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Abstract

We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective
interpretation of the wavefunction. Inspired by the ideas of Schrodinger, and Bell, we seek
a dimensional reduction procedure to map complex wavefunctions in configuration space
onto a family of observable fields in space-time. Consideration of quasi-classical conservation
laws selects the reduced one-body quantities as the basis for an explicit quasi-classical
coarse-graining. These we interpret as describing the objective reality of the laboratory.
Thereafter, we examine what may stand in the role of the usual Copenhagen observer to
localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a
generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus
advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed,
without need of an external observer. Finally, the concept of quantisation is re-interpreted as a
nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally
self-bound solitary waves. Contrasting this theory with its canonically quantised analogue,
we find that the given interpretation is empirically distinguishable, in principle. This result
encourages deeper study of nonlinear field theories as a testable alternative to canonically
quantised gravity.

1. Introduction
The Schrodinger interpretation of the wavefunction (Schrodinger 1928; Barut

1988) would be extremely useful if it were consistent. Then quantum theory
would provide a direct means to address the problem of particle structure, and
an immediate route to construct generally covariant field theories founded upon
analogy with classical continuum physics.

Of course, there are two long-standing problems that obstruct consideration
of this historical proposal. Firstly, quantum interactions entangle states, leading
to non-separable densities in configuration space. Secondly, dispersion is ever
present, so that general localised solutions are unavailable (Schrodinger 1926).
Taken together, these difficulties are insurmountable in a linear theory, and the
continuum option must fail.

In this paper we show that both difficulties can be overcome within a larger
theory based upon nonlinear wave-equations. For this purpose we combine:
the mathematics of Kibble (1978, 1979) and Weinberg (1989); the continuum

* Refereed paper based on a contribution to the inaugural Australian General Relativity
Workshop held at the Australian National University, Canberra, in September 1994.

0004-9506/95/061055$10.00



1056 K. R. W. Jones

viewpoint of Schrodinger (1928); the measurement scenario of Penrose (1993);
and the physical mechanism of environmentally induced decoherence (Zurek 1981,
1982, 1991).

The argument hinges upon exploiting the verified classical conservation laws to
select an explicit quasi-classical coarse-graining (cf. Gell-Mann and Hartle 1993).
This approach is closest in spirit to Bell's idea of beables; some special class of
quantities representing the reality on which laboratory observations are founded
(Bell 1973). Here reduced one-body densities and currents are advanced to play
this role.

Nonlinearity is then invoked to obtain a generic physical mechanism to suppress
the macroscopic dispersion which would otherwise spread out the observable fields.
Thus nonlinearity is to assume that role now given to observers. Assuming that
an objective theory should be free of an external observer at all levels, we are
led to constrain the nonlinearity by demanding this at the simplest level.

Since gravitation is universally attractive, and is not directly tested at the
quantum level, we focus upon it as the means to suppress dispersion. The
outcome is a possible new avenue to a theory of individual events-although, for
simplicity, this paper treats only Newtonian gravity to secure the foundation for
more general nonlinear theories.

The key motivation behind this line of enquiry is the cosmological conundrum
posed by quantum measurement (Bell 1981). Nonlinear theories offer new modes
of physical interaction that do not quantum entangle. Since the observer is now
treated as a separable (i.e. non-entangled) participant in quantum mechanics,
nonlinear wave-equations are an attractive option for the physical treatment of
measurements (Jones 1994b). However, their interpretation remains problematic.
This suggests that we look for a specific theory, using self-consistency and the
question of measurement as guides (Jones 1995).

For one massive scalar particle with nonlinear gravitational self-interactions
the goal of observer-free localisation is achieved, and the theory is self-consistent.
Correspondence principle arguments are then used to obtain a many-particle
theory. The. gravitational wave-equation lies within the generalised dynamics
of Weinberg (1989), and resembles the approximate equations of Hartree-Fock
electromagnetism (Brown 1972).

Quasi-classical coarse-graining plays a central role in the physical interpretation
of these equations according to the continuum viewpoint of Schrodinger (1928).
As soon as the initial obstructions to it are overcome one realises that quantum
field theory is perhaps open to a significant reformulation in toto.

For instance, as Barut (1990) has noted in his attempt to reformulate QED
as a linear theory with nonlinear self-energy terms, the time-like component of
a particle current need not be of definite sign if it is a charge density, and not
a probability density. Hence the Dirac equation might be viewed as describing
a single entity. Then one might simplify the conceptual basis of quantum field
theories, to free them from the shackles of perturbative method, and render them
closed theories applicable to the entire cosmos. Thus one may perceive already
the outlines for a program of unification based upon nonlinearity, the Schrodinger
interpretation, and a more physical approach to quantum measurement.

Since the interpretation of nonlinear theories has been a major historical
stumbling block the early material, Sections 2 through 6, is devoted to addressing
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this within a continuum philosophy a hi Schrodinger (1928). Coarse-graining is
dealt with early on, in Section 3. Then, in Section 7, we generalise Lagrangian
dynamics to complex fields in configuration space. In Sections 8 through 12, we
construct the nonlinear theory of pure Newtonian gravity. Its relevance is then
discussed in the concluding section.

2. Continuum Physics and Nonlinearity

Schrodinger (1928), Einstein (1956) * and de Broglie (1960) were each dissatisfied
with the Copenhagen interpretation, and sought some means to rid quantum
mechanics of its reliance upon the philosophical notion of observers. One possible
option they considered is to introduce nonlinearity, so that the microscopically
tested superpositions are inhibited at the macroscopic level of the observing
instrument. The difficulty is to locate a candidate nonlinearity, and to interpret
such theories consistently. Here we reconsider the continuum viewpoint espoused
by Schrodinger (1928), and seek to complete his conception.

The easiest way to appreciate the historical ambiguity surrounding the
interpretation of the wavefunction is to examine a nonlinear wave-equation, such
as

On a1/; (x, t) == {_~\J2 ± f\;1'l/J(x, t)1 2 } 1/;(x, t)
2 at 2m

(1)

(later we consider a general self-potential V[1/;, 1/;*] in place of the term ±~I7P(x, t)1 2 ) .

Such equations arise frequently as the Hartree-Fock approximation to an interacting
quantum field theory (see e.g. Brown 1972; Kerman and Koonin 1976). Although
of practical utility, they are generally ignored in discussions of fundamental
physics-primarily because the program of canonical quantisation leads always
to a linear theory (Dirac 1958).t

Most importantly, the orthodox Copenhagen interpretation demands linear
equations. A measurement might occur at any instant, due to the intervention
of an observer. In virtue of the split, between dynamics and the observational
process, one must ensure that quantum evolution preserves transition probabilities.
Wigner's theorem asserts that the only continuous probability preserving maps
on the space of states are linear unitary (for a recent review see Jordan 1991).
Linearity for unobserved systems is thus reconciled with-and demanded by-the
postulate of a quantum jump during measurements.

To go beyond this simplistic idealised picture we need to recognise the
pragmatism which lies at its root. It is a successful algorithm for conducting
computations, but it ignores the physical basis of measurements. To probe coherent

* Einstein has offered the following comment on quantised field theories: 'I see in this method
only an attempt to describe relationships of an essentially nonlinear character by linear
methods'.
t Recall the logic of this algorithm. Classical Poisson brackets are replaced by commutators
and the correspondence principle becomes the expression: lim1i~o[J,g]/ih = if, 9}PB (Dirac
1958). Jones (1992, 1994b) has shown that this algebraic correspondence is incompatible with
linearity. The Copenhagen theory does not contain its classical limit! Thus we examine the
physical correspondence principle afresh and look for new principles in place of the canonical
method.
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few-particle dynamics one must first ensure conditions of isolation. This we
describe by introducing a single wavefunction for the object system-neglecting the
rest of the Universe. However, subsequently this isolation must be broken-when
a measurement is made. At this stage the theorem of Wigner becomes suspended,
and the collapse postulate is invoked. In practice, one is then ascending the scale
from the few particles of interest to the collective behaviour of many within the
measuring apparatus. Therefore, it is natural to associate any breakdown of the
superposition principle with emergent many-body nonlinearities. *

Fluctuating continuum or discrete assembly?

Ia) "Directly Observable"
Macro-Pointer

+

t
(b) "Indirectly Measured"

Micro-Object

Fig. 1. A caricature of the observational process. A directly observable quasi-classical pointer,
item (a), is coupled to a previously well-isolated elementary constituent, item (b). From the
configuration of (a), and knowledge of the coupling, information can be deduced about the
unseen system (b). In nature, (a) can exhibit gross fluctuations which are generally interpreted
as indicating a discrete foundation for the quantum world. However, given the vast leap in
scale, one can equally well imagine theories where the observable reality is described by a
coarse-grained continuum field, see the notional magnifications at (a') and (b"). Then the
observational process might be traced to collective correlations and fluctuations in the values
of this field as a whole-without any assumption of fundamental discreteness. The key to
such a continuum theory must lie in the chosen prescription for coarse-graining. It is here that
elements of quantum theory might be brought into direct correspondence with the observable
reality, so to bypass any need for an observer.

Consider the quantum description of a many-body laboratory instrument, see
Fig. 1. Through the collective evolution of its constituents it gives concrete
form to information gained about the microscopic world. Although Copenhagen
physics assumes a discrete picture of the microworld, the quasi-classical level
resembles a continuum. Since our sole experience of the micro-world is founded

* The plausibility of associating nonlinearity with objective theories is made clearest by
Schrodinger's example of the cat paradox (Schrodinger 1935). The superposition principle
is clearly incompatible with objective interpretations, for then Schrodinger 's cat would be
genuinely alive and dead. The hypothesis of emergent many-body nonlinearities breaks the
logical chain of extrapolation from micro to macro physics. Objective nonlinear theories do
not enforce a cat paradox.
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in observations at this level (Bohr 1928, 1949) one must admit the logical
possibility of a continuum foundation to all physics. Given the huge gulf in scale
("'1023 in number) between micro and macro physics, a continuum whole may
well fluctuate (when stong fields are involved) to appear composed of discrete
parts-the idealised point-like particles of Copenhagen quantum physics.

Bell (1973) has sought a more objective theory through his concept of 'beables',
some class of quantities representing the objective status of observing instruments.
Such beables are readily imagined as fields defined in ordinary space-time which
describe the totality of the atomic world, and the observing instrument. The
main conceptual problem is to recover the notion of elementary particles, as
separate well-localised entities. The continuum field must appear composed of
fluctuating indivisible parts, and we must ensure that any fundamental level of
determinism is inaccessible to direct empirical control.

Here we treat particles as an idealised concept appropriate to the weak-field
limit when observable continuum fields decompose into several distinct lumps.
Then we may subsume Copenhagen physics as an ideal case, and employ it as a
known limit to guide the formulation of new equations.

Some immediate guidance to a viable coarse-grained continuum interpretation
may be found in practical many-body equations like (1). There the quantity 11/;1 2

is interpreted as denoting the density of particles in an aggregate. Examining
(1), we construct the current

j(x, t) =~ {'l/J*(x, t)\11f;(x, t) -1f;(x, t)\11f;*(x,tn
2m2

and so readily verify the equation of continuity

8p + \1 . j(x, t) = 0,at

(2)

(3)

where p(x, t) = 11/;(x, t)1 2 (provided the nonlinear self-potential V is real-valued).
Thus we can interpret macroscopic conserved currents in two different ways.

They could describe the evolution, in probability density, of very many point-like
particles spread as p(x, t), or the flow of continuum matter. Recall, both Born
and Schrodinger, each employed current conservation to defend their respective
interpretations. With the ancient Greeks, we may ask again: Does nature give
preference to the discrete or continuum viewpoint?

3. Explicit Quasi-classical Coarse Graining

So what are the problems with the continuum viewpoint? Firstly, the candidate
for a macroscopic 'beable' continuum field must be generated from a wave in
configuration space. Secondly, we must explain how a physics based upon this
assumption could exhibit the discrete and stochastic behaviour we observe in
quantum experiments.

Evidently, the key avenue into such a theory must lie within that role now
played by the Copenhagen observer. As soon as we drop the Born interpretation
something must be found in place of the observer. Presently, this agent serves
to connect wavefunctions with the laboratory reality. Therefore, the continuum
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coarse-graining must effect a similar mapping from the abstract mathematics into
the concrete world of observations.

Since wavefunctions are generally formulated as fields on a configurational
space-time, the mapping into observable fields must reduce fields in N(3 + 1)
dimensions down to the familiar 3 + 1 dimensions apparent in the laboratory.
Hence we conceive of an observable level whose dynamics is determined at an
unobservable level, with the two levels linked by dimensional reduction. The idea
is perhaps familiar already from string theory, where embarassing dimensions
are compactified away, and one has the sophistication to recognise that mere
mathematics is not reality, but can serve our efforts to model it.

Many such prescriptions are possible, so we must adopt some principle to
guide the search. The avenue we take is to look for quasi-classical conservation
laws, and confine attention to mappings which recover these. The rationale is
clear: observable fields must display the observed conservation laws.

Consider, therefore, the many-body Schrodinger equation for N particles, each
of mass mj. In accordance with established physics we describe these by a
wavefunction W(X; t), where X == (xj , ... ,XN; t) is a 3N-vector in configuration
space. The corresponding Schrodinger equation reads

N n?
ihaw(X;t) == _ '"""" -\7~.w(X;t) + V[w, w*]w(X;t) ,

a ~ 2m- Jt j=l J

(4)

where V ['l/J , 'l/J*] is a general real-valued potential.
Higher dimensional conservation laws in configuration space are easily obtained

from (4). For instance, one may form a 3N-vector many-body current

e(N) (X. t) - (e(l) (X· t) e(l) (X· t))J ,== J1 " ... ,IN , ,

composed of N different 3-vector partial currents

(5)

j)l)(X;t) == .s: {\lI*(X;t)\7x.\lI(X;t) - \lI(X;t)\7x\ll*(X;t)} , (6)
2mjz J J

along with the corresponding scalar density

p(N)(X;t) == w*(X;t)w(X;t).

Thus we obtain a many-body equation of continuity

atp(N)(X; t) + ax • j(N) (X; t) == 0,

(7)

(8)

where '.' denotes the natural 3N-vector dot product.
Such conservation laws would normally be introduced to discuss the joint

measurement of N particles. To do this in practice would require N detectors,
each of them composed of many particles. Therefore, we put a particle picture
aside, and concentrate upon how one is to describe the instrumental readout of
a notional meter. The 'needle' position is encoded jointly in the collective state
of very many particles, and so a coarse-grained treatment will suffice, see again
Fig. 1. In classical point mechanics the mass density
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N

p(X; t) = L m j8 (3) (x ~ Xj)

j=l

1061

(9)

is one candidate to describe the substance of this pointer. In classical continuum
physics we simply smear out each of the N delta functions with a density Pj(Xj),
and integrate over configuration space. In analogy with this familiar case the
quantum entanglement may be submerged from direct view by integration of the
many-body density (7).

Hence we obtain a reduced one-body density

N

p(l)(X;t) == Jd3NX L8(3)(X-Xj)p(N)(X;t),
j=l

and the corresponding reduced one-body current

N

j(l)(x;t) == Jd3NX L8(3)(X- Xj)j(N)(X;t).
j=l

(10)

(11)

In Copenhagen physics one would recognise these as describing the probability
density and current for 'finding' all N particles at once, neglecting the correlations
among them. This is exactly the kind of coarse-graining we require to describe
quasi-classical instrumental readouts. Further, by integration of (8) we obtain

atP(l) (x; t) + ax . j(l) (x; t) = 0, (12)

a reduced one-body equation of continuity. Hence we recover the familiar
quasi-classical law of (local) mass conservation, without appeal to an observer.

A suitable general prescription, consistent with these principles, is the familiar
one-body field operator of standard many-body physics. Specifically, we consider
the quantities

f(x, t) == (\l!IF(x, t)I\l!) , (13)

where I\l!) is the many-body state, and a typical one-body operator may be
written

F(x, t) = ~t (x, t)F(x, t)~(x, t) , (14)

with ~t(x, t), and ~(x, t) the usual field creation and annihilation operators and
F(x, t) is generally a c-number distribution (e.g. -in\! for momentum). Thus
we arrive at an explicit prescription for what Gell-Mann and Hartle (1993) have
referred to as a quasi-classical coarse graining of the quantum micro-reality.

4. Hypothesis of Restricted Observables

To complete the interpretation we advance a simple hypothesis: Only reduced
one-body quantities are directly observable-all other observations must be derived
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(15)

(16)

from these. * The purpose behind this postulate is to secure the foundations for a
continuum theory, in which there is no need to introduce an external observer that
must 'find' the many particles which comprise a macroscopic instrumental readout.

Now the correspondence principle of Bohr (1928) is met directly in the
construction of the observable level along with the non-classical property. of
quantum entanglement. Via coarse-graining this property becomes reconciled
with our direct experience of apparently continuous quantities formulated in a
3 + 1 dimensional space-time. However, unlike classical continuum physics, the
dynamics of the observable fields drawn above is not determined by their values,
but rather those of w.

Obviously, quantum non-separability remains important in determining the
behaviour of such reduced fields, but we are free of the need to explain it within
the reductionist model of particles. The quantum world is restored to a whole,
although it can resemble a collection of parts whenever the quantum correlations
among these are negligible.

For instance, under isolated conditions, e.g. a diffuse gas, the many-body
wavefunction can be well-approximated by a factored product (Brown 1972)

N

w(X;t) ~ II VJj (Xj , t).
j=l

The one-body density reduces to a simple classical sum of N terms Pj(x) = IVJj(x)1 2 ,

and these behave as independent extended 'particles'. Unlike in classical physics,
the indistinguishability of identical 'particles' now follows in consequence of the
fundamental hypothesis. Taking a symmetrised wavefunction

1
W(X;t) = IiTj ~:)±)PW(P[Xl'... ,XN];t),

vN! p

with P denoting permutations, and sign + for bosons, and - for fermions, one
sees that the one-body density has, in general, N distinct lumps. In Copenhagen
physics different species of particle are distinguished by their quantum numbers.
Exact conservation laws yield exact quantum numbers (Itzykson and Zuber 1985).
Similar consideration can be applied to fields. If each coordinate Xj has identical
one-body conservation laws, then observation of their sum via (10) will offer
no means to associate anyone of N lumps with a particular coordinate. The
identity of elementary field coordinates is lost by integration for observable fields
whose form is invariant to permutations among these.

5. Unobservable Determinism and Locality

Theories of this kind afford a very natural explanation for the unrepeatable
nature of quantum observations. There are many W which generate similar one-

* The clearest antecedent I am familiar with is Bell's notion of beables; hence his line
'Observables are made out of beables' (Bell 1973). There is also an obvious similarity with the
de Broglie-Bohm theory of pilot waves (for a review, and commentary, see Bell 1976), except
that we introduce no extraneous variables to track point-like particles within the wave. We
choose this hypothesis as a simple means to address the dilemma of configuration space. The
wave-particle duality of Bohr (1928) is then broken in favour of waves, with the particle-like
properties treated as an idealisation.
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body fields but these need not evolve identically, since it is the wavefunction which

serves as the initial condition. Since only reduced quantities are observable (by

hypothesis), the experimental conditions are inexactly reproducible, of necessity.

The theory remains deterministic, but only some approximate causality is testable. *

This is an encouraging sign, but it remains to formulate a clear locality criterion

for the dynamics of fields in configuration space. Evidently, the observational

requirement upon locality is that effective superluminal communication be ruled

out. This demand applies at the level of the observable fields, but the usual

quantum non-locality· persists in non-classical correlations among observable field

values at different space-time points. The position is similar to the non-local but

non-communicating theory of Bohm and Bub (1966). We must remember that

the Bell (1988) inequality exclusions apply only to local hidden variables theories.

How any physical non-locality is judged depends greatly upon our assumption of

what is observable.

A scenario for observation in nonlinear theories

,~,
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(here)• ,,,,,,

(

IUI
2 0) ,~,

TrenvU5] = / or
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t ·

(there)

(a) Pure Decoherence
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•
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0)
Trenv[jj] = X

o IPI2

t
(there)

(b) Penrose + Decoherence

Fig. 2. In a nonlinear theory one must explain transition probabilities without postulating

them, so that a theory of individual events is the natural goal. The existing theory of

environmental decoherence provides a route to justify the values these take, see panel (a).

There the effect of the environment is to decohere the reduced density matrix into diagonal

form in the Zurek pointer basis (Zurek 1981, 1982, 1991). However, because linear interactions

entangle states there is no way to cross-couple the diagonal entries. If we invoke the Penrose

(1993) scenario, of an emergent gravitational instability, one might hope to reduce the

remaining terms in stochastic fashion (cf. Di6si 1989). This scenario is advanced as a guide

to locating candidate nonlinear terms.

6. Scenario for the Observational Process

Unlike in Copenhagen physics, the reduced one-body continuum fields are

to describe the objective and observable state of an entire cosmos, including

* One is reminded here of a remark by Heisenberg (1949): 'The chain of cause and effect could be

quantitatively verified only if the whole universe were considered as a single system-but then

physics has vanished, and only a mathematical scheme remains.' That is true of Copenhagen

physics; but in this approach the mathematical scheme is filled with additional content. The

dimensional reduction to observable fields enables us to postulate a psycho-physical parallelism

between these and the objective reality of natural processes. Unlike classical psycho-physical

parallelism, fundamental limits to observation and control are imposed by the inaccessability

of quantum initial conditions. Hence the hypothesis of restricted observables is central to the

internal consistency of objective theories.
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quantum transitions. A partial explanation for these is available via the physical
mechanism of decoherence (Zurek 1981, 1982, 1991). Recall that the transition
probabilities, and the basis in which a superposition is finally resolved, are
explained therein by appeal to environmental effects. These wash out off-diagonal
coherences in the density matrix leaving only diagonal entries in the so-called
Zurek (1981) 'pointer basis'. Each of these appears weighted by the appropriate
quantum transition probability, see Fig. 2(a).

However, it remains to locate some physical mechanism that can reduce
the many diagonal entries to just one manifest outcome. Here we take up a
suggestion due to Penrose (1993), that a gravitational nonlinearity may resolve
gross macroscopic superpositions. The idea is that, while gravitation is very
weak, it is sensitive to the collective state of a very large assembly of particles.
For example, a dead cat and a live cat generate very different gravitational
potentials. Since gravitation is a localising force, it may intervene to choose just
one lump before the situation becomes absurd.

Interestingly, non-entangling nonlinearities can cross-couple the diagonal entries
in a decohered density matrix-without demanding any further tracing over the
environment. Therefore, the two ideas seem strongest when combined. We suggest
a two-step scenario: probabilities fixed by decoherence, and individual events
selected by a nonlinear instability, see Fig. 2(b). This scenario resembles the
gravitational stochastic reduction idea of Di6si (1989), except that no assumption
of intrinsic quantum jumps is needed.

7. Mathematics of Nonlinear Theories
Consistent with the preceding interpretation we consider replacing many-body

operator quantised fields by fields in configuration space. Thus we study
generalisations of the familiar linear dynamics for complex-valued fields in
configuration space.

One is in search of a formalism which enables the extraction of linear operators
in the weak-field limit of small nonlinearity. This demand reflects the physical
necessity that the structures of the present theory be recovered in an orderly
manner. That is, just as the metric field introduced in general relativity subsumes
the flat Minkowski space metric, we must ensure that a nonlinear formalism is a
natural generalisation of the familiar physical structure of linear operators acting
upon a Hilbert space. In this way both the mathematics and physical concepts
of a nonlinear theory may contract upon those of its predecessor.

Some guidance is provided by the previous geometrisation of quantum dynamics
due to Kibble (1979), along with the introduction, by Weinberg (1989), of a
restriction upon the allowed Hamiltonians which enforces the requisite operatorial
structure. Here we present a new argument to constrain a Lagrangian system of
dynamics, so that relativistic extension is possible (Itzykson and Zuber 1985).

Consider a wavefunction in configuration space with N particle coordinates,
and one time coordinate. We are thus pre-occupied, at first, with a non-relativistic
dynamics. We seek a prescription for such which may effectively subsume and
generalise the standard one. To begin we decompose the complex field into a
pair of real-valued fields

\lJ(Xl, ... ,xN;t) == J~(<I>R(Xl' ... ,xN;t) + i<I>I(Xl,.'. ,xN;t)), (17)
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being its real and imaginary parts. As such, we may employ understanding of

the classical theory of Lagrangian dynamics to obtain a nonlinear dynamics for

complex fields.
Recognise, however, that the classical parallel is in no way reflected in physical

concepts. The 'classical fields' drawn above support no physical dimension, as

they are the real and imaginary parts of a complex quantity. They are also

fields in configuration space, the like of which was not encountered prior to the

discovery of Schrodinger dynamics.

To deal first, in isolation, with the unfamiliar aspect of configuration space

consider the case of a single real-valued field, <P(XI, ... , XN; t), and make the

obvious identifications: at == a/at; x == (xj , ... , XN ); and ax == (\7Xl , ••• , \7XN ).

A Lagrangian dynamics in configuration space is then obtained via the classical

principle of least action

I
t 2

8I[~] == 8 dt L[~, 8t~] == 0,
tl

L[<p,8t<p] == Jd3NX£(<p, Ot<P, Ox<p) .

Taking the variational derivative, we compute

(18)

(19)

I
t 2 J {oc 8£ 8£ }

8I[~] == dt d3NX -8<I>(X;t) + -[-]8ot<P(X;t) + fl' 88x<p(X;t) .
tl 8~ 8 8t <I> 88x~

(20)

Adopting now the usual endpoint restrictions 8~(tl) == 0, and 8tI>(t2) == 0, with

~(X; t) vanishing at spatial infinity for all t, we integrate by parts, and transfer

partials, to obtain the required Euler-Lagrange equations for real-valued fields

in configuration space

a£ _ a(~) _ ax .( a£ ) - 0
a<1> t a[at<1> ] a[ax<1>] - .

Further, upon defining the canonically conjugate momentum

8 a£
II(X· t) == ~-L[<I>, at<I>] == a[a <I?]

, - 8 [at <I?] t

(21)

(22)

and making a Legendre transformation to introduce the Hamiltonian functional

H[<p, II] = Jd3NXII(X;t)ot<P(X;t) - L[<p,Ot<P] ,

we obtain the real-valued Hamiltonian system

a~(X· t) == 8H[~, II] and aII(X. t) == _ 8H[<I>, II]
t , + 8II(X; t) t, 8<p(X; t) ,

with the associated Poisson bracket

(23)

(24)
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{G[cI>, II], H[cI>, II]}PB == Jd3N X{8G[cI>, II] 8H[cI> , IT] _ 8H[cI>, II] 8G[cI> , II] }
8cI>(X; t) 8IT(X;t) 8cI>(X; t) 8II(X; t) ,

(25)

analogous to the standard one (cf. Itzykson and Zuber 1985).
This formalism embraces all manner of conservative nonlinear wave-equations.

However, with the notable exception of the real-valued gauge fields of quantum
field theory, it is too general a framework for quantum dynamics. Examining
the complex action principle

8I[IlT] = 81:2

dt Jd3N X .c(IlT, o,1lT, 8x1lT) = 0 , (26)

we acknowlege a novel restriction of purely mathematical origin. Upon promoting
real fields to complex fields we have implicitly chosen a Lagrangian formulated
upon two coupled real-valued fields cI>R and cI>I. Together these fix both \lJ(X; t)
and its complex conjugate \lJ*(X; t). However, the general action for doubled
fields, namely

8I[<I>R' <I>r] = 81:2

dt Jd3NX.c( <I>R' Ot<I>R, 8x<I>R; <I>r, Ot<I>r, 8x<I>r) = 0, (27)

can violate this property (for a simple finite-dimensional example, see Jones
1994a).

One may perceive, in this simple observation, the magnificent opportunity to
fix, once and for all, the precise form of the mathematical formalism into which
all physical content must be poured. An inclusive nonlinear quantum theory must
employ a generalised dynamics compatible with complex-valued fields. Evidently,
this must be a restriction founded within complex geometry. Elsewhere, we
employed analyticity conditions to investigate this question (Jones 1994a). This
characterises linear quantum dynamics as the analytic restriction of complex
nonlinear dynamics. To go beyond that demands geometrical arguments which
are not tied to the assumption of analyticity.

Here we present a new argument which affords a complete characterisation of
complex nonlinear dynamics. After a global phase change \lJ f----+ eiB\lJ in (17), the
real and imaginary parts of the complex field transform to

~R (()) == cos ()<!>R - sin ()<!>I ,

~I (()) == sin ()<!>R + cos ()cI>I .

(28)

(29)

Obviously such a gauge freedom may always be implemented at the level of
the solutions to a complex dynamical system (because the two fields are not
independent) .

Therefore, we demand that the action functional respect the continuous
symmetry

I[cI>R' cI>I] == I[~R(()), ~I(())] . (30)
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Differentiating both sides we discover that

o- Jd Jd3NX { b1 deI>R 81 deI>I}
- t 84>R(X; t) dO + 84>1 (X; t) dO ·

Using eI>~(B) == -eI>I(B), and <I>I'(B) == +<I>R(B), and substituting

b 1( b b)
- =../2 8w(X;t) + 8w*(X;t) ,

b . 1( b 8)
8<I>I(X;t) = r../'2 8W(X;t) - 8W*(X;t) ,

we obtain the complex compatability conditions
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(31)

(32)

(33)

l- Jd3NX b1[\lJ, \lJ*]\lJ(X·t) == l: Jd3NX bI[\lJ, \lJ*] \lJ*(X·t) (34)
b\lJ(X;t) , b\lJ*(X; t) "

of which the Kibble- Weinberg homogeneity constraint (Kibble 1978; Weinberg

1989)

J
dt Jd3NX bI[\lJ, \lJ*]\lI(X·t) == I[\lI \lI*] == Jdt Jd3NX bI[\lI, \lJ*] \lJ*(X·t)

b\ll(X;t) ' , . b\lJ*(X;t) "

(35)

is a special case (we will comment upon its utility later).

Provided that the action respects (34) the invariance under a global phase

change is guaranteed. This we take to be an intrinsic characterisation of complex

dynamical systems, defined via the complex Euler-Lagrange equations

oi: ({)£,) ({)£)
oW - °t 0 [Ot w] - ax· 0 [axw] = 0 and c.c., (36)

appearing as a conjugate pair. The corresponding complex momenta, for there

are now two of them, are defined as

b {)£

II(X; t) == 8 [Ot w] L[w, Otw] = 0 [Ot w] ,

{)£,
IT(X;t) == 8[o~w*]L[W*,OtW*] = o [Otw*] .

The complex Hamiltonian functionals are then

(37)

(38)

H[w,II] == Jdt Jd3NXII(X;t)ot W(X;t) - L[w,otw], (39)

H[w*,IT] == Jdt Jd3NXIT(X;t)8t W(X;t) -L[w*,otW*]. (40)

Hence we arrive at the corresponding Hamiltonian equations
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bH[\lJ,II] bH[\lJ,II] .
(41)OtW(X;t) = + ( ) and OtII(X; t) = b\lJ(X; t) ,bII X; t

bH[\lJ* IT] - bH[\lJ*, IT]a \lJ*(X· t) == + 'and aII (X· t) == (42)
t , bII(X; t) t, b\lJ(X; t) .

Generally these four equations may be reduced to two, say (41) with (42) obtained
as the conjugate, provided that we elect to define L[W*, at \lJ*] as L[\lJ,at \lJ] subject
to the mapping \lJ ~ \lJ*. If this is not done, then it may happen that II and IT
are not complex conjugates of one another, in which case one would select just
one pair of equations anyway.

Returning now to (34), we see that this defines a functional equation for the
Lagrangian. To absorb its content we consider the typical non-relativistic example

H[W,W*] = in J d3NXW*(X;t)Ot W(X;t) - L[W,OtW] 0 (43)

Then II(X; t) == i1i\lJ*(X; t), and the equations (41) become

. bH[\lJ, \lJ*] . * bH[\lJ, \lJ*]
znOtW(X;t) = + *( ) and znOtW (X;t) = - ( \' (44)

b\lJ X; t 8\lJ X; t

which are those proposed previously by Weinberg (1989).
The condition (34) is immediately satisfied by the time-dependent part. A

sufficient condition for the Hamiltonian functional is then

J
d3NX 8H[W,W*]W(Xot) = Jd3NX 8H[W, W*lW*(Xot) 0 (45)

b\lJ(X;t) ' b\lJ*(X;t) '

As an example, return to (1) and observe that this equation may be derived from

J
1i2

H[W, W*] == d3x 2m \7x W*(x ;t ) 0 \7x W(x ;t )

± %J d3x J d3xW*(x; t)W*(x; t)8(3)(X - x)W(x; t)W(x; t) , (46)

which certainly satisfies the complex compatibility conditions (45).
However, such equations do not respect the scaling invariance \lJ (t) ~ A\lJ (t)

that is typical of the present theory. As Haag and Barmier (1978), Kibble (1978)
and Weinberg (1989) have suggested, this scale invariance is physically desirable
in order to include separated systems properly. As later emphasised by Jones
(1994a), this same property is responsible for the general possibility of nonlinear
operators, and thus a nonlinear spectral theory-i.e. quantised behaviour in a
nonlinear theory.

Demanding scale invariance at the level of the action, via

I[A \lJ, \lJ*] == AI[\lJ, \lJ*] == I[\lJ, A\lJ*] , (47)
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leads directly to (35), once we differentiate against A. Thus the Kibble-Weinberg

formalism is fully characterised as the Complex and Projective Hamiltonian

Dynamics.
That a mathematical structure of such importance could go unrecognised for

so long is surprising. However, this is surely due to the subtleties of complex

geometry. The present formalism first generalises the classical fields of one space

coordinate into configuration space. This entails a change in the conceptual stand

taken, but leaves the mathematics unaltered. This step complete, we proceed to

restrict the Lagrangian dynamics to ensure compatibility with complex numbers.

At this stage one might be excused for thinking a restricted mathematics would

be less frutiful. However, the demand of a complex projective structure introduces

new structures that are not supported by its general embedding.

The important conclusion for physics is that our demand for a fully inclusive

Lagrangian dynamics for complex fields has here met with a unique solution!

Thus we have identified the natural mathematical system an inclusive nonlinear

quantum theory must employ if it is to recover past successes. It is a remarkable

thing to enter upon a wider physical framework via the mathematical restriction

of the now discarded classical theory.

The interesting novelty of this restriction to complex fields is the natural

occurrence of nonlinear operators, via the presence of non-bilinear hermitian

forms. To construct these we consider (35), as applied to the Hamiltonian

functional, and so obtain the canonical operator decomposition

H[w '11*] == jjd3NXd3NXW*(X.t) 8
2!![w,

w*] w(X-t) (48)
, '8w*(X;t)8w(X;t) "

along with the subsidiary condition

8H[w, '11*] ==jd3NX 82H[w,w*~ w(X;t).

8w*(X; t) 8\lJ*(X; t)8\lJ(X; t)
(49)

Thus homogeneous Hamiltonian functionals can always be recast in the form of

generalised expectation values, where the matrix elements of the operator depend

upon w. However, at each W these can be diagonalised using the linear spectral

theory (Kreyszig 1989). Thus a complete set of states is available to erect a

tangent Hilbert space at each point on the manifold of all normalisable \lJ.

Combining these observations with the dynamical equations (44), one can now

relate the generalised framework with the familiar linear dynamics, as traditionally

expressed in Dirac notation. Making the identifications

(X, tlw) ~ w(X; t) ,

82H [w,w*]
(X,tIH[w, w*]IX,t) ~ 8w*(X;t)8w(X;t) ,

8H[w, '11*]
(X, tIH[w, w*J1w) ~ 811J*(X; t) ,

equation (44) becomes (Kibble 1978)

(50)

(51)

(52)
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d A

in-lw) == H[w,w*]lw) and c.c.,
dt

K. R. W. Jones

(53)

which is the generalised Schrodinger equation in operator form.
This is most interesting in connection with the spectral theory of nonlinear

dynamical systems. The eigenstates of this formalism may be viewed as stationary
points of the flow in complex projective space. Then W is an eigenstate
of its associated tangent-space operator H[w,w*]. Physically, we expect the
time-dependence to read

\[IE(X; t) == \[I(X; 0) exp { - *Et } , (54)

in an eigenstate. Adopting the Rayleigh-Ritz variational principle (Morse and
Feschbach 1953), we look for critical points of the normalised Hamiltonian, i.e,
we set

where

8 (H[W,W*])
8\[1* (X; t) N[\[I, \[1*] = 0 ,

N[\[I, \[1*] = Jd3N X \[I *(X; t)\[I(X; t) ,

(55)

is the norm-functional. This fixes the stationarity condition (Weinberg 1989)

8H[\[I, \[1*] = (Z) ~(X; t) , (56)

with E == H / N, the total energy in the stationary state. In the physical
language of states and operators this is the familiar condition (now intrinsically
self-consistent) :

H[w, w*]I'1J) == Elw), (57)

which is the basis of nonlinear spectral theory [where (35) allows us to set N == 1].
In this manner one may verify (54) as being an appropriate ansatz for nonlinear
eigenfunctions.

8. Empirical Constraints upon Nonlinearity

The recent experiments of Bollinger et ale (1989) yielded an upper bound
of 4 x 10-27 for the relative magnitude of nonlinear self-energy effects in freely
precessing beryllium nuclei. This, and other similar null results (for a review
see Bollinger et ale 1992), show that single-particle nonlinearities are physically
uninteresting to contemplate.

However, these null results do not exclude the emergent model of Penrose
(1993), where quantum nonlinearity is to intrude whenever a macrosopic body,
containing many particles, is split by an amplified chain of interaction with a
single micro-particle into a gross superposed state. Then the degree of nonlinearity
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felt by one particle will be subtly dependent upon the context into which it is

placed, i.e. emergent effects are possible.

Therefore, we confine attention to the study of many-body nonlinearities,

and further look to physical sources of self-interaction. Among the four known

physical interactions only gravitation is not directly tested at the quantum level.

Although it is weak, it does not screen, and so could play a decisive role in

collective many-body physics. For our concern, the main question is how quantum

gravity modifies dispersion.

9. Cosmic Localisation and the Observer

Consider a universe containing just one scalar massive neutral particle. In the

linear theory dispersion will spread the wave-packet, ultimately without limit.

An observer is then invoked to find the particle here, or there, from time to

time (Heisenberg 1949). Thereafter, the observer assigns a new \lJ to represent

his or her knowledge' about the particle state. The localisation achieved is thus

determined by the accuracy of the measuring device.

Unfortunately, there is no measuring device out there to observe the universe.

Thus a Copenhagen physicist must conceive of a cosmic observer, to sit above

all, and conjure from among all possibilites the histories that are, see Fig. 3(a).

Necessarily, one has passed outside of physics at this point, which we prefer to

avoid. In place of the observer, in place of the arbitrary selection of a cosmic

initial condition, one may give preference to a theory which was explicit about

what an observer is (Bell 1973). Ideally, we should make no presumption of

sentience (Wigner 1962), and so adhere to the established model of matter ruled

by a few fundamental interactions, independent of consciousness.

Cosmological Significance of the Observer

f\ / \.f\/ r , 1\
~ ~ ~ ~ ~

(a) Copenhagen Cosmology

Iiii1\
\t:!!!;I

(b) Schrodinger Cosmology

Fig. 3. On a cosmic scale the Copenhagen theory is open. A simple example is the Newtonian

cosmology fixed by a scalar massive field, with no other sources present. Some external agent,

here represented by an eyeball, must intervene to define what happens through the act of

observation, panel (a). In the Schrodinger theory the act of observation is to be replaced by

a dynamic localising self-potential, panel (b). In that case the cosmology is closed, and one

may legitimately pursue an objective interpretation.

Within nonlinear theories the scope for treating interactions is much wider. For

instance, via a potential V[w, '11*] the wavefunction of the universe experiences a

separable dynamical back-reaction. Such potentials may function as a non-sentient

observer to achieve the necessary localisation, see Fig. 3(b). In this model all effects

now attributed to the observer should be traced to nonlinear self-interactions.
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Hence we seek to replace the Copenhagen obsever by a localising self-interaction.
The options are: (1) strong force, (2) weak force, (3) electromagnetism, and (4)
gravitation. Among these only gravitation is not directly tested at the quantum
level. It is universally attractive, and additive. Gravitational localisation grows
stronger with mass-density, whereas dispersion decreases with mass. In the
competition between effects that dominate at either end of this spectrum one
may set a scale for the onset of emergent behaviour.

10. Gravitational Self-energy
For the problem of one particle in an otherwise source-free universe the only

interaction that is possible, and which may be plausibly invoked to achieve both of
the aforementioned aims, is the gravitational self-energy due to the stress-energy
of its own wavefunction.

Ordinarily second-quantisation is invoked to treat the physics of self-energy.
However, this approach has encountered severe and persistent difficulties for
gravitation. The field theory is non-renormalisable and thus unpredictive (Isham
1992). As noted previously by Barut (1990), the physical effect of self-interaction
can be modelled within nonlinear theories using a self-potential V['11, '11*]. Then
one need not 'second-quantise' gauge fields in order to equip their sources with
self-interaction. In place of the traditional procedure we look for a self-potential
consistent with the continuum interpretation, and corresponding with the classical
treatment of self-energy. The obvious choice is to take

p(x; t) == m7jJ(x; t)7jJ* (x; t) (58)

as the mass density for our particle. Then the physical correspondence principle
is met by adopting the Poisson equation

\72
<I>gravity ( X ) == 47rGmp(x; t) ,

as its source. Solving this we obtain the gravitational self-potential

<Pgravity(X; t) == -Gm17jJ* (x; t)7jJ(x; t) 3-lx-xl d x ,

(59)

(60)

with the coupling strength fixed again by the correspondence principle. Coupling
(60) back upon the particle, we compute its gravitational self-energy

. - - Gm
2 11 'ljJ*(x;t)'ljJ*(x;t)~(x;t)'ljJ(x;t) d3xd3x, (61)Egravlty - 2 [x - xl

where the factor ~ avoids double counting. The result is a non-perturbative and
finite mass renormalisation m ~ m + bm, given by bm == Egravity / c2

.
This choice recovers classical continuum results in a direct manner. However,

it remains to incorporate this term into a wave-equation which recovers the
Copenhagen free-particle results when Egravity may be regarded as negligble
relative to the wavepacket kinetic energy. This demand is met once we choose
the Hamiltonian functional
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1-n?
H[\11, \11*] = 2m \l'lj;*(x;t) . \l'lj;(x; t) d3x

- Gm
2 11 'Ij;*(x;t)'Ij;*(x;t)'Ij;(x;t)'Ij;(x;t) d3xd3x, (62)

2N[w, w*] [x - xl

where scaling by 1/N['11, '11*] in the second term ensures that (35) is satisfied.
Using (44), we deduce the corresponding gravitational Schriidinqer equation

·1i~f)/t( . ) == {_ ~"2 _ Gm
2 11jJ*(x.;t)1jJ(X;t) d3 - _ EgravitY}f)/t( . )

2 'f/ x, t v N I -I x N 'f/ x, t .at 2m x - x

(63)

This generalises the free-particle wave-equation to include gravitational self-energy
while ensuring that we can recover the familiar Dirac formalism of linear operators
upon a Hilbert space via (48). Also, the term Egravity / N ensures that the
Copenhagen rule for forming expectation values will recover the self-energy
functional (62).

The main feature of interest is the existence of a spectral theory for (63)
which runs analogous to that for the hydrogen atom. Every wavefunction fixes
a self-potential, and the time-independent Schrodinger equation has a complete
family of eigenstates. Certain wavefunctions will then be eigenstates of their own
potential, and these are stationary states of the system as a whole. Thus we
may reinterpret quantisation as a nonlinear eigenvalue problem (cf. Schrodinger
1928), and trace the apparently discrete properties of nature to the existence of
quantised stationary states.

11. Newtonian Quantum Gravity

To obtain a consistent many-particle theory, in which gravitation remains
a non-entangled observer, we look for a non-entangled treatment of mutual
interaction. It must meet the correspondence principle, and allow for a consistent
treatment of quantum statistics.

Here we take inspiration from the Hartree-Fock approximation (Brown 1972),
which provides a very simple physical model for nonlinear mutual interactions.
The method derives from a variational principle (Kerman and Koonin 1976),
and is fully compatible with quantum statistics. It replaces the usual two-body
pairwise entangling interactions by a sum of one-body non-entangling potentials.
In electromagnetism the source term for these is just the one-body charge density.
For electromagnetism it is known to be approximate*, but for gravitation there
is no empirical data to check.

* For instance, the entangling nature of electromagnetism is easily established via spectral
studies of many-electron atoms. In the earliest calculations by Hartree (1928) he obtained
energy levels that differed from the experimental data by a few percent for the lowest lying
states. Indeed, Lieb and Simon (1974) have since established that HF energies are generally
larger than their linear Coulomb counterparts, although for high-lying states the predictions
are asymptotically equal. Thus entangled and non-entangled treatments of the Coulomb
interaction are distinguishable purely via spectral studies.
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Guided thus, we postulate the many-body Hamiltonian 

N 2 

H(N)[W W*] = jd3NX '" ~V' .W*(X·t)· V'W(X·t) ,- L-t2 X't , X"" , 

i=l mi 

(64) 

- 1 * jjd3NXd3NX (~ t Gmirr:j )w*(X;t)w*(X;t)W(X;t)W(X;t), 
N[w, w ] i,j=l IXi - Xjl 

which is compatible with quantum statistics. Applying (44) we obtain the 
equation of motion 

{ 
N 2 N } 

i1i~W(X;t) = - L ~V'~i + LmiiJ?(Xi) - :[~av~~] W(X;t). 
at i=l 2m. i=l ' 

(65) 

Here iJ?(x; t) is the gravitational potential 

N -
iJ?(x;t) = - L Gmi * jd3N X w*(X;t)w(X;t) 

i=lN[W,W] Ix-xii' 
(66) 

which now depends upon only one coordinate, and is the same for each particle. 
Since the one-body density (10) is the source for the gravitational field this 

theory is consistent with the intended physical interpretation. Observable fields 
are one-body fields, and the candidate observer monitors only these. Hence we 
advance (65) as a plausible equation consistent with a continuum quantum theory. 

Obviously, a direct test of (65) is out of the question. Nevertheless, we 
can contrast it with the canonically quantised theory specified by the Coulomb 
potential 

N 

V(X) == -~ L Gmimj. 
if.j;i,j=l IXi - Xj I 

(67) 

Just as with many-electron atoms, the gravitational spectra of Copenhagen and 
Schrodinger theories of Newtonian gravity must differ (Lieb and Simon 1974). 
Purely spectral studies of the bulk excitations of a cold assembly of many neutral 
particles, such as a dense Bose-Einstein condensate, could arbitrate in favour of 
either theory. Thus the principles of Copenhagen physics are open to falsification 
via tests of the continuum alternative. 

The significance of this simple observation cannot be overstated. Since 
the treatment of self-energy here adopted is consistent with that employed by 
Barut (1990) in his nonlinear self-field quantum electrodynamics, a self-consistent 
non-perturbative continuum quantum field theory is technically possible, see 
Fig 4. Furthermore, since he found agreement with perturbative QED [at least to 
O(a)], one may take the prospect of it being correct rather seriously. Newtonian 
quantum gravity thus represents a critical fork in the development of quantum 
field theories; it is the litmus test of reality (Jones 1995). 
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Fig. 4. Since there are two consistent ways to include 
gravitation, and these differ in their philosophy, physical 
interpretation, equations, and predictions, we may view 
Newtonian quantum gravity as a critical fork which divides 
quantum field theories into two classes. One is a discrete theory, 
the other a continuum theory. Since quantum gravity is not 
directly testable we must seek indirect tests of the continuum 
alternative. The key issue must be self-energy, and whether 
a consistent nonlinear treatment is possible for the remaining 
physical interactions. The self-field quantum electrodynamics 
of Barut (1990), here labelled as QED, is an obvious candidate 
theory for deeper studies in unification. 

12. Localised Solitary Wave Solutions 
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As a first check upon the cosmical self-consistency of pure Newtonian gravitation 
we search for bound and stable solitary wave solutions. These are to set the 
scale for wave-packets in just the manner that we presently conceive an external 
observer may do. 

For simplicity, we will concentrate upon the case of N identical bosons. The 
scenario of key interest is a Bose-Einstein condensate described by the trial 
wavefunction 

N 

~(X;t) = IIf(Xj)exp{-iEt/n}, 
j=l 

(68) 

consisting of N bosons, each of mass m, with N identical wavefunctions f(x). 
According to the prescription (66) the mass of this B-E condensate generates 
the binding self-potential 
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<p(x) == -NGmJd3x f2(x)
lx-xl
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(69)

(where we have set N[\l1, \l1*] == 1).
Substituting (68) and (69) into equation (65), and taking variations according

to (56), the original N-body eigenvalue problem separates into N copies of the
one-body equation

2m
V 2 f (x ) + -2 {E - m<P(x)} f(x) == 0,

1i
(70)

coupled solely via the potential (69). With the given B-E ansatz, (68), it suffices
to solve just one of these equations and so determine the one unknown function

f·
No analytical solutions to (48) are known, but numerical solutions are readily

obtained. Indeed these have been examined extensively in the literature of boson
stars, beginning with Ruffini and Bonnazola (1969), followed by Thirring (1983),
Friedberg et ale (1987), and Membrado et ale (1989). In the previous studies
(65) was interpreted as the non-relativistic Hartree-Fock approximation to the
Copenhagen theory of quantum gravity, as defined by (67). Here we view it as
fundamental.

To discuss numerical solutions we must first define the nonlinear eigenvalue E.

Referring back to (65) we have

E == E + Egravity/N,

where E is the true one-particle eigenenergy, and Egravity, is the total self-energy.
Thus E is an eigenparameter, and is not the physical eigenvalue.

Further, although the physical boundary conditions are that <p(x) ---+ 0 as
x ---+ 00 one can always redefine the value of E as follows:

E - m<P(x) == [E' - A] - [m<P(x) - A] ,

with A arbitrary. To fix it for numerical computations we introduce a
constraint due to Membrado et ale (1989). The virial theorem demands that
2Ekinetic == -Egravity, so that Etotal == Ekinetic + Egravity == -Ekinetic == +~Egravity.
Since N E == Etotal + Egravity, where Etotal == N E, with E the one-particle energies
above, we obtain the relation

N E == ~Egravity == - 3Ekinetic , (71)

showing that E == 3E, which is minus three times the kinetic energy of a one-particle
state. Since these are readily computed independently of the numerical boundary
conditions imposed upon <P the eigenvalues are then fully determined.

Friedberg et al. (1987), have shown how the solutions to (70) form an
homologous family in which all solutions are obtained as rescalings of certain
universal functions. Dividing (48) through by f and taking the Laplacian of both
sides we obtain
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\72( \72f) = 81l" f2 ,
f ag

and so pick out the gravitational Bohr radius

1i2
(N) == -~3'~'

ag GNm
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(72)

(73)

(74)

(75)

as the relevant scale parameter.

To solve for the spherically symmetric states (S-wave) we introduce a radial

coordinate p, and introduce two universal functions f*(p) and g*(p) == <J?*(p) - E*

defined as solutions of the system \72f* == g*f* and \72g* == .rv. Assuming we

have these one may check that the rescaled functions

2! ( 2r )
f(r) == 2( )2( (N»)~ r ---vvT '

1r /"1 ag /"lag

2 G
2
N m

4
{ ( 2r) }

<p(r) = bd2 n? g* "Y1a~N) + E*

solve the system \72f == (2m/1i 2)gf and \72g == 41rGNm2t? (where 9 == m<J?).

Adopting the standardised boundary conditions of Friedberg et ale (1987),namely

f*(p) == 1 with df* /dplp=o == 0, g*(O) == /"0, and dg*jdplp=o == 0, one simply adjusts

/"0 by shooting to meet the demand limp-+cx> f*(p) == O. Once an eigenfunction is

found we may fix the parameters

1'1 == l CO

[f* (p)]2p2dP'

31CX>E*(n) == - [f*(p)]2g*(p)p2dp,

/"1 0

(76)

(77)

via numerical integration.

The behaviour of solutions closely parallels that which obtains with linear

eigenvalue problems such as the hydrogen atom. Physical solutions occur labelled

by discrete values of /"o(n), with the principal quantum number n == 0,1,2, ...

assigned by node counting. Example solutions for the ground, and excited state

are shown in Fig. 5.

The characteristic scale of the ground-state wave-packet is around 10 Bohr radii.

This is an extremely interesting number. For nucleon masses it is around 1023 m,

but it depends upon the number of particles present. If we take N == 1023 , i.e,

around the Avagadro number, then the cosmic scale of gravitational localisation

becomes 1 m. This fact and the existence of excited states of greater size

indicates that, in continuum theories, elementary 'particles' are dynamic entities

whose size depends critically upon the experimental context into which they are

placed. This must be expected in any departure from the Copenhagen ideal of

point-like objects since 'rigid' models of particle structure are not compatible

with special relativity.
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Fig. 5. Universal functions for (a) the gravitational ground state and (b) the ground-state
self-potential; and (c) the first excited-state and (d) the excited-state self-potential. A cosmic
scale is set for each wave-packet, and no external observer is needed. Thus the gravitational
Schrodinger equation exhibits a closed Newtonian quantum cosmology.

Indeed, other localising, but entangling interactions, such as electromagnetism,
will alter the self-consistent solution that determines these wavefunctions. As
such, these computations have no practical predictive content. They merely
illustrate how self-gravitation may equip nonlinear quantum theories with a generic
mechanism to set a fundamental scale for wave-packet localisation. Obviously,
any predictions for the onset of emergent behaviour must include the effects of
electromagnetism. In the static approximation this is easy, we just include the
electromagnetic analogue of (67). However, the consistent treatment of radiative
processes is not straightforward. Indeed, some way around the present canonical
quantisation of the electromagnetic field would seem essential. Again, the self-field
QED of Barut (1990) is an obvious candidate.
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13. Conclusion
Nowadays it is often assumed that the principles of Copenhagen physics

are complete in every detail, and that all new physics will conform to them.
Nevertheless, the problem of quantum gravity, and the question of quantum
measurement seem always to elude a physical solution within the orthodox scheme
of thought.

Some years ago, Weinberg (1989) suggested that we look to nonlinear theories
as a means to test the principle of linear superposition, the most central tenet
of Copenhagen quantum mechanics (Dirac 1958). The stumbling block has been
to locate new physical principles compatible with nonlinearity. Only then can
we construct genuine alternative theories, equal in their predictive power and
manifest self-consistency, but which finesse the superposition principle via some
subtle and tellingly different predictions.

Here we have addressed the problem of interpreting nonlinear theories in a
predictive scenario that is motivated by the outstanding difficulties in quantum
gravity, and quantum measurement. Thus we approach the construction of a
nonlinear foil with clear physical problems in mind-we grant that the nonlinear
option may be correct.

The resulting theory differs in its underlying principles in a clear manner:
particles are to be replaced by continuum fields; wavefunctions are interpreted
objectively using the device of coarse-graining; observers are replaced by a localising
self-interaction; jumps are replaced by a two-step measurement scenario; and the
problem of quantised values is re-interpeted as a nonlinear eigenvalue problem.

The search for new principles represents a logical game directed at locating a
nonlinear theory which has at least the same level of scope and consistency as
the Copenhagen theory. This process led to the equation (65), as a consistent
and predictive candidate. This equation meets the two most precious demands
of speculative physics: it is falsifiable; and it is suggestive. Now that we
have a candidate theory, it is necessary to develop these ideas further in the
hope of locating indirect experimental tests. Since we have adopted a different
treatment of self-energy, it seems most natural to adopt the unified treatment
of electromagnetism and gravitation as the critical question. Here the work of
Barut (1990) upon an alternative non-perturbative version of QED may serve as
a useful model.

In summary, via study of the cosmical difficulties posed by quantum measurement,
and an appreciation of the wider opportunities offered by nonlinear theories,
one may pass to a candidate theory of nonlinear quantum gravity that is
predictive, supports a self-consistent interpretation, and meets the demand of
classical correspondence. Most importantly, the cosmological properties of the
Copenhagen and Schrodinger theories differ greatly. One is open, the other closed
with respect to the observer. This fact must determine the eventual fate of an
entire class of relativistic theories. One has perhaps a binary choice-and some
engaging new questions to ask of Nature.
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