolution of vacuum

spacetimes containing black holes. In this area the group has focused its efforts

on two families of spacetimes: the study of spacetimes containing a single hole

interacting with a gravitational wave (the black hole plus Brill wave spacetimes)

and the two black hole spacetimes whose initial data were first constructed

by Misner (1960). In addition the black hole plus Brill wave family has been

broadened by Brandt (Brandt and Seidel 1995; Anninos et ale 1994a) to include

angular momentum and so this family now contains the Kerr spacetime, the

spacetimes generated by the Bowen and York (1980) initial data, as well as
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other spacetimes describing distorted rotating holes. In this paper we discuss
the evolution of the apparent horizon in a few representative members of these
spacetimes. All of the computations are carried out in the 3+1 formalism and
some relevant information on this has been put into the Appendix. Descriptions of
numerical algorithms, code tests, etc., are contained in our other work (Abrahams
et ale 1992; Anninos et ale 1993b, 1995b; Bernstein 1993; Bernstein and Tod
1994; Bernstein et ale 1994b).

2. The Spacetimes

Each of the spacetimes we investigate contain either one or two black holes, the
number being primarily dependent on the choice of topology of the t == constant
hypersurfaces of the spacetimes. In this section we briefly describe some of the
geometrical and physical characteristics of each of the initial data sets which
generate the spacetimes.

Initial data for the black hole plus Brill wave spacetime is obtained by putting
the initial 3-metric 1ab (for notation see Appendix) in a form similar to that
studied by Brill (1959):

ds2 == '114 [e2q(d1}2 + d(2) + sin 2 Od¢2] (1)

[i.e., A == B == e2q, D == 1, and F == 0 in equation (A2)]. The function q(1},0) is
arbitrary up to boundary conditions, a fall-off rate, and a possible restriction in
magnitude (Bernstein 1993; Bernstein et al. 1994a). One obtains initial data by
specifying q and solving the Hamiltonian constraint for the conformal factor '11.
We choose the function q(l},O) to have the form

q(Tj, 0) == Qog(Tj) sinnO ,

where we use the 'inversion symmetric Gaussian'

g(~) = exp [ _ (~:~o ) 2] + exp [ _ (~ ~~o ) 2]

(2)

(3)

for the radial function g. Symmetry considerations require n to be a positive,
even integer. We have investigated spacetimes with n == 2 and n == 4; however in
this paper we consider those with n == 2 only. As discussed in the Appendix, the
initial slice has the hypercylinder topology familiar from the maximally extended
Schwarzschild solution. Thus there are two isometric, asymptotically flat 'sheets'
connected by a 'throat', a 2-sphere which because of the isometry of the two
sheets is minimal. For these initial data sets the throat is located at 7] == 0 and
the isometry is 7]~ -7].

The function 9 has three parameters which, roughly speaking, specify the
amplitude Qo, range 7]0 and width a of the wave. (We note that in other papers
related to this work the amplitude is denoted by a, but here we use Qo to
avoid confusion with the usual angular momentum parameter a that is used in
describing rotating black holes in this paper.) One regains the Schwarzschild
spacetime by setting Qo == 0, in which case the Hamiltonian constraint has the
solution
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w= ~cosh(~/2),
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(4)

where m is a length scale parameter which, in this case, is equal to the mass
of the hole (and also the ADM mass of the spacetime). Some properties of the
apparent horizon in these initial data sets are discussed in Section 3. For a more
thorough discussion the reader is referred to our earlier work (Bernstein 1993;
Bernstein and Tod 1994; Bernstein et al. 1994a).

These data sets have been generalised to include extrinsic curvature and angular
momentum by Brandt (Brandt and Seidel 1995). We transform the the Kerr
metric via

r = T+ cosh' (~/2) - r_ sinh2(~/2) ,

r±=m±vm2 - a2 ,

(5)

(6)

where a is the standard Kerr angular momentum parameter and m is the mass
of the Kerr black hole. With this transformation the spatial part of the Kerr
metric can be written as

where

ds 2 = w4[e-2qO(d~2 + d(2) + sin 2 Bd¢2] ,

w4 = g~~) / sin 2 B,

w4e-2qo = (K) (dr) 2 _ (K)
grr dn - goo ,

(7)

(8)

(9)

and g~~) is the Kerr metric in Beyer-Lindquist coordinates (see Misner et al.
1973). Notice that if the angular momentum parameter in the Beyer-Lindquist
metric vanishes then qo = 0 and we recover the Schwarzschild 3-metric.

We can now generalise the metric (8) to include a Brill wave by adding a
function q(n, B) in a manner similar to equation (1)

ds 2 = w4[e2(q- qo)(d~2 + d(2) + sin2 Bd¢2] . (10)

In this context, the parameter qo is interpreted as the Brill wave required to
make the initial slice conformally flat. By setting q = QOg(~) sin" B+ qo, where
g(Tj) is given by (3), we can add a Brill wave to these data sets in the same way
one was added to the Schwarschild spacetime above.

For these data sets we have a non-zero extrinsic curvature and in general the
Hamiltonian and momentum constraints will be coupled. A specific choice of
the conformal form of the extrinsic curvature will decouple the constraints and
under these conditions simple solutions to the momentum constraint which may
be obtained include the Bowen and York (1980) solution and the Kerr solution.

Finally, we have the two black hole initial data sets of Misner (1960). These
are a single parameter family of time symmetric data sets with 3-metric



1030

where

and

ds2 == WtJ(d p2 + dz2 + p2d¢2) ,

00 1 (1 1)-+- ,WM = 1 +L sinh(np,) +Tn - r«
n=l

±rn == Vp2 + [z ± coth(nJL)]2.

P. Anninos et al.

(11)

(12)

(13)

The topology of the initial slice is that of two asymptotically flat sheets joined
by two throats. As discussed below, if the two throats are far enough apart the
spacetime generated is that of two nonrotating equal mass black holes colliding
head-on along the z-axis.

The free parameter JL is related to the ADM mass of the spacetime

00

M==4L
n=l

and the proper distance along the spacelike geodesic connecting the throats

00 n )
L=2(1+2P,~ sinh(np,) .

(14)

(15)

Increasing JL sets the two black holes further away from one another and decreases
the total mass of the system.

Our calculations of colliding black holes are performed using the Cadez (1971)
coordinates and the metric in this set of coordinates can be written in the form
of equation (A2) as

ds2 == w4(dT/2 + d()2 + Dsin2 () d¢2) , (16)

where w4 == wtJ I J, D == J p2 I sin 2 () and J == (aT/lap)2 + (aT/Iaz)2 is the Jacobian
of the two coordinate systems.

The advantage of Cadez coordinates is that they are boundary fitted coordinates
designed to conform naturally to the spatial geometry of the two throats. They
are spherical near the throats of the holes and further out in the wave zone, thus
allowing us to handle throat boundaries and asymptotic wave form extractions
in a convenient way. Their disadvantage is a singular point introduced by
the coordinate transformation at the origin (p == z == 0). This presents certain
numerical difficulties that will not be discussed here. Instead, we refer the
interested reader to Anninos et al. (1993b, 1995b) for a thorough discussion of
our numerical methods.

3. Apparent Horizons

A compact orientable 2-surface is said to be marginally trapped if its outward
pointing null normal has zero divergence and on an asymptotically flat slice
the apparent horizon is defined to be the outermost marginally trapped surface
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(Hawking 1973; Cook and York 1990). It is well known that the apparent horizon

must lie inside of an event horizon in any spacetime not containing a naked

singularity (Hawking 1973). Unlike the event horizon, the apparent horizon may

be located on a given slice of a 3+1 foliation without computing the entire

spacetime, and in axisymmetry this makes the location of apparent horizons a

comparatively simple exercise. A number of researchers have investigated the

existence, location and physical properties of apparent horizons in a variety of

initial data sets (Cadez 1974; Bernstein et ale 1994a; Bishop 1982; Cook 1990;

Cook and York 1990).
Once the horizon has been found we may compute several standard measures

of its intrinsic geometry in order to understand its shape and how it changes in

time. In particular, we may compute the embedding diagram of the horizon, its

Gaussian curvature ~ and its polar and equatorial circumferences Cp and Ceo In

axisymmetry the latter two are well defined since the ¢ == constant curves and

the curve e == 1r/2 are geodesics of the surface. The quantities are

{7r/2
c, = 4 io w2

Ce == 21rw2 VD ,

(
dh ) 2 p2

A de + B + D de , (17)

(18)

evaluated at e == 1r/2, and we define C; to be their ratio

C; == Cp/Ce . (19)

In (17), h(B) is the coordinate position of the apparent horizon. Calculation of the

Gaussian curvature ~ of the horizon is performed in a similarly straightforward

manner.
Typically in our spacetimes the area of the apparent horizon grows with time

due to a numerical effect which is well-understood but difficult to circumvent

(see e.g. Bernstein 1993; this is not a numerical instability but rather a certain

type of error which is difficult to control). This causes the Gaussian curvature

of the horizon to decrease with time (for a sphere the Gaussian curvature is just

41r divided by the area) and we choose to normalise it in the following way. Let

AAH and MA H be the proper area and mass of the apparent horizon as defined

below (19). We compute the angular momentum parameter a/MAH from the

known total angular momentum J. From this we compute the Gaussian curvature

of the equilibrium solution with that mass and angular momentum parameter (Le.

from the Kerr solution). With no rotation this is just 41r/ AAH which is (2MA H ) -2.

We then divide the Gaussian curvature of the horizon by this equilibrium quantity

normalised to 41r. In spherical symmetry, therefore, the 'area normalised Gaussian

curvature' will take on the value 41r, independent of the area of the horizon.

Henceforth, when we refer to Gaussian curvature, we have normalised it in this way.

We also compute the embedding diagram of the horizon in a flat 3-space. We

construct a 2-surface in the flat space with the same intrinsic geometry as the

apparent horizon, thereby obtaining a 'picture' of the horizon. Once it has been

determined that the embedding exists, construction of the diagram is obtained

by standard methods (Eppley 1977; Smarr 1973). The embedding diagrams are



1032 P. Anninos et al.

also 'normalised' in a manner similar to the Gaussian curvature, by plotting the
flat-space coordinates in units of a characteristic mass which we take to be the
ADM mass M (20) [or the apparent horizon mass MAH in equation (22) when
numerical effects cause it to become larger than M].

The total mass and angular momentum of the spacetime are evaluated using
the ADM integrals (O'Murchada and York 1974)

M == - ~ t V7 \lJdSa
2

a ,
1r S

1 i bPa == - v::Y(Kab - ~abtrK)dS
81r S

(20)

(21)

(~ == det~ab) at the outer edge of our grid. As long as gravitational waves do not
propagate beyond the outer boundary (20) will remain constant. In axisymmetry,
with 8j8¢ the Killing vector, the component P¢ is the total angular momentum
which we denote by J. Gravitational radiation cannot carry angular momentum
in axisymmetry and so J should be strictly constant.

As noted above, the apparent horizon will, in general, lie inside the event
horizon so that calculating the area of the apparent horizon should provide a
lower bound on the area of the event horizon (this is strictly true on a time
symmetric slice). We follow Christodoulou (1970) and others by defining the
mass of the apparent horizon by

M A H ==
AAH 41rJ2

--+--
161r AAH '

(22)

where J is the angular momentum of the spacetime and AAH is the area of the
apparent horizon. The mass of the black hole, M B H, is defined by replacing AAH

by the area of the event horizon in (22). On a given slice the difference between
the mass of the apparent horizon(s) and the ADM.,mass provides a measure of
the size of the black hole(s) relative to that of the remaining gravitational wave
energy on the slice. Since we expect the final state of the evolution of any of
our initial data sets to be a static or stationary hole plus gravitational radiation
propagating to future null infinity, we will have

M == M B H + M r ad , (23)

where Mr ad is the total time integrated energy loss through a 2-sphere far from
the throat(s). If M B H is approximated by M A H , then (23) can be used to obtain
an upper bound on the amount of gravitational radiation which reaches future
null infinity.

As far as our three initial data sets are concerned we have the following
situation: In the black hole plus Brill wave data set the apparent horizon may
either be prolate (data sets with Qo positive) or oblate (Qo negative). The ratio
of circumferences can be quite extreme, exceeding 100 in the former case and
approaching zero in the latter case. In general the horizon lies on the throat but
if IQol is large enough it may detach from the throat and move outwards (in
these cases the throat may either be a stable or unstable minimal surface). In
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the data sets with rotation the apparent horizon has similar properties depending
on just what sub-family of data sets one is computing. In the case of the Kerr
data set the apparent horizon is oblate and the ratio of circumferences may be
computed analytically (Smarr 1973). In the two black hole data sets the horizon
consists of either one or two 2-spheres depending on whether the parameter J.-l

is less than or greater than about 1·36. In the former case it is always prolate
with a maximum Or of about 2· O. More detail on the geometry of the apparent
horizon is given in (Anninos et ale 1993b, 1993c; Seidel and Suen 1994).

4. Evolution of the Apparent Horizon

For the evolution we look at four cases: two black hole plus Brill wave
spacetimes,

Case (1): Qo==O·l, rJo==O, a==1·0, n==2,

Case (2) : Qo == 1· 0, 1]0 == 0, a == 1 .0, n == 2,

a case with angular momentum,

Case (3) : Qo == 1·0, n == 2, a == 1, rJo == 0, J = 5·5

and a two black hole spacetime,

Case (4) : J.-l == 2·2 (LIM == 4·46).

Cases (1) and (2) study the effect of a Brill wave of varying amplitude interacting
with a hole. The wave is initially centred on the throat, which is the apparent
horizon for these two data sets, and this causes an initial prolate distortion of
the horizon. As discussed in Bernstein (1993) and Bernstein et ale (1994a) both
of these cases contain predominantly the /!, = 2 angular modes, where /!, is the
index of the spherical harmonic Yfm (the corresponding data sets with n = 4
contain much stronger f = 4 and higher angular modes).

In Fig. 1 we show the evolution of the ratio of circumferences Or for case
(1). The solid curve represents the numerical result, while the dashed curve
shows a fit to the fundamental and first overtone of the f = 2 quasi-normal mode
frequencies known from perturbation theory (Chandrasekhar 1983). The phase
and amplitude of both modes is computed by a least squares fit. We see that
the initially distorted hole relaxes to a spherical shape in a damped oscillatory
fashion and the 'wavelength' and 'damping time' of the ratio of circumferences
are very close to those of the fundamental z ee 2 quasi-normal mode frequency
(16·8M and 11·2M respectively; in this case the ADM mass is very close to the
final apparent horizon mass and we use 'M' for both). Note that the time in
Fig. 1 is the coordinate time of the t = constant slices on which the apparent
horizon is found. This corresponds to the proper time at the grid edge, where
the lapse function is close to unity; in the region where the apparent horizon is
located the maximal slicing lapse is in the neighborhood of 0·3. Note also that,
strictly speaking, the apparent horizon is a spacelike hypersurface and so has no
intrinsic timelike direction. Thus it cannot be said to be oscillating in the usual
sense of the word although it does have a 'wavelength' (perhaps 'corrugated' is
more apt).
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Fig. 1. We show the ratio of polar to equatorial circumferences Or of the apparent horizon
as a function of time for case (1). The inset shows a least squares fit to the two lowest f == 2
quasi-normal mode frequencies.

The fact that in these spacetimes the apparent horizon oscillates with the
quasi-normal frequency of the black hole (with respect to the coordinate time
t) can be easily understood. As a perturbing source approaches the hole (in
this case a gravitational wave), the background spacetime geometry is disturbed.
The quasi-normal modes are excited, originating at the peak of the gravitational
scattering potential V (r), located outside the horizon at r == 3M (Chandrasekhar
1983). Gravitational waves at the quasi-normal frequency are then sent in both
directions away from the peak of V (r), towards the horizon on one side and
towards null infinity on the other side. Those waves going across the horizon
induce a shearing of its surface, causing its geometry to oscillate at the same
frequency as the waves. As the time slicing is essentially fixed in time from the
horizon out to infinity during this oscillation phase, the 'background' spacetime
can be considered essentially static and spherical. (Although coordinates are
falling towards the hole and metric functions are growing in time, the horizon
itself is a geometric structure that is static in the spherical limit. Its coordinate
location may change as coordinates fall towards the hole, but its geometric
position does not.) Under these conditions we expect the horizon to oscillate
at the quasi-normal frequency in coordinate time as the ingoing waves cross it.
Therefore, under many circumstances we expect to be able to use the apparent
horizon as a probe to explore the dynamics of the black hole spacetime. The
same dynamics have been seen in the geometry of the event horizon, as reported
in Anninos et al. (1995a).

In Fig. 2 we show the 'area normalised Gaussian curvature' of the apparent
horizon (as described in Section 3) as a function of the polar angle () and
coordinate time for case (1). Here the shading is such that the minimum curvature
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Fig. 2. Gaussian curvature of the apparent horizon is plotted as a function of the polar angle
() and coordinate time for case (1). As discussed in the text, the 'box' pattern is typical for
the predominantly l = 2 distortion. The period of the oscillation of 16· 8M can be seen in
the diagram.

is mapped to white, the maximum is mapped to black and intermediate values
are represented by shades of grey (the equilibrium value 47f is represented by
a medium shade of grey). This map is used to bring out the dynamics as the
horizon settles down to its equilibrium shape (which is a sphere for the spacetimes
discussed in this section). The n == 2 spacetime in Fig. 2 has a distinct 'box'
pattern indicating that the normalised curvature oscillates between greater than
and less than 47f, around what appears to be a fixed line of latitude on the
horizon which has a value close to 7f /3. Consequently there are moments of
time where the apparent horizon is momentarily spherical (has constant Gaussian
curvature). Note that the apparent horizons of spacetimes generated with other
values of n in (2) generate qualitatively different plots of this kind. For data
sets with n == 4 in (2) the 'box' pattern is replaced by an 'X' pattern which is
the result of a higher amount of £ == 4 mode in the initial data.

We have verified that these patterns are to be expected for these spacetimes
by expanding the metric in terms of a spherical background piece go:{3 and a
non-spherical perturbation piece which is written as an expansion in terms of
the usual Regge-Wheeler perturbation functions (Chandrasekhar 1983). We note
that in our perturbed spacetimes the apparent horizon lies on approximately
constant radial coordinate surfaces and we can easily compute the Gaussian
curvature on such surfaces from the perturbation expansion. If we assume the
perturbation is a superposition of the various £ modes, each oscillating at the
appropriate quasi-normal frequency, we obtain the following expressions for the
Gaussian curvature to lowest perturbative order:

1( K(f ")"'£=2 = R 2 2 + 2"y :;(1 + 3cos20)e-
twt

,

1( 27K " )
"'£=4 = R 2 2 + 64J1T(9 + 20 cos 20 + 35cos40)e-twt

.

(24)

(25)
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These expressions generate the characteristic 'box' pattern for a pure R= 2
perturbation and the 'X' pattern for an admixture of R= 2 and R= 4 perturbations,
as expected. From the f = 2 pattern, there is a line of constant curvature
at() = O.Scos- 1(- ! ) f"'.J 1T/3, which is observed as noted above. Thus, these
diagrams are very useful in identifying the various oscillation modes present in
the horizon, as different modes have qualitatively different patterns.

Case (2) is the high amplitude version of case (1). Fig. 3 shows the corresponding
C; and the least squares R= 2 mode fit. The hole is much more distorted initially
than case (1), but almost all of the initial distortion is shed by t = SM off the
initial slice and by about t = 20M or so the hole is oscillating in the R= 2 mode
like case (1).
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Fig. 3. Ratio of circumferences C; of the apparent horizon is shown as a function of time for
case (2). The amplitude of the wave is larger in this case, causing a much larger distortion
of the hole.

We can also construct a geometric embedding of the apparent horizon in a
three dimensional Euclidean space, as mentioned in Section 3. Fig. 4 shows
the horizon embedding for a sequence of time slices. On the initial slice the
horizon is quite prolate. The surface quickly evolves towards a more spherical
configuration, and then begins to oscillate at the quasi-normal frequency about
its spherical equilibrium shape, going from slightly oblate to slightly prolate
and back, eventually settling down to a sphere. At t = 40M the hole is quite
spherical, as the figure indicates.

Case (3) is a rotating version of case (2) with J / M 2 = 0·39. We note that
J / M2 is equivalent to a / m in the standard Boyer Lindquist notation (see e.g.
Misner et ale 1973). In Fig. S we show C; for this case. As we explain in
the following paragraphs, the hole is not oscillating about C; = 1, as in the
non-rotating case, but about some other equilibrium value related to its rotation.
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Fig. 4. We show cross sections of
the geometric embedding of the
horizon in a flat 3D space, at various
times, for case (2). Initially the hole
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when it begins to oscillate at the
quasi-normal frequency of the hole.
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Fig. 5. We show the ratio of circumferences Or of the apparent horizon as a function of
time for case (3). This is a rotating version of case (2). The long dashed line shows the offset
required by the quasi-normal mode fit.
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[Note that the slight upward drifting of Cr at late times is due to numerical 
difficulties in computing the area of the horizon as described in Section 3 and 
in more detail in Brandt and Seidel (1995).J The long dashed line denotes the 
value of the constant offset or equilibrium ratio required by the e = 2 fit to Cr. 

In fitting C r to the lowest two quasi-normal modes we included corrections 
for the wavelength due to rotation (Seidel and Iyer 1990). The quasi-normal 
frequencies of rotating black holes depend on their angular momentum as well 
as their mass, but the dependence on the angular momentum is extremely weak 
except for large rotation rates in which aim'" 1. As a result, corrections due to 
rotation rates for the cases that we have studied here are slight and they make no 
significant impact to the fitted wave modes. Thus it is difficult to determine the 
angular momentum of the hole from the wavelength of the quasi-normal mode 
except in cases of extreme rotation. However, using the formula in Smarr (1973), 
one can use the shape of the horizon itself much more effectively in this regard. 
The larger the rotation parameter, the more oblate the horizon becomes. This 
effect provides a means to extract the value of J I M2 from the apparent horizon. 
The procedure for doing this begins by computing C r and its offset from unity 
and then using the results of Smarr (1973) to estimate the rotation parameter, 
which we denote by (JIM2)(c,). We can also estimate the mass of the hole M 
from Ce , which allows us to solve for the angular momentum J strictly in terms 
of measurements of the horizon geometry. Because Ce settles down to 47r M as 
the horizon approaches equilibrium we can represent Ce /47r as M(ce ). Then J 
is computed by the formula 

J = (JIM2)(Cr )M[ce ) , (26) 

which works well throughout the evolution. 
We find that the value of J extracted from the horizon surface by using this 

procedure agrees with the input parameter specified in solving the momentum 
constraint to within a few per cent for all cases studied. Therefore, simply by 
making measurements of the geometric shape of the horizon we can accurately 
estimate the mass and angular momentum of the black hole. Alternatively, in 
cases like this where we know the angular momentum of the hole, specified in 
an initial value procedure, we can measure the shape of the horizon, compute 
the offset value of the oscillations, and compare with the analytic results of 
Smarr (1973). However, in a more general three-dimensional case, where angular 
momentum can be radiated by gravitational waves, the angular momentum of 
the hole cannot be known as an input parameter, but could still be estimated 
in this way. 

The final case is the spacetime generated by the Misner data with JL = 2·2. In 
this data set the apparent horizon consists of two disjoint 2-spheres and we have 
verified that this case represents two distinct black holes by integrating photons 
out along the equator (z = 0) from the origin (z = p = 0), making certain they 
propagate freely to p ----> 00 and are not trapped within the event horizon that 
forms to surround both holes during the merger process. The actual event horizon 
of this spacetime has been traced out and discussed in Anninos et al. (1995a). 
[The results for the two black hole spacetimes presented here are discussed in 
much more detail in (Anninos et al. 1993c, 1995b). There one can also find 



Oscillating Apparent Horizons 1039 

more general discussions of the total energies radiated, observed gravitational 
waveforms, horizon masses, etc., for a variety of initial configurations.] 

In Fig. 6 we plot Cr as a function of time for case (4). The horizon begins 
as two disjoint 2-spheres which merge at around t = 8M. After the merger the 
horizon quickly relaxes to a nearly spherical shape and begins quasi-normal mode 
oscillation in much the same way as case (2). 
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Fig. 6. Ratio of circumferences C r of the apparent horizon is shown as a function of time 
for case (4). The inset shows a least squares fit to the two lowest e = 2 quasi-normal mode 
frequencies. 

One can draw comparisons between the colliding black hole spacetimes and the 
single black hole spacetimes discussed above. For example, case (4) is intermediate 
between cases (1) and (2) in terms of the initial merged horizon distortions. 
A more relevant comparison can be made with a Brill wave perturbation of 
amplitude Qo '" 0·56 (770 = 0, (j = 1, n = 2) which displays similar behaviour 
in the initial horizon distortions, the damping time to relax to the subsequent 
quasi-normal mode ringing, and in the amplitude of the mode ringing. 

Fig. 7 shows the embedding diagrams for case (4) at various times as the 
horizon evolves from an initially disjoint configuration to a nearly static spherical 
state. At the initial time slice, the disjoint apparent horizons in Fig. 7 are the 
two throat positions. Because we use a lapse that is zero on both throats (as in 
the rotating black hole calculations), each throat remains a marginally trapped 
surface throughout the evolution with a 'frozen' intrinsic geometry. Our code 
does not distinguish among the different marginally trapped surfaces that may 
form outside the throats except where such surfaces intersect the equator (z = 0). 
As a result, the embedding diagrams remain constant in time until t '" 8M when 
the disjoint surfaces merge to form a single common horizon. The embeddings 
after the merger are normalised by the computed mass of the apparent horizon 
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MAH as described in Section 3. However, to maintain a sense of the relative
scale of the initial two black holes to the final coalesced single hole, we choose to
normalise the coordinates of the embedding diagrams before the merger (t < 8M)
by the total ADM mass M.
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Fig. 7. We show the cross section of the horizon embedding
for the two black hole collision case (4). At late times the final
single black hole reaches a nearly static, spherical state.

5. Conclusions

From the results presented in Section 4, we can draw striking similarities
between the n == 2 Brill wave perturbations of single rotating and nonrotating
black holes and the collision of two equal mass black holes. The features
common to the variety of spacetimes we have evolved include: (i) the initially
highly distorted prolate/oblate horizon geometries quickly damp away towards
an equilibrium shape (which is spherical for nonrotating holes and oblate for
rotating holes), (ii) the horizon oscillates at a frequency that is predominantly
the R== 2 quasi-normal mode frequency of the final state (or mass) of the black
hole, and (iii) these oscillations damp away in time as the region near the event
horizon emits gravitational radiation. The frequency and damping time of these
oscillations can be found by examining the geometry of the apparent horizon.
In fact, the consistency in our results over a range of various spacetimes with
different time slicings (although all cases are maximal, the rotating and colliding
black hole spacetimes use a lapse that is anti-symmetric across the throat while
the non-rotating single black hole spacetimes use a lapse that is symmetric across
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the throat) suggests that all. dynamic horizon geometries should have some generic
features in common, particularly at late times when the dynamics are dominated
by the quasi-normal ringing of the holes.

The fact that the horizons oscillate at the quasi-normal mode frequency can
be understood from the standard picture of black hole perturbation theory. A
disturbance in the gravitational field of a black hole generates gravitational
waves at the peak of the gravitational scattering potential V(r), which is located
near r = 3M. These waves, emitted at the quasi-normal frequency of the hole,
propagate away from the peak, down the hole on one side and away from the
hole on the other side of the potential peak. The ingoing waves cause both a
shearing and expansion of the black hole horizon, causing it to oscillate at the
quasi-normal frequency.

We have shown that the apparent horizon can act as a powerful tool in
understanding the dynamics of numerically generated black hole spacetimes.
Measurements of its intrinsic geometry reveal not only the quasi-normal mode
frequency. of the hole, but also its mass and rotation parameter. The latter
effect is particularly important, as the quasi-normal mode frequency is so weakly
dependent on the rotation parameter that it is extremely difficult to extract from
the oscillations themselves. On the other hand, the geometric shape of the horizon
is sensitive to the rotation parameter, and can be used to extract information about
the angular momentum of the hole. Furthermore, the oscillations in the Gaussian
curvature of the horizon can be used to see at a glance the various /!, modes present
in the oscillation, as different modes have qualitatively different visual features.

The similarities between the colliding black hole spacetimes and the distorted
single hole spacetimes indicate that the latter spacetimes are able to mimic the
intermediate and late time behaviour of the collision of two black holes. The
distorted single black hole spacetimes will continue to be explored as a guide
to the physics of black hole collisions, without the complications introduced for
studying the head-on two black hole collision.

Finally, we note that some animations and color images of horizon embedding
diagrams for spacetimes like the ones presented in this paper are available on
the NCSA relativity group World Wide Web server. The URL for our server is
http://jean-luc.ncsa.uiuc.edu.
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Appendix

We use the 3+ I formalism whereby spacetime is viewed as a foliation by
3-surfaces each endowed with a positive definite 3-metric, ~ab, and an extrinsic
curvature tensor, Kab. (Greek indices range from 0 to 3, Latin indices from I to
3. We work in geometrised units in which Newton's constant G and the speed
of light are equal to unity.) The spacetime metric takes the form

ds 2 == -(o? - f3a f3a)dt 2 + 2f3adxadt + ~abdxadxb , (AI)

where Q (the 'lapse function') determines the foliation of the spacetime and f3a
(the 'shift vector') specifies three-dimensional coordinate transformations from
slice to slice. In numerical relativity calculations it is common to choose the
initial data and shift vector to eliminate certain components of ~ab and here we
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have chosen ')'12 and ')'13 to vanish. The ')'23 term is present only in the rotating
case, carrying information about the odd-parity radiation modes present in that
system. The resulting hypersurface line element is

dl2 = ')'abdxadxb

= w4 (Ad1]2 + Bd()2 + D sin 2 ()d¢2 + 2F sin ()d()d¢) . (A2)

Here (1], (), ¢) are spherical polar-like coordinates, 1] is the logarithmic radial
coordinate and ((),¢) the standard spherical polar coordinates on the ", = constant
2-spheres. The spacetime is assumed to possess an axial Killing vector (8/8¢).
All the variables we work with are independent of ¢. In addition we choose not
to evolve the conformal factor W, hence this is a function of 1] and () only.

We specify the topology of the t = constant hypersurfaces in the following
way: the single non-rotating distorted hole and the single rotating distorted hole
are given the 'single Einstein-Rosen bridge' (82 x R) topology familiar from the
Schwarzschild and Kerr spacetimes. The two black hole data sets of Misner
possess the 'double Einstein-Rosen bridge' topology obtained by identifying the
bottom sheets of two single bridges. In all three cases we compute each 3-metric
such that there is an isometry between the top and bottom sheets. The 2-surface
invariant under the isometry operation is called the throat and consists of one
2-sphere in the single bridge case and two disjoint 2-spheres in the double
bridge case. In all cases we choose the throat to lie on a constant 1] surface.
This provides good boundary conditions for the 3-metric and extrinsic curvature
components, a, f3a, etc.

The conformal 3-metric components and their corresponding conformal extrinsic
curvature components are evolved according to the 3+1 decomposition of the
Einstein equations. The lapse function a is determined by using the maximal
slicing condition, trK = o. In the two cases where rotation is not present, the
shift f3a is chosen to make the remaining off-diagonal component of the 3-metric
vanish. For the more general rotating case the shift is chosen to eliminate ')'12

and ')'13. It is not possible to eliminate both ')'13 and ')'23 in general radiating
spacetimes (because they contain information about the odd-parity modes) and
we choose to maintain a nonvanishing ')'23.

Finally, we choose each spacetime to be equatorially plane symmetric as well
as axisymmetric and isometric through the throat(s). The computational domain
is thus bounded by the axis (() = 0), the equator (() = 1r/2), the isometry surface,
and an outer boundary, usually around 1] = 6 (but due to the logarithmic nature
of 1] this is large enough in terms of proper distance that static outer boundary
conditions are adequate for the calculations carried out here). The numerical
code to evolve the time symmetric (non-rotating) single bridge data sets has been
described extensively elsewhere (Anninos et ale 1994b; Bernstein 1993; Bernstein
et al. 1994b) and so we will not discuss our numerical methods here. Modifications
to those methods for evolving the single bridge with rotation and the Misner two
black hole initial data sets are detailed in Brandt and Seidel (1995) and Anninos
et ale (1993b, 1995b) respectively.
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