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Abstract

A new concept of space and time, constructed from a de Sitter structured principal fibre
bundle with a connection, is used to discuss a geometrical interpretation for the complex plane
of the quantum theory and quantum behaviour of particles. In particular some features of a
theory based on a torsion free metric linear connection in a five-dimensional base manifold
are described.

1. Introduction

Since its beginning, quantum theory has been associated with a number of
conceptual difficulties. Even as a very successful theory capable of explaining
most aspects of the behaviour of micro-objects, it never reached a clear
standpoint regarding the nature of the wave—particle dualism. Bohr’s Copenhagen
interpretation played a dominant role for several decades, but discussions concerned
with its validity never really stopped, and a number of alternative interpretations
were offered. Recently, such discussions intensified mainly due to technological
advances allowing observations of individual particles interfering with themselves.
Thus more and more researchers are asking again the fundamental question:
What is an elementary particle?

It is nothing new to ask such a question in relation to the quantum behaviour
of particles. In 1926 Albert Einstein wrote to Max Born: ‘I am working hard
at deducing the equations of motion of material points regarded as singularities,
given the differential equation of general relativity’ (Born 1971). Indeed, the
Schwarzschild solution of the vacuum Einstein equation with its singularity at
the centre and an integration constant having the meaning of mass seems to be
a natural choice for a basic geometrical model of an elementary particle. The
quantum behaviour, however, did not arise from Einstein equations. If one wants
to persevere in such a research direction, one has to try various generalised
concepts of space and time that could accommodate geometrical structures needed
in quantum descriptions of particle behaviour. There have been many papers
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written on the subject and I shall not make any attempt at even a partial listing.
Instead, I shall outline briefly the basic ideas of some of the main representative
papers.

The fundamental geometrical object of Einstein’s theory is a principal fibre
bundle with the Lorentz group as its structure group and the four-dimensional
space-time manifold as its base manifold. For an explanation of the geometrical
terms the reader should consult the book by Kobayashi and Nomizu (1963).
One class of generalisation of Einstein’s theory keeps the base manifold as
the four-dimensional space-time, but changes the structure group. The most
prominent is the Poincaré gauge theory of gravity (Hehl et al. 1976), where
the structure group is enlarged from the Lorentz group to the Poincaré group.
One should also mention Carmeli’s (1972) SL(2,C) gauge theory which does not
extend the structure group as far as the dimension is concerned, but replaces it
by its covering group.

Another direction is characterised by enlarging the base manifold, in particular
by adding spinor coordinates to the space-time coordinates. This lead in the 1970s
to the concept of a superspace (Salam and Strathdee 1974), while suggestions
of a similar nature can be found in the literature already in the 1960s (Smrz
1968).

The concept described in the present contribution differs substantially from
the above in the following sense. In all the theories mentioned above, as well as
in many which are not mentioned, the space-time forms a part of the geometry
from the beginning, either as the base manifold, or as a fixed submanifold of the
base manifold. According to the concept described here the space-time manifold
simply does not exist until a reference cross section (a gauge) is chosen. As the
choice of the cross section is directly related to measurements, the very existence
of space-time with all its properties including the dimension depends on the
method of measurements. Of course, at this stage the connection with actual
experiment is quite unclear, but having in mind the importance of measurement
in quantum theory one feels encouraged to proceed in such direction.

Returning to the fundamental question about the nature of elementary particles,
it should be noted that the standard quantum mechanical approach answers
the question in a rather simple way: Elementary particles are irreducible
representations of the Poincaré group (Schweber 1961). Such an abstract concept
is perfectly suitable for quantum mechanical interpretation of many experiments,
but it does not satisfy those who want to really understand the bizzare features
of quantum behaviour (Banai 1988; Schommers 1989).

Many researchers feel that one has to look for the true explanation of quantum
behaviour in a suitably generalised space-time geometry. One of the more recent
contributors is Laurent Nottale, who asks the fundamental question: ‘Where
does the complex plane of quantum theory lie?” (Nottale 1993). His attempt at
answering the question is based on an assumption that the underlying geometry
of space and time is of fractal character. I shall stay on a firmer ground, looking
for the complex plane within the formalism of a normal differential geometry.
At this stage, I am not able to present anything near to a complete theory, but
only a collection of not quite clearly related facts which one day may or may not
come together. Nevertheless, I trust that the material contains plenty of matter
for thought and that it is useful to present it in this unfinished form.
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2. A New Concept of Space and Time

In 1987 I showed (Smrz 1987) how four-dimensional space-time may be
constructed from a de Sitter structured fibre bundle with a connection. Let me
go briefly over the construction.

We start with a principal fibre bundle P(M,G), where the base manifold M is
of dimension at least four, while the structure group G is a de Sitter group. The
bundle manifold P has the required local structure of M x G. The connection
in P may be defined by the horizontal lift of 8/0z* € T,(M), x € M, to u € P,
m(u) = z, in the form of

0

X = 2 LA @)Yl0), M

where z# are the local coordinates in M and Yj; are the right-invariant vector
fields in G. The above form depends on the selected local reference cross section
in P needed to define the local coordinates (z,g) in P~ M x G. In the local
coordinates the reference cross section corresponds to (x,e), where e is the
identity element of G. When the change of the local cross section (a gauge
transformation) is characterised by a variable group element g(z) € G with the
matrix elements ag.(x), the gauge transformation of the connection components
reads as

Al = b AE'B] + (8,,57)bjg" (2)

where we denote by b} the matrix elements of g~'(z).

For a{ =a? =0, i=1,..,4, and af =1, the gauge transformation belongs to
the Lorentz subgroup of G.

Separating the fifth component from the rest, the horizontal lift (1) may be
written as

X = 5= — $47 (@)Yilo) — A Ysi(o) )

where the range of the summation is only 1 to 4. Under the Lorentz gauge
transformations the components Al , i,j = 1,...,4, transform as in (2), while
the components A:f transform according to

A5 =L AR . (4)

Thus if dim(M) = 4 and the 4 x 4 matrix [Aff’] is invertible, it is possible
to identify it with the inverse of the tetrads corresponding to a cross section
{ht(z)0/0x#; i =1,...,4} in the bundle of frames of M.

If the coordinates in M carry a physical dimension, then we need a constant
with the dimension of length (or time) to make the identification:

% 1 A
AI_LS = Th/'l’ . (5)
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In this way a connection plus a partially fixed cross section (up to an arbitrary
Lorentz gauge transformation) define the bundle of frames of M as well as a
Lorentzian connection in that bundle.

I propose that the physical interpretation is as follows. There exists a
fundamental gauge invariant theory characterised by a connection in P. The
base manifold M is not the observed space-time and is inaccessible to direct
observations. The geometry of M may be explored only via the action of the
structure group G. The reference cross section (gauge) in P depends on the
method of geometrical observations. Thus as far as the subgroup of G consisting
of spatial rotations is concerned, selecting the cross section means setting up
a frame of three orthogonal vectors at each point of the base manifold. This
may be done in many ways, while the frames at different points of M may
be compared via the parallel transport defined by the connection. Similarly,
extending the spatial rotations by adding the Lorentz boosts, the reference cross
section is a selection of 4-frames. In principle, any arbitrary orthogonal 4-frame
may be selected at each point, but in practical observations the choice of frames
is severely limited by the parameter v/c being very close to zero. The remaining
de Sitter transformations outside the Lorentz subgroup are to be interpreted as
translations. However, the choice of the reference cross section is assumed to be
entirely fixed by the macroscopical methods of space-time measurements, so that
one cannot use these rotations and pseudo-rotations while remaining at a given
point of the base manifold. At different points of the base manifold the frames
may be compared again using the connection: space-time translations along a
given curve in the base manifold are measured by the discrepancy between the
horizontal lift of the curve and its lift to the reference cross section. If the
reference cross section is either horizontal in a given direction or at least its
vertical component is within the Lorentz subgroup, no translation is observable
in that direction. In this way the base manifold M may be even of dimension
greater than 4.

Let dim(M) =n >4 and the rank of the 4 x n matrix A}(z) be 4 at each
x € M. If the 4-dimensional distribution on M defined naturally by such a
matrix is involutive, then there exists a coordinate system {z*;px =1,...,n} on M
such that A% (x) for u=1,...,4 is invertible, while A’’(z) =0 for i =1,...,4 and
1 =2>5,...,n. The identification (5) for u =1,...,4 defines the bundle of frames
and a Lorentzian connection on the 4-dimensional submanifold of M defined by
fixing coordinates z°, ..., 2".

In a similar fashion, while one reference cross section may lead to a 4-dimensional
space-time, another reference cross section (gauge) may for the same connection
lead to A'l‘f(a:) of rank lower than four, thus generating a space of lower dimension.
A natural question arises from such considerations: If a connection is capable of
generating the flat Minkowski space-time in some gauge and one is allowed to
use any arbitrary de Sitter gauge transformation, how much can the dimension
of the generated space be reduced? This question has been answered by Smrz
(1987) with the following result. Working in Minkowski coordinates one can solve
the equation A} =0 with A} given by (2), where A} =0 and AF® = (1/1)6%,
w,k,l=1,....4, for three values of the index u, thus reducing the dimension of
the generated space to 1. The character of the remaining dimension depends on
the type of the de Sitter group used in the construction. The group of type
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(4,1) leads to a space-like dimension, while the type (3,2) corresponds to the
remaining dimension being time-like.

The derivation by Smrz (1987) may be repeated for a more general case.
Let z*, i =1,...,4 be Minkowski coordinates and z*, u = 1,...,4, an arbitrary
coordinate system. Assume that the de Sitter group is of type (3,2), i.e.

g = diag(1,1,1,—1,-1).

We want to solve Aﬁ" =0 fori=1,..,4 and p=1,...,3. Equation (2) yields
—ll-b};hﬁbg “bEREDE + (0,63)bEg% + (8,,05)big”* =

Noting that the above expression is identically zero when index i is replaced by
5 and multiplying by matrix [a]] with j =1,...,5 we obtain for j =5

1
—hEbE + (0,60)9 =0 ©)

and for j=1,...,4

THIBE + (0,00)" = 0. )

Equations (6) and (7) reduce to equation (5-10) of Smrz (1987) when Minkowski
coordinates are used. It is easy to see that the same solution, namely

bl=02=03=03=05=1 (8)

with the remaining matrix elements zero, solves also (6) and (7) for 4 =1,2,3
as long as h4 =0 for p=1,2,3. Thus, given any time-like curve in M, we may
choose a coordlna.te system in such a way that the remaining observable coordinate
is measured along that curve. Let functions z'(z%),i = 1,...,3, characterise a
time-like curve, u? = 3°>_ (da'/dz*)?, and T be the proper time measured along
the curve. A Lorentz invariant process of dimension reduction due to the gauge
transformation (2) may then be considered as a map from M onto the bundle
manifold @ of a principal fibre bundle Q(T,U(1)), where T is a one-dimensional
manifold with local coordinate 7, and U(1) is the group of de Sitter rotations
within the (4,5)-plane. For each time-like curve in M we have

ABdot = A%gr =1 9T

Ly1—w2’
which defines a cross section in @ with tangent vector

0

oo AP Y (9)
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Thus identifying points in M characterised by z# = 0 with the point (7,g) € Q
where 7 =0 and g = e, every time-like curve in M maps into a cross section
in @ with the tangent vector given by the above formula. The map is clearly
not one-to-one. In general a class of curves in M will map into a single cross
section, even when they have the same initial point. Only the z*-axis itself is the
unique curve passing through the origin and corresponding to the cross section
with tangent 0/07 + (1/1)Yzs4.

Before we discuss the possible relationship of the above with the geometric
origin of the complex plane of quantum mechanics, I would like to make an
important comment. Many papers were written on the subject of replacing the
Poincaré group by one of the de Sitter groups in the context of the structure of
the Universe, where the de Sitter radius is usually very large (Weinberg 1972),
as well as the structure of particles and quantisation, where the radius is usually
very small (Drechsler and Prugoveéki 1991; Drechsler 1993). This should not be
confused with what is proposed above. In all these papers the main geometrical
structure is the de Sitter space, i.e. a four-dimensional space-time with constant
curvature, on which the de Sitter group acts in a way which is analogous to
the action of the Poincaré group on a flat Minkowski space, namely as a group
of isometries. In our case the de Sitter group does not act on any space-time
manifold, and its relationship with the translations is due to the restriction of
the gauge outside the Lorentz subgroup. One should also notice that the flat
Minkowski space is generated from a non-flat connection, and that while the
gauge outside the Lorentz subgroup remains fixed, the fundamental length ! is
entirely unobservable and may be of any size, small or large.

3. The Complex Plane of Quantum Theory

Let me now point out some facts which connect the abstract construction of
Section 1 with the quantum behaviour of particles and a possible geometrical
place for the complex plane.

One of the simplest manifestations of the quantum complex plane is the fact
that particles correspond to a fast rotating vector in that plane even when
they are at rest. It is as if each particle measured its progress along the time
axis by such a rotation. Could this rotation be simply the rotation in the 4-5
plane of the (3,2) de Sitter group that corresponds to the time translations
according to the scheme of Section 1?7 Classically, we do not perceive the time
translations as rotations due to the gauge restriction. However, particles may
not be bound by such restrictions. Perhaps, the natural gauge for particles is
the gauge that corresponds to the minimum dimension. This could go together
with another strange feature of quantum behaviour: Particles seem to exist ‘all
over the place’ unless they are observed to occupy a definite region in space.
This particular property is well described mathematically by Feynman’s (1948)
‘path integral’ formulation. According to Feynman’s quantum mechanics the
probability amplitude of a particle travelling from point A at time t4 to a point
B at time tpg is proportional to

T exp (5

tp

ta

L(a‘c(t),x(t))dt) , (10)
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where each integral is taken along a path from A to B and the sum is over all
such possible paths. Let us see at least some threads connecting this with the
dimension reduction of Section 1.

An observer working in the one-dimensional ‘time-only’ gauge describes all
possible time-like paths as different cross sections of Q(T,U(1)) above an interval
in T, connected by U(1l) gauge transformations. The gauge transformation
connecting the cross section corresponding to the time axis (the path of a particle
at rest) with the one corresponding to a general time-like path is of the form

exp [i(8(1) — bo(7))] € U(1), (11)

where

9(7)—1/T—d7
_l TA \/1—u2 ’

and 6y(7) is given by the same formula with u = 0. The coordinate 6 in the
U(1) group of 4-5 rotations was selected in such a way that Y54 = 0/06. The
two cross sections were also selected to coincide at T = 74. With [ replaced by
h/mc? we have

me? [TB 1 1 [™®
0(r5) — o( =——/ 1 drz—/ Byndr,
(B) 0( B) 7 . (m > 7 - k

establishing a link with (10) for a free particle of mass m. We have a hint of a
geometrical representation for a single contribution to the Feynman path integral,
but it remains unclear why adding the contributions from all paths yields the
probability amplitude, and also where the probability is coming from in the first
place. It is also not clear why I should be replaced by A/mc2. One expects that
[ is a universal length (or time interval) present in the underlying geometrical
gauge invariant theory, independent of m. All this brings us to the first question
asked in the Introduction: What is an elementary particle ? It must be expected
that to answer such a question one must have first of all a clearer idea about
the structure of the underlying geometry. A few uncertain steps in that direction
are sketched in the next section.

4. A de Sitter Gauge Invariant Theory of Space-Time

In this section we shall see a particular example of the fundamental gauge
invariant theory mentioned in Section 1, which contains a description of the usual
relativistic space-time when the gauge is partially fixed.

Since de Sitter groups act naturally in five-dimensional vector spaces, the first
geometrical system suitable for the construction described in Section 1 that comes
to mind is a five-dimensional manifold with a linear connection. Let P(M,G)
be the bundle of orthonormal frames of a five-dimensional manifold M, and the
connection in P be a torsion-free linear metric connection. Consider

4
Rag = Fgalg, a,,B = 1, ...,5 (12)
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as the fundamental equation of the underlying theory. Here R,s is the Ricci
tensor, and

Gap = Hénggzja Q, ﬂaivj = 1)-"35 (13)

is the metric tensor on M. A particular cross section in P is characterised by
H, and g;; is the diagonal (1,1,1,~1,—1) metric.
Consider solutions of equation (12) in the form

— 2" /14(0)

Guv ) 9us = gsp =0, gss = —1, (14)

realised by the cross section satisfying

Hi =e"/'h, Hi=H>=0, H?=1,

where the range of the indices u, v, and 7 is only 1 to 4, and

(0)

9w = Guvlzs=0 = hih{;gij, vyt j=1,...,4 .

A straightforward calculation gives the Christoffel symbols

v 1
T = BVECS ws =Tg, = 76;11»

and the Ricci tensor

4

4
R, = RO + 2 9m> Rus = Rs, =0, Res = - = 295

ny

| >

where R,(g,) is the Ricci tensor calculated from g,(fl),). Equation (12) thus implies
that

RQ) =o.

The components of the connection with respect to the chosen cross section
are given by

A7 = BT G + (0, H))HigH
which yields in particular
ij i 1o
Af =0, AP = TH. (15)

Notice that the second equation in (15) is invariant with respect to an arbitrary
Lorentz group gauge transformation as both sides transform according to (4), but
it is in general broken by de Sitter gauge transformations outside the Lorentz
subgroup. A four-dimensional space-time characterised by z° = const in the
chosen coordinates is thus generated by the partially fixed cross section in P,
illustrating the construction of Section 1.
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The solutions of the form (14) include all solutions of the vacuum Einstein
equations in the generated space-time. In all such solutions ! plays a rather
formal role within the exponential scaling coefficients. One expects that | would
be some kind of a universal constant like the Planck length

I = /GhJc3.

Solutions representing elementary particles should be expected to have the
form (14) with the Schwarzschild g,(g,) only for r>> [, while in the region 7 ~ 1
an interplay between ! and the Schwarzschild radius

ro = 2Gm/c?
should lead to the required time unit i/mc?. All this is quite hazy at the

moment, but it might be worth mentioning that the Schwarzschild geometry
naturally contains the expression

roc/2r2 ,

which at r = | yields mc?/h. In any case, finding more general ‘particle-like’
solutions of equation (12) and studying their properties under the dimension
reducing gauge transformations seems to be a promising direction for further
research.

5. Conclusions

Let me recapitulate the main points. To find the true geometrical model
of elementary particles, one has to find the geometrical role of the quantum
complex plane together with the reasons for its disappearance in classical
physics. The (3,2) de Sitter group provides a very simple possibility of
the complex plane being the plane in which the de Sitter transformations
generated by Ys4 act as rotations. The use of the classical gauge, fixed up to
arbitrary Lorentz gauge transformations, gives us the opportunity to interpret
the transformations generated by Ys;, @ = 1,...,4, as space-time translations,
their rotational and pseudo-rotational character being entirely hidden to a
classical observer. One may say that the space-time is an illusion created
by the limited methods of classical observations. Once the gauge is free,
the four-dimensional space-time radically changes its character and may even
lose some of its spatial dimensions. This is where some contact with the
strange quantum behaviour of particles is found. The classical and quantum
aspects are associated with different gauges, different ways of making geometrical
observations. In the case that such an approach proves correct, an important
by-product will be the non-existence of a quantum theory of gravitation in
the usual sense. Einstein’s theory is meaningful only in the setting connected
with the classical gauge, while quantum behaviour requires going outside such
a gauge. Just this last point should provide enough reason for investigating
the scheme further, before rushing forward in the canonical quantisation of
Einstein’s theory and spending years in search of something that may not
exist.
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