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Microscopically inhomogeneous states such as crystals and amorphous phases are wide-spread 
in nature, and it has become relatively common to attempt to describe the thermodynamic 
functions of such structured systems by utilising the corresponding properties of their 
homogeneous counterparts. One route is via density functional theory, some aspects of which 
are reviewed and developed here for single-component systems. In particular the possible 
applicability of coarse-graining or weighted density approximations to the theory of the 
liquid-crystal transition are discussed in terms of physical implications stemming from the 
crucial change in symmetry that occurs. Some insight into the apparent inconsistency of 
weighted-density approaches can be gained by examination of the role of anharmonic terms 
in the structured phase, and their relation to the nature of the interactions which also control 
the range of the weight-functions. 

1. Introduction 
For the most part, density functional descriptions of dense phases of matter 

have been developed to deal with inhomogeneous states, in both classical and 
quantum systems. The classical fluid is perhaps not everyone's cup of tea, and the 
inhomogeneous classical fluid possibly less so. Nevertheless, quite evident progress 
has been made of late in accounting for the properties of these non-uniform 
systems entirely in terms of the properties of their uniform counterparts. The 
topic has been the subject of extensive and rather recent reviews (Evans 1990, 
1992; Baus 1990; Haymet 1992; Lowen 1994; Ashcroft 1995) and in view of 
this the intent of what follows is limited by but two aims. First, to set down 
certain aspects of density functional theory, especially in the classical domain, 
that may now be considered as reasonably well established. Second, to formulate 
density functional theory for its use in applications to structured systems through 
coarse graining or weighted density methods. Prominent practical applications of 
these methods include fluids at interfaces, fluids in confined geometries, wetting, 
absorption, and to the general problem of liquid-solid phase transition in systems 
possessing realistic non-singular interactions. The latter problem is distinguished 
from the others in that the inhomogeneities to be associated with the solid phase 
can be seen to possess a distributed character. 
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In the classical domain, the simplest example of an inhomogeneous system 
might be considered to be the canonical assembly of N identical particles 
entirely free of mutual interactions, but each particle experiencing a force wholly 
derivable from an external one-body potential ¢(1)(f'). Thus, if the coordinates 
of the particles are fi (i = 1, ... , N), and they are confined to a volume V, the 
Hamiltonian is just HN = TN + J Vd-;'p(l) (f')¢(1) (f'), where TN = L.~l iff 12m, 
and p(l)(f') (= p~\f')) = L.~18(r - fi) is the one-particle density operator. 
In the canonical ensemble, the corresponding average (p(l) (f')) of this quantity 
follows directly from the definition, i.e. p(l) (f') = Trcp(l) (f') exp (-{3H)/Trc 
exp(-{3H) and is easily seen to be p(1)(f') =p(1) exp(-{3¢(1) (f'))IJv(d-;'IV) 
exp( -(3¢(1) (f')) where by p(l) we mean the quantity N I V. Using a similar average 
we may construct a quantity Fni which is the Helmholtz free energy Fni of the 
non-interacting system diminished by contributions directly identifiable with the 
external potential. It is also easily seen to be 

Fni = Fni - Iv irp(l) (r)¢(1) (r) = kBT Iv a;'p(l) (f'){ln(p(l) (f')A3) -I}, (1) 

where (tt2/2m)(21f/A)2 = 1fkBT defines the thermal de Broglie wavelength for 
particles whose masses are taken to be m. If the external potential is removed 
(¢(1)(f') -* 0) then the free energy per particle is fo(p(1)) = kBT{ln(p(1)A3) -I} 
for the necessarily homogeneous system. From these elementary considerations 
it follows that with ¢(1) (f') restored 

Fni = Iv d-;'p(l) (r)fo(p(1) (r)) , (2) 

a form that is obtained entirely from a direct substitution in the inhomogeneous 
state free energy per particle of the inhomogeneous one-particle density p(l) (f'). 
Though the result is not valid for quantum non-interacting systems (which are 
correlated through symmetry or antisymmetry of the N-particle wave-functions) 
the form of (2) becomes known as the local-density approximation when applied 
to a certain fragment (the exchange-correlation energy) of the overall internal 
energy of a corresponding quantum system. It expresses an appealing and 
somewhat intuitive notion, namely, that the free energy of a system that is 
not homogeneous may be developed from a knowledge of the properties of its 
homogeneous companion and of the one particle density itself. 

An examination of this proposition for an arbitrary interacting system requires 
an initial specification of its fundamental Hamiltonian. For thermodynamic 
conditions that typify ordinary condensed matter, we can begin by regarding 
them as neutral canonical assemblies of electrons (e) and nuclei (n). If each 
assembly is permitted to interact with external fields ¢~l)(f') (a = e,n) then, if 
¢(2)(f'-r') = e2/Ir-r'l is the fundamental Coulomb interaction, the Hamiltonian 
in the absence of further one-body potentials is 

(3) 
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Here Za = Ze = -1 for electrons, and Za = Zn = Za, the atomic number, for 
nuclei. In (3) 

,(2) (- -') _ '(1) (-') ,(1) (-') _ 8 8( - _ -') '(1) (-) Paa, r, r - POI r POI' r 0101' r r POI r (4) 

is the two-particle density operator, and its average 

p~2l, (r', 7"') = Trqp~2l,exp( -(3iI)/Trqexp( -(3iI) (5) 

defines the pair distribution function g~~, (r', 7"') through the statement 

(2) ( __ ') _ (1)(-) (1)(_,) (2) ( __ ') 
Paa' r, r - POI r P<>' r ga<>' r, r . (6) 

Equation (5) indicates that to begin with the problem must be addressed at 
the level of quantum mechanics. The quantum trace (Trq) usually simplifies, 
however, because of the vast disparity in time scales (me «mn ); accordingly 
an effective Hamiltonian controlling the motion of the more massive degrees of 
freedom can be obtained by invoking the Born-Oppenheimer approximation and 
for temporarily fixed {7"n} by tracing out the electronic states according to 

(7) 

Here iI:ff is, by definition, dependent on temperature, but it will only be weakly 
so if the electron system is close to its ground state. Again, this is almost 
always a good approximation for condensed matter under common thermodynamic 
conditions. Accordingly for a narrow band insulating iI:ff can be expected to 
take the general form (Ashcroft 1991) 

iI:ff = Tn + ! Iv d-;' Iv d-;" p~22 q)2) (f' - 7"') 

+ :! Iv d-;' Iv d-;" Iv d-;'''p(3)(r',7''', 7"") qP)(7", 7"', 7"") + ... , (8) 

where p(3) is the three-particle density operator. In writing H:ff in this manner 
it is assumed that conditions are placed on the system such that the coupling 
between electrons and nuclei (i.e. -Zae2 Jvd-;' Jvd-;"1>F)(7"-7"')pi1)(7")p~l)(f")) 
leads to essentially neutral localised objects through nearly complete condensation 
of electrons into atoms. A quite different possibility is that electron condensation 
leads instead to ions and a complementary electron problem admitting extended 
states sensitive to a volume boundary condition (examples being the metals and 
wide-band semiconductors). If this is the case, then (8) is replaced by 

iI:ff = Tn + f(V) + ! Iv d-;' Iv d-;" p(2) (f', 7"')1>(2) (7" - 7"'; V) 

+ 2., r d-;' r d-;" r d-;''' p(3) (7", 7"',7"")1>(3) (7",7"',7"") + '" , (9) 
3. Jv Jv Jv 

where f(V) is a function of volume and not of structure. In either case, the 
1>(2),1>(3) ... are effective two-, three-, ... , body interactions controlling the motions 
for the composite objects regarded as atoms or ions. They are functions of 
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state for the wide-band systems. For Za = 2 (the heliums), and for ordinary 
pressures, (8) leads to bulk phases that, apparently, are entirely homogeneous 
(p(1)(f') = const) to the lowest temperatures. By p(1)(f') and p(2)(f',r/) we shall 
now mean p~1)(r) and p~~(r,r/). 

A major point to be made is that, although the focus in what follows is the 
treatment of (8) or (9) in the classical domain (and extended by the restoration 
of further one-body terms), a quite significant application of density functional 
theory in the electronic context underlies the determination of the ¢(n) or the 
¢(n) (V). This matter is dealt with fully elsewhere in the present volume, but we 
may note that so far as the electrons are concerned, the fields of the nuclei can 
be formally included with any putative one-particle potentials truly external to 
the system, at least at the level of the Born-Oppenheimer approximation. 

From this point onwards we shall suppose that thermodynamic conditions 
are actually such that (8) or (9) can be treated within the framework of the 
thermodynamic limit of classical statistical mechanics (i.e., A« IGtn' I, where 
I Gtn' I is a near-neighbour separation typical of the condensed state). The 
consequence is that in (7) we will now carry out a classical trace (Tre). In 
the absence of further external interactions, the common phases of these simple 
systems are gas, liquid, and solid, the first pair usually being separated by a 
continuous gas-liquid transition with associated critical phenomena. Liquid and 
crystal are separated by the freezing or melting transition and accompanied by a 
fundamental breaking of the symmetry of (8) or (9). As noted, a quite extensive 
application of density-functional theory has been directed towards this problem 
starting with a reformulation by Haymet and Oxtoby (1981) of the initiating 
paper by Ramakrishnan and Youssouff (1979). We shall outline some of the later 
developments in density functional theory and its primary impact on treatments 
of the solid-liquid transition, however we will do so with the standard pairwise 
truncated forms of (8) or (9), but now rewritten to express the presence of 
external interactions represented by one-body potentials ¢(1) (f'). Thus a limited 
representation of the original problem is either 

for insulating systems, or 

iI:rr = Tn + f(V) + Iv d-;'p(1) (f')¢(1) (f', V) 

+ ~ Iv d-;' Iv d-;' I p(2) (f', r/)¢(2) (f' - r', V) (11) 

for metallic systems. The most serious restriction of (10) or (11) is that they 
cannot describe systems where three-body interactions are notably important (the 
elemental semiconductors being prominent examples). Setting ¢(2) to zero in (10) 
recovers the introductory example whose intrinsic free energy is given by (1). 

Though geometric packing considerations have very much guided the development 
of the statistical physics of the condensed state, and particularly the liquid state, 
it is important to note that the associated assumption, namely that ¢(2) can be 
well approximated as a first step by the hard-sphere interaction, is not an entirely 
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plausible guide to the nature of broken symmetry transitions occuring between 
dense phases in systems with more physical interactions. Nevertheless it is of 
some interest that considerable analytic progress can be made on inhomogeneous 
hard-sphere systems by purely geometric arguments (Rosenfeld 1988), although 
it must be noted that the collisional character shared by both hard-sphere liquids 
and solids is not an attribute of realistic systems which in their crystalline phases 
possess considerable coherence. This matter will be further developed below. 

2. Functional Connections 
We continue with a canonical ensemble for which N = iVa;·p(l)(T). The 

Helmholtz free energy F, and the corresponding quantity F (Le. F diminished 
by one-body contributions) are linked by 

F = F - Iv d-:"p(l) (T)qP) (T) = -kBTlnTrce-,BHclf - Iv d-:"p(l) (1")qP)('r) 

and it is immediately clear from (7) and (10) (or (11)) that F = F[4>(1)(f')], 
and F = F[4>(1)(r)], Le. F and F are both functionals of the one-body potential 
4>(1) (1"). From the definitions of ,oU) (f') and ,0(2) (T, 1"') it is also clear that for 
an arbitrary infinitesimal change 84>(1)1" in 4>(1)(f') 

so that 

(12) 

and from the succeeding variation 

The last result can also be written 

(14) 

where X(2) is the standard static two-point response function. In (14) 
h (2) (1", 1"') = g(2) (1", 1"') - 1 is the total correlation function for the inhomogeneous 
system. For a canonical assembly of particles, it is constrained by the sum rule 

Iv d-:'" p(1) (T')k<2) (T, 1"') = -1 

for any 1". Further functional derivatives with respect to 4>(1) (T) lead to three-, 
four-, and higher-particle correlation functions. 

It is apparent that a stipulated 4>(1)(T) will lead to a certain physical density 
response embodied by p(1)(f'). However, a crucial point in the density functional 
method is that the converse is also true: knowledge of a given p(1)(f') determines 
uniquely the 4>(1) (T), at least to within constant terms. This is the content of a 
theorem by Mermin (1965), which is a generalisation to finite temperatures of the 
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important ground state theorem of Hohenberg and Kohn (1964). The theorems 
offer, immediately, the possibility of working with the inhomogenous one-particle 
density as the primary physical variable. A direct consequence is that if a 
coupling constant a (0 ::; a ::; 1) is associated with the pair interactions (taken 
to be non-singular) then for a system subject only to one-body and two-body 
interactions (see, for example, Ashcroft 1995) which develops a one-particle density 
p(1) (f') 

where 

9(2) (r, 1"') = 11 dagi2) (r, 1"') . 

This result can also be obtained by functional integration (along the linear 
path 0::; acjP)(1",1"')::; ¢(2)(1",1"')) of the relation 

8F/8¢(2)(r,1"') = !p(2) (1",1"') . 

In terms of the total correlation function li<2) (r, 1"') = 9(2) (1", 1"') - 1 we may also 
write 

where 

F = Fndp(1)(r)] +! i dr i dr' p(1) (r)p(l) (r,)¢(2) (r, 1"') 

+ Fe[p(l) (r') , (16) 

Fe[p(1)(r)] =! i dr i dr'p(1)(r')p(1)(r,)¢(2)(1",1"')h(r,1"'). (17) 

In the electron gas context, the second term of (16) would be regarded as part of 
the 'Hartree' energy, and its meaning is equally clear here. Correspondingly, the 
term Fe would be called the exchange-correlation energy; here it is the correlation 
term and for strongly interacting systems it is not adequately represented by a 
local approximation simply because dense classical fluids are far more correlated 
than their electronic counterparts. 

3. The Direct Correlation Functions 
If the particle number is fixed then, as noted, for any realisation of the 

density p(1)(1") the constraint Iv d-:"p(l)(r) = N is immediate. Its consequence in 
equilibrium conditions is the statement 

(18) 

where IL can be identified with the chemical potential. But since kinetic energy 
terms in the Hamiltonian separate from interaction terms, let us write 

F = Fni + Fexc , 
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where Fni is just F in a system free of interactions in which a density pel) (r) 
has been established. Then 

(19) 

In (19) we have 

c~!) = log(p(l) / z) , (20) 

where 

Equation (19) is easily seen to be the extension for the interacting system of the 
earlier result 

for a non-interacting system. With (18) it is also seen as the counterpart of the 
Kohn-Sham equations for the electron systems and its form is equally suggestive, 
namely, that for the non-uniform classical interacting system there is an equivalent 
underlying system which may be taken as non-interacting, but subject to an 
effective one body external potential 

It is an exact statement. 
A clear possibility now emerges from (19). If the external potential is taken to 

be exceedingly small (1P) --., 0) then, in addition to the obvious solution pel) --., 
constant conforming to the symmetry of iI, there is also the possibility of a 
self-consistently sustained solution 

but one conforming to an entirely different symmetry. The obvious case is the 
occurrence of crystalline symmetry, whose existence implies a periodic form for 
p(1) (f), and hence also for c(1) (f'). This example of bifurcation of the density 
will be discussed in more detail below. 

The quantity c(1) (f') is the first order direct correlation function, and it plays 
a central role in classical density functional theory. It is also a functional of the 
one-particle density p(1) (f'), and if this functional dependence were known then 
at fixed temperature the free energies of two systems, one with inhomogeneous 
density p~l)(r), the other with p~!)(f'), would be related immediately by 

,6Fexc[p~l)] = ,6Fexc [p?)]- i lr(p~l)(f') - p?)(f')) 11 dAC(l) (f') [AI) (r)] , (21) 

where A!) (f') defines a linear path according to 

(1)(~) _ (!)(~) + '( (1)(~) _ (1)(~)) P;.. r - Pi r .1\ PI r Pi r (O<A:::;I). (22) 
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This result is based on the implicit assumption that c(1) itself exists at all points 
along the path A1) (T). 

Just as a hierarchy of total correlation functions follows from successive 
functional differentiation of F (or F) with respect to 4>(1)(f'), so a parallel stream 
of direct correlation functions follows from successive functional differentiation of 
the excess free energy with respect to p(1)(T). Accordingly the second functional 
derivative leads to the definition 

(23) 

a two-point function which bears a clear inverse relationship to h (2) (f', r') through 
the equation 

h(2)(f',r') = C(2) (f',r') + Iv d-:""p(1)(r")c(2)(r, r")h(2) (r", r') (24) 

which follows from (23), from (13) recast in the form 

and from the functional identity 

1 0 I -(-) Op(l) (r") 
o(f'-r') =oln i(T)joln i(r') = d-:"" (~)z r 

v 0 p (f''') 0 In i(f") . 

In the limit of a uniform fluid (both 4>(1) -+ 0 and p(1)(r) = p(1)) equation 
(24) reduces to the standard the Ornstein-Zernike equation. For a system which 
is both rotationally and translationally invariant, it takes the form 

h~2\r) = c~2) (r) + p(l) Iv d-:'" c~2) (f' - r')h~2) (r') , (25) 

where c~2) (r) is the equally standard Ornstein-Zernike function. Its Fourier 
transform satisfies 

c~2)(k) = (ljp(1))(1-ljS(2)(k)), 

where S(2)(k), or more commonly S(k), is defined by 

C;(2)(k) -1 = Iv d-:"p(1)eik.rh~2)(r) 
and is generally measureable over a wide range of k, depending on method. 
Accordingly, from 

then except for the critical regime the Ornstein-Zernike function can be constructed 
from a measured quantity, and it is generally seen to reflect the range of interactions 
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in the system. From successive functional differentiation of c(2) (f', 7"') with respect 
to p(l) (f') a sequence of higher-order direct correlation functions c(3), C(4) , ... , etc. 
can be obtained, and their homogeneous conterparts c~3), c~4) , ... then follow from 
the limit p(l) (f') _ p(l). As shown in the Appendix, density functional theory is 
a compact and direct route to the theory of homogeneous fluids; the c~n) just 
introduced enters into the definition of the bridge-function of that theory. 

The Ornstein-Zernike function plays a very important role in the theory of 
inhomogeneous classical systems and is part of the primary input for many 
applications. Because of the inverse relationship between c(2) and h<2), and the 
direct relation of the latter to the linear response function, we have 

(26) 

where X~~)(k) = _/3p(l) is the response function for the non-interacting system. 
If the system is inhomogeneous, we find from the defining relation (23), and from 
(16) that 

c(2) (f', 7"') = - /3cfP) (f', 7"') 

_ 02 {f!. r ir r (b.' p(1)(f')p(1)(f")h(2)(f' 7"')} 
Op(l) (f')Op(l) (f") 2 iv iv ' 

for non-singular interactions. The second term obviously reflects correlation in 
the system and if conditions on density or argument are imposed so that this 
term is small, then for either the inhomogeneous system, or its homogeneous 
counterpart, the result is c(2) _ -/3cf/2). Finally, given that c(l) in the functional 
integral (21) can itself now be obtained by a further funtional integral over c(2\ 
the excess free energy can also be given as 

/3,rexc[p(l)(r)] = /3,rexc(P) - Iv d"""'r p(l)(f') Iv (b.' 101 d,X(,Xp(l)(f") - p) 

X 101 dA'C(2) (f',r';[p + 'x'('xp(l)(f') - pm, (27) 

where once more there is an assumption that c(2) exists at all points along 
a certain path. In the present case it is again a linear path starting from a 
homogeneous state with density p, and terminating in an inhomogeneous state 
with density p(l)(r). Equation (27) is an important initiating point for the exercise 
that follows below, namely the development of the thermodynamic functions of 
inhomogeneous systems from a knowledge of the thermodynamic and correlation 
functions of their homogeneous counterparts. 

Before proceeding it may be useful to note that although the development 
sketched above has been carried out with classical systems in mind, the strategies 
themselves can be repeated, almost unchanged, in the quantum domain. The 
application of density functional methods to the freezing of quantum liquids 
originated with McCoy et at. (1989, 1990) who introduced a quantum direct 
correlation function. If Eexc[p(1)(r)] is the excess internal energy in the ground 
state of a quantum system (excess to the energy of non-interacting particles 
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subject to the same imposed density p(l)(r)), then the parallel of the classical 
direct correlation function is the quantity 

82 Eexc [p(1)l/8p(1) (f') 8p(1) (f") 

which, in the limit of a homogeneous quantum liquid (p(l)(r) ---t p(1)), can be 
taken as a function v~2)(lr_rl;p(1)). It is clearly the analog of the classical 
Ornstein-Zernike function, and by the arguments leading to (26) just as clearly 
related to the linear response function for the Bose or Fermi liquid, as the case 
may be. Therefore, the transcription discussed next for the classical system has 
a direct parallel for quantum systems, for example, as in the treatment of the 
freezing of hard-sphere bosons (Denton et al. 1990) and fermions (Moroni and 
Senatore 1991). 

4. Transcribing Inhomogeneous Systems onto Homogeneous Systems 

For a non-interacting but inhomogeneous system characterised by a one-particle 
density p(1)(f'), the excess free energy (see equation 2) is 

Fni = Fnd/1)(f')] = Iv d---;'p(1)(f')f~i(p(l)(f')) 
which as already stated expresses an intuitive physical idea, namely that the 
p(l) (r)d---;' particles in the volume element J,. are each assigned an ideal homogeneous 
free energy f~i(p(1)(r) as if, in addition to position r, the system were wholly 
uniform at a density p(1)(r). For an interacting classical system the equivalent 
proposition 

(28) 

is no longer tenable, as recognised by Van der Waals who observed that in addition 
to a knowledge of f O at a point it was also necessary to know the corresponding 
gradients. However, some quite general forms of approximate equivalents to (28) 
can be advanced, in particular 

(29) 

(30) 

In both, the excess free energies are given in terms of homogeneous system 
properties; in (29) a positionally independent effective density in involved, whereas 
in (30) it is clearly spatially varying. We may observe that an antecedent of this 
equation is already found in (15) which can be formally rewritten as 

where 
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At this juncture we would be entitled to ask whether, for the selected point r, 
this quantity j could be obtained in principle as a particular value of the known 
free energy per particle of the corresponding homogeneous fluid, itself prescribed 
by a certain density. Thus, at identical temperatures we should seek a certain 
density p such that 

and if this is achievable (Le. the homogeneous fluid is stable at p) then we move 
to a point neighbouring r and repeat the process, mapping out thereby the 
function 

p(1)er) =::; p(1)(r; [p(l)(r)]) 

whose functional dependence on the physical one-particle density p(l)(r) is quite 
evident. The simplest functional dependence (Le. a proposed relation between 
p and p(l») was given by Tarazona (1984). In general this dependence must 
reflect any fundamental differences in phases, as mirrored in physical forms of 
p(1)(r). An example we shall come to below is the crystal, a solid phase which, 
like glasses, supports static shear distortions. Depending on the symmetry of 
such a crystal the definition of shear distortion can require the specification of 
the coordinates of four or five particles, or of correspondingly high correlation 
functions when cast in a statistical framework. If a structured phase of this 
character is to be mapped onto an equivelent homogeneous state, then the nature 
of the mapping is required to be such as to ensure that information taken from 
the uniform phase must propagate to correlation functions whose order matches 
the domain where distinctions between solid and liquid are being made (here 
via the strain characteristics). Theories of an iterative or self-consistant nature 
can achieve precisely this goal and this therefore argues that approximations 
to p(l)(r) =::; p(l)(r; [p(1)(r)]) should be both self-consistent and non-local. The 
reason for the latter is that given the identity of particles, and the fact that on the 
scale of the nearest neighbour separation the distinctions between configurations 
of the dynamic crystal and those of the liquid are then considerably blurred, 
averging of a non-local character will very much preserve this aspect. 

To illustrate the origins of (29) within density-functional theory, consider a 
classical system sustaining an inhomogeneous one-particle density p(l)(r). If we 
select a path >.p(l)(r) (0::; >. ::; 1) then we may write the excess free energy as 

,BFexc[p(l)(r)] =::; - i d"""'rp(l)(r) 11 d>'c(l)(r; [>.p(l)(r)]). 

But if we also select a (so far unspecified) uniform density p(l) and a second 
path >.p(l) + >.,[>.p(1)(r) - >.p(l)], for 0::; >.' ::; 1, then following the strategy of 
Kroll and Laird (1990) 

,BFexc[p(l)(r)] =::; ,BFexc(p(l») - i d"""'rp(1)(r) i <'&-'(p(l)(r')- p(1» 

x 11 d>.>.11 d>"c(2)(r,r';[>'(p(1) +>"(p(1)(r) _p(1»))]). (31) 
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With this form it is apparent that in principle a particular value of p(l) can be 
chosen so that the second term in (31) vanishes, leaving 

,6Fexc[p(l)(r)] = ,6Fexc(p(l») 

as in (29). The chosen value of p(l) then necessarily enters the argument of 
c(2) in the ~second term of (31) and this is the formal origin of an important 
self-consistency condition that we shall soon encounter, but one whose necessity 
was argued above on physical grounds. 

The requisite effective density is given by 

p(1) = Iv lrp(l)(f') Iv r1r'p(1)(f")w(f',r';p(l); [p(l)(r)]) (32) 

and is written in a form that emphasises the double weighting of the physical 
density by a weight function w(f',r';p(1); [p(1) (r)]). It is here both a functional of 
the one-particle density itself, and a function of the sought for weighted density. 
From (31) it is seen that 

w(f', r'; p(1); [/1) (f')]) = 

W(f',r';p(1);[p(l)(f')]) / Iv r1rp(1)(r) Iv r1r'p(l)(f")W, (33) 

with 

W(f', r'; p(l); [p(1) (f')]) = 

11 d>..>..1 l d>.'c(2)(f',r'; [>..(p(l) + >"'(p(l)(f') - p(1»))]). (34) 

In this form, the importance of the Ornstein-Zernike function in determining the 
weight function and its range is quite evident. We may note that c(2) (r, r') can 
itself be obtained by a further functional integral along yet a third chosen path, 
say p(1) +>""(>"p~~) - pel»), where A~) (r) = p(1) + >..'(p(1) (r) - pel»). This procedure 
introduces the third-order direct correlation function into the specification of p(l), 
an extension which is in fact useful for the treatment of inhomogeneous systems 
with long-range interactions (Likos and Ashcroft 1992). 

For the present we will persist with systems with short-range interactions 
where knowledge of c(2) is mainly required. Then the simplest implementation 
of (32) which embodies the essential requirement of self-consistency is to invoke 
a local approximation to w(f', r'); i.e. 

(35) 

which is the form given by Denton and Ashcroft (1989). Together with (29), 
and a condition for determining w, it is known as the modified weighted density 
approximation (MWDA). The weighted density approximation itself (the WDA, 
Curtin and Ashcroft 1985) generally refers to the postionally dependent equivalent 
(equation 30), and the equivalent to (35) can be obtained by arguments similar 
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to those given above, as also shown by Kroll and Laird (1990) and Meister and 
Kroll (1985). The various forms of weighted or effective density approximations 
(for example, Nordholm et al. 1980; Tarazona 1984; Baus and Colot 1985) have 
been critically discussed in the reviews cited above. Both positionally dependent 
and positionally independent approaches require a strategy for the determination 
of the weight function w. This follows most readily from the necessity that in 
the uniform limit the Ornstein-Zernike function for the homogeneous system is 
given by 

and if Fexc is now given by the approximate form (29) and with p(l) determined 
by equations (32)-(34). This leads to a condition on the Fourier transform of 
w, namely 

where the presence of the k = 0 term guarantees that the compressibility sum 
rule is satisfied, i.e. 

(37) 

Here fo is the excess free energy per particle of the homogeneous phase. 
The MWDA is now completely specified [equations (29), (35) and (36)]; it is 

an approximation that transcribes the thermodynamic properties of a classical 
inhomogeneous system specified by a one-particle density p(1l('r), onto those of 
an equivalent homogeneous system with effective density pCl). It does so in a 
way that preserves the exact hierarchy relation 

did (l){ (n)(- - )} r d- (n+l)(- -) p c rl,···,rn = iv rn+lC rl, ... ,rn+l 

and it also does so in a way that includes terms to all orders. The steps 
leading to this approximation have assumed that the inhomogeneities are of a 
non-localised or distributed nature (an example is the crystalline phase, to be 
discussed below). Evans (1992) has emphasised that this type of approximation 
is not necessarily well suited to physical situations where the inhomogeneities are 
localised (or in the terminology here, non-distributed), as in wetting transitions 
or in the growth of films. It appears to be more promising in its treatment of 
true bulk properties, such as the transitions between equilibrium phases, though 
its ability to discriminate between such phases is evidently dependent on the 
nature of 1P) (r). 

5. Density Functional Approaches for Periodic Systems 

It was noted earlier that if the external potential was systematically reduced 
to near vanishing values, there is nevertheless the possibility of an emergent 
self-consistently sustained inhomogeneous state with a density given by 

(38) 
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Familiar practical examples might now include equilibrium glassy structures, 
quasicrystals (in multi-component systems) and, for the case that is of most 
interest here, periodic crystalline phases. For the simplest of these, monatomic 
systems in Bravais lattices, the one-particle density p(1)(f) and first-order direct 
correlation function c(1) (r) of such dynamic structures satisfy simple discrete 
translation symmetries, namely 

for all vectors {R} in the lattice. Their Fourier transforms p(l) (k) and 
c(1) (k) therefore vanish unless k is a vector belonging to the reciprocal lattice 
{K: exp(iK. R) = 1, VR}. 

Under common thermodynamic conditions where the crystal is the stable 
phase, it is a matter of observation that for the standard bonding types (metals, 
molecular crystals, etc.) the root-mean square displacements of atoms are 
generally a quite small fraction of nearest-neighbour separations. For this reason 
the harmonic expansion of the crystalline renditions of (10) or (11) generates an 
acceptable alternative Hamiltonian for describing the dynamic crystalline state. 
The corresponding collective excitations are then phonons, and for these a suitable 
approximation to p(1) en is a sum of Gaussians, i.e. 

p(l)(r) = (aj7r)~ L exp{ -a(r - R)2}. (39) 

R 

Comparison with (38) shows that, near the sites {R}, c(1) (r) is quadratic in 
displacement, something which we now expect from its earlier interpretation as 
an effective one-body potential. Notice that a-I is a measure of the mean-square 
displacement, and directly related to derivatives of the pair interaction rfy(2). More 
generally the exponents in (39) can be cast in quadratic forms which reflect 
point-group symmetries lower than those assumed here. 

In applications of density functional theory to first order phase transitions 
involving crystals, the principal assumption is that the general transcriptions 
described in Section 4 apply even if there is a non-trivial change in the symmetry 
when proceeding from one phase to another. For most physical forms of rfy(2) (r) 
that lead to self-stabilised matter, a crystalline phase can appear under appropriate 
conditions of density and temperature. The characteristics required of rfy(2) (r) are 
normally the presence of a strongly repulsive region at short range, and a longer 
range attractive region of sufficient strength. If the interactions fall in this class, the 
Hamiltonian can be reformulated for the anticipated broken symmetry, as noted, and 
it is usually carried out at the level of a harmonic approximation established about 
equilibrium sites that very much reflect the minimum in rfy(2)(r). However, it is also 
well established that crystalline phases exist for forms of rfy(2) (r) that are wholly 
repulsive, providing only that the system is stabilised externally, by application 
of appropriate pressure. Familiar examples are the Yukawa interaction and the 
inverse power potentials, a(ajr)n. For the latter it is also well known that the 
static structure factors of such systems placed under comparably dense conditions 
differ surprisingly little. Fig. 1 shows the limiting cases n = 00, the hard spheres, 
and n = 1, the one-component plasma, both near their respective freezing points. 
However, the details of the underlying dynamics can be quite another matter. 
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Fig. 1. Static structure factor for the one-component plasma close to melting conditions 
(Young et al. 1991): solid curve. Here rs is the radius of the ion sphere. The dotted curve is 
the static structure factor, also determined near melting (packing fraction ~ 0·49) and given 
by the solution to the Percus-Yevick equation. Here u is the hard-sphere diameter. Note 
that the upper and lower abscissa scales are different. 

In its relation to real systems, and particularly from the standpoint of the 
accepted descriptions of lattice dynamics, the hard-sphere crystal must be seen 
as anomalous, even though simulation studies reveal that its one-particle density 
can be quite accurately described by a sum of Gaussians, as in equation (39). 
No expansion of its Hamiltonian in orders of displacement from time-average 
equilibrium sites exists; it is completely anharmonic, and the system is perhaps 
better regarded as a collisional crystal. Because of this, it is expected that between 
collisions the motions of the particles in this crystal should exhibit a rapidly 
diminishing coherence, from one cell to another. This stands in considerable 
contrast to the motion expected in the familiar harmonic limit of lattice dynamics 
where coherence of this motion, via the phonons, is established over long distances. 
Van Hove (1954) was evidently the first to note that within the harmonic model 
p(I)(f')p(1)(r')k<2)(r,f") falls at long distances as approximately IT-f"I-I . 

This important difference in the mechanics of the hard-sphere system can be 
pursued a little further: between collisions, the ballistic motion of freely moving 
atoms is actually no different from the corresponding motions in the fluid. What 
is different is that in the solid the average domain of motion of a given atom is 
constrained. It is a domain that has dimensions which for hard-sphere interactions 
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are also shared by the range of the direct correlation function c(2), a quantity 
which, as we have noted, enters the weight function in the construction of effective 
densities. Evidently within this range of averaging (a near neighbour distance or 
so) the character of the dynamics of the collisional hard-sphere crystal cannot 
differ markedly from what is found in the liquid. 

This similarity does not necessarily persist for other systems and the importance 
of the role played in density functional theory by the attractive components 
of realistic interactions has been emphasised by Sokolowski and Fischer (1992). 
But, if for example we continue with the inverse power potentials, it is clear 
that as n in a(cr/r)n falls towards values more typical of short-range interactions 
in real matter (say n,....., 10) then providing a is also reasonable the anharmonic 
content of the motion is expected to fall (Le. coherence of motion is expected 
to rise). By this argument the local mechanics typical of the liquid are then 
no longer characteristic of the solid, as they are in a limited sense for the 
completely anharmonic case. However, the character of the interaction enters in 
another important way: as n falls to even lower values, say to the dimensionality, 
or below, then the range of c(2) also grows accordingly, and the averaging 
domain encountered in the construction of weighted densities is then expected 
to encompass ever increasing volumes. A physical consequence of this is that 
the implications (relative to the homogeneous state) of starting with densities 
p(1) (r) originating with a highly structured phase must begin to diminish, a line 
of reasoning that suggests that the practical implimentation of coarse-graining or 
weighted density approaches to the construction of thermodynamic functions is 
likely to face difficulties if limited strictly to the lowest order of approach. 

And so it proves; the applications of weighted density and related methods to 
the melting problem has seen only limited success for 'softer' interactions (Evans 
1992). In the case of the plasma (n = 1, together with necessary background 
terms) some additional discrimination between phases can be achieved by inclusion 
of c(3) in the construction of the weighted density (see below). As will be argued 
later, it may well be that in the full treatment of realistic systems, the inclusion 
of at least c(3) will be a necessary pursuit. For these reasons the hard-sphere 
system, though a useful qualitative paradigm (as it has been for fluids) is not a 
reliable predictor of a realistic theory of melting. We need only consider the fact 
that for hard spheres under isochoric conditions entropy decreases on passing from 
solid to liquid phases, whereas for simple systems in nature it generally increases. 

In the approach to the melting problem, the theory is used in a straightforward 
way to obtain thermodynamic functions of the crystalline phase using complete 
knowledge for the thermodynamic functions, and as noted, certain low-order 
correlation functions for the continuous phase. Liquids and crystals represent 
nearly isochoric phases of identical particles in which average coordination numbers 
are also often extremely close. Thus from the local point of view, and on 
appropriate timescales of re-arrangement, the dense liquid and solid bear certain 
physical similarities though, as noted, not necessarily in their local dynamics. 
An elementary rewriting of the internal energy of an inhomogeneous system with 
pairwise interactions emphasises this point. Thus 
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can be written as 

E = N { ~kBT + ! i d"""'rpC1)fP)(r)qP)(r)} , 

where g(2)(r) is given by 
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(41) 

( 42) 

with solid angle being measured from the pole r. Though the entropy is quite 
different, equation (41) emphasises the fact that the internal energy can be 
formally rewritten in a manner entirely equivalent to that expected for a dense 
homogeneous fluid. Starting with known forms of p(2) (r, r), the major structure 
of the corresponding g(2) in, for example, crystalline systems, is quite comparable 
to that found in the dense fluid state. 

Guided by the harmonic approximation the one particle density for an otherwise 
perfect cyrstalline phase is given by (39) and is also taken to have this form for 
the hard-sphere limiting case (reflecting what is known from simulation studies). 
We may note that the stipulation of p(l) (r) involves the structure of the emerging 
lattice (which is not presaged by the theory). In recognition of the fact that (39) 
can at best be approximate, and that the theory itself is limited, the quantity a 
is taken as a variational parameter, the intent being to obtain a bound on the 
free energy of the structured phase. To illustrate the practical implementation 
of the manner in which a crystal is transcribed onto an equivalent homogeneous 
liquid, we first note that the periodic solid conforms to the requirements of 
distributed inhomogeneity. Accordingly, starting with (35) and (39) we may seek 
an equivalent uniform phase, with density p(1) where 

Since the weight function is fixed by utilising properties of the transcription 
in the uniform limit (see 36) we therefore have the self-consistent equation 

p = p(l) [1 - (kBT /2f' Q(jj(1) , a)) ?= e-K2 /2<'>:cb2) (K; ,0(1) (p(1) , a))]. (43) 

K#Q 

The free energy (and hence all thermodynamic functions) of the structured phase 
now follows from (29) when augmented by the contribution from non-interacting 
particles; it can be minimised with respect to a. It is important that the 
liquid state properties be accurate. For a detailed discussion on the somewhat 
variable performance of the second-order weighted density approximation to the 
melting problem, the reader is directed to the reviews cited earlier. As shown 
by Likos and Ashcroft (1992) the modified weighted density approximation can 
be extended to include the effects of the three-particle direct correlation function 
(see equation 33 and succeeding comments). The equivalent of (43) is then 
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p(1)= p(l) [1 - kBT /2!' o(p(1)) L e-K2 /20l C(2) (K; p(l)) 

K#O 
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-kBT/6f'o(p(1)) L L e-K2/40le-K2/40le-(K+K')2/40l 

K#OK'#O,-K 

A particularly important point concerning the application of (44) is that while 
for hard spheres (n = 00) (43) already gives satisfactory results for the freezing 
problem, the third-order extension nevertheless leads to additional improvements. 
In the opposite extreme (n = 1) it is (44) that leads to freezing (for the 
one-component plasma) within the context of the modified weighted density 
approximation; (43) does not. This suggests that while the intent of density 
functional theory as applied generally to inhomogeneous systems has been to 
utilise correlation information from the homogeneous phase of low order (and 
particualrly c(2)) in applications to highly structured systems such as in the 
melting problem, inclusion of at least the third-order direct correlation function 
may' be important as discussed above. Some relatively simple arguments can be 
brought to bear on this point, as follows: 

6. Commentary 

In applications of classical density functional theory to the melting problem, the 
major physical doubts must centre on the fundamental differences in symmetry 
that occur in passing from the liquid to the crystalline solid, or vice versa. Yet the 
theories appear to do quite well in describing this transition in the hard-sphere 
system. It has been suggested above that this may be linked to the degree of 
anharmonicity of the system under consideration, and to the associated range 
of the functions entering the construction of the weighted density, both aspects 
being tied to the fundamental nature of the pair interaction. Some substance 
can be given to this by noting that a traditional measure of anharmonic effects 
in dynamic crystals is provided by the Griineisen parameter '"Y, which records the 
assignment of anharmonic terms to an effective volume dependence of otherwise 
harmonic frequencies. Within a Debye picture it is related to the logarithmic 
derivative of the normal mode frequencies with respect to volume. For the 
inverse power potentials simple scaling arguments (Hoover et al. 1971) show that 
'"Y = (n + 2)/6 so that as noted above, anharmonic contributions indeed rise with 
the 'steepness' of the potential. The connection that can now be made with 
density functional theory is this: in the crystalline phase, it is c(1) that is playing 
the role of an effective potential at each site being constructed, however, from a 
summation over all sites of a function bearing a close relation to the actual pair 
potential 1P)Cr). Now it can be shown (McCarley and Ashcroft 1996) that a 
dynamic crystalline phase can be described within precisely the same statistical 
framework used for fluid (but non-uniform) phases. For a crystal there is an 
equation which parallels exactly the Ornstein-Zernike equation, but given in a 
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site oriented picture that simply exploits the fact that excursions of particles from 
sites are small in the crystalline phase. Moreover, an equivalent of the Percus 
identity (see the Appendix) can also be established in the crystalline phase and 
its consequence is that the resulting hypernetted-chain equation that it predicts 
is closely linked to the harmonic model of the crystal. The main point is that 
in this site oriented representation the direct-correlation function then possesses 
a close inverse relationship to the elements of the dynamic matrix, these being 
related to second derivatives of ¢i2) (r). The connection to c(l)(f') (expected 
from the functional route) is simply through the diagonal components summed 
over sites. 

With this connection we may return to the role of anharmonicity, as embodied 
in the Griineisen parameter. Changes in frequency with density are now seen to 
be related to equivalent changes in c(2) with density, but cast again in a site 
oriented picture. This introduces c(3), the third-order direct correlation function 
in the solid which should be directly related to anharmonicities. In arguing its 
connection to corresponding properties in the fluid, the role of the form of ¢(2) in 
controlling the range of weighting is also of considerable importance. Finally, we 
may note that if the emphasis now shifts to the triplet structure in representing 
structured systems in terms of the properties of the corresponding homogeneous 
phases then by the techniques outlined in the Appendix, the three-particle 
distribution is given by an extension of the Percus argument by 

(45) 

= - i d"""'r II p(l)T;J f3¢(2) (If' - r"l)g(2) (0, r lI)g~3) (f', r', r")/ g~2) (f',f") , 

where g~3) and g~2) are the triplet and pair functions respectively in the presence 
of a triplet-external potential whose form is precisely ¢(2). 

Compared with the almost universal interest in continuous transitions and 
associated critical phenomena, first order transitions (the paradigm being melting) 
have evoked relatively modest theoretical effort. It may be noted that the 
weighted density approximations take Ii. system with a given microscopic scale of 
inhomogeneity and produce one with a different spatially varying scale (in the 
WDA, for example) or even a constant density (as in the MWDA). In either case 
the starting system suffers a certain 'thinning' of its degrees of freedom, particularly 
those associated with the shortest wavelengths of inhomogenity. However, the 
mapped system· is still characterised by the same starting interactions (as we 
have seen, the solid is to be described in terms of the properties of the associated 
continuous phase). Apart from this latter point there is a certain similarity in 
viewpoint to the ideas underlying the renormalisation group, whose success with 
systems undergoing transitions between phases of continuous symmetry needs no 
further emphasis. Nevertheless, it can be asked whether as a more general possibility 
the renormalisation group framework is capable of describing both continuous and 
broken symmetry phase transitions. The possibility of applying renormalisation 
group techniques to first order-transitions in problems lacking obvious small 
parameters dates back almost to the beginning of the theory itself (Nienhuis and 
Nauenberg 1975), the implication being that the associated transformation might 
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develop additional singular structure near the phase instability points. It appears 
that this question is not completely resolved (Gaw~dzki et al. 1987), but we can 
see that if the formal basis of the positionally dependent weighted density mapping 
is rigorously established, then the emerging effective liquid (generally possessing a 
longer scale of imhomogeneity) could be mapped once again, and then the process 
repeated. Whether this will lead to a fixed point structure has yet to be seen. 
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Appendix: Density Functional Theory and Uniform Fluids 

If we take cp(1) (r) ...... 0, and choose thermodynamic conditions appropriately, 
uniform phases of systems governed by (10) or (11) develop. For temperatures less 
than the critical temperature, it is the dense fluid phase. Though homogeneous, 
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the density functional method for inhomogeneous systems has much to say about 
it. This follows from an observation of Percus (1962, 1964) that the one-particle 
density in response to an external potential whose form is taken as c/P) (0, r) 
(Le. the pair interaction) is precisely p(l)g(2) (0, r). From equation (19) this leads 
immediately to the conclusion that 

g(2)(r) = exp{ -(3c/P)(r) + c(l)(f'; [p(l)(f')]) _ c~l)}, 

where in c(1)(f'; [p(l)(f')]) the appropriate inhomogeneous density is now p(1)g(2) (r). 

This strategy can be taken a step further; for example, let the 'external potential' 
4>(2) (0, r) be located at the origin, and consider two points in the fluid at f' and 
f". Then we may ask for the pair density at f' and f", which by our earlier 
definition is 

p(2) (f', f") = p(l) (f')p(l) (f")g~2) (f', f") , 

and since the particle supplying the 'external potential' 4>(2)(0,r) could be any 
of the N, then by the Percus (1964) argument we are actually asking for the 
probability of finding three particles at (0, f', f") in the homogeneous fluid. Thus 
we get 

g(3) (0, f', f") = g(2) (0, r) g(2) (0, f") g~2) (f', f") , 

a result also obtained independently by Attard in 1989. The familiar superposition 
approximation of Kirkwood is recovered by the statement g~2) (f', f") = g(2) (If'-f''I). 

Notice that in terms of g~2) (f', f") the first of the Yvon-Born-Green hierarchy of 
equations becomes 

Vlog{g(2) (0, r)ef3<1P) (O,r)} = - Iv dr'p(1)g(2)(0,r')g~2)(f',f") 
x V(34)(2)( If' - f" I), 

which offers additional routes to closure via propositions for g~2) (f', f") going 
beyond g(2)(!f' - f"I). The next member of the hierarchy is obtained by similar 
reasoning and is given as equation (45). 

Since the higher-order direct correlation functions can be obtained from c(l) (f') 
by repetitive functional differentiation, then the result of a functional Taylor 
expansion of c(l) (f') about the uniform density p(l) gives 

X c~+l (f'; f'l ... Tn; p(l))h~2) (rl) ... h~2) (rn) . 

Alternatively, if we excerpt the first term in this sum, and for it use the 
Ornstein-Zernike equation appropriate to the uniform fluid (equation 25), then 
for g(2)(r) we have the relation 
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where 

b~2)(r)=f(p(l))n/n! [£ho l ··· [£hon~+1(T;rl ... Tn)h~2)(rl) ... h~2)(rn). 
n=2 Jv Jv 

This new two point function b~2) (r) = b~2) (0, r) is the bridge function of 
diagrammatic perturbation theory (Van Leeuven et al. 1959). Since C(2) has 
an obvious functional relationship to M2), and the c(n) are obtained by further 
functional differentiation of c(2) with respect to p(l)(T), it follows that 

b~2)(r) = b~2)(r; [h~2)(r)]), 

a result also established by Van Leeuven et al. (1959). The result for g(2) may 
also be written 

g(2)(r) = exp{ _(3¢(2)(r) + h~2)(r) _ c~2)}, 

where ¢(2)(r) = ¢P)(r) - kBTb~2)(r) can be seen as an 'effective' interaction in 
an approximation that together with 

h~2)(r) - c(2) = Iv £hoI p(1)C~2)(1f' - rll)h~2)(r') 

attempts closure. If the distinction between ¢(2) and ¢(2) is neglected, the 
resulting theory is the hypernetted-chain approximation. More generally it is 
possible to exploit the fact that for dense fluids h(2)(r) is relatively insensitive 
to th~ form of ¢(2)(r) under isochoric conditions. Closure can then be effected 
by assuming b(2) to be known for a chosen system, for instance for a system of 
hard spheres with diameters a . Thus, for example, a theory of thermodynamics 
and structure follows from 

ga2) (r) = exp{ _(3¢(2) (r) + h~2) (r) - c~2) (r) + b~~(r, a)} , 

h~2)(r) _~2)(r) = Iv d-;'lp(1)~2)(If'-rll)h~2)(r'), 
where b~~ is the bridge function for a hard-sphere system with a being determined 
variationally. This is the modified hypernetted-chain procedure and it appears 
satisfactory to the point of reproducing, with considerable accuracy (Young et 
al. 1991), even the one-component plasma structure factor as shown in Fig. l. 
Given that near the critical point hierarchical models of liquid structure are now 
capable of reproducing non-classical critical exponents (Meroni et al. 1990) it 
would appear that for relatively simple systems the entire fluid range is presently 
within range of reasonable theoretical description. 
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