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Abstmct 

The density functional theory for classical (equilibrium) statistical mechanics is generalised 
so that one can discuss various dynamical processes associated with density fluctuations in 
liquids. This is effected by deriving a Langevin-diffusion equation for the density field, which 
satisfies a novel H-theorem. As applications of our theory we consider density fluctuations in 
both supercooled liquids and molecular liquids, interface dynamics and transport coefficients. 

1. Introduction 

The density functional theory (DFT) (for reviews see Evans 1979; Haymet 
1987; Oxtoby 1990; Singh 1991) has become a useful method to study a freezing 
transition from a quantitative standpoint. The crystal-liquid interface (Haymet 
and Oxtoby 1981; Oxtoby and Haymet 1982; Harrowell and Oxtoby 1987), 
nucleation (Harrowell and Oxtoby 1984; Grant and Gunton 1985) and a glass 
transition (Kirkpatrick and Wolynes 1989; Singh et at. 1985) are also investigated 
within the framework of the DFT. The DFT is now generalised to deal with 
complex systems such as molecular liquids (Chandler et at. 1986) and liquid 
crystals (Singh 1991). 

It is to be noted that the DFT is basically concerned with the (quasi)equilibrium 
density profile neq ( r) and the corresponding free-energy F eq = F [neq ( r)], where 
F[n(r)] denotes the free-energy functional of the system and plays the central 
role in the DFT. If we could introduce dynamics to the DFT and follow time 
evolution of the density field n( r, t), this might enable us to study some dynamic 
aspects of the various processes mentioned above. In this paper we present 
time-dependent (TD) DFT together with some (preliminary) applications of the 
TD-DFT. 

In Section 2 the DFT is briefly reviewed to make this paper self-contained and 
also to introduce some physical variables which play important roles in latter 
sections. In Section 3 we present a TD-DFT by deriving a Langevin-diffusion 
(L-D) equation for the density field n(r, t). Stochastic properties of the L-D 
equation are discussed with emphases put on an H-theorem. The close relation 
between the random current in the L-D equation and the 'internal noise', proposed 

* Refereed paper based on a contribution to the fourth Gordon Godfrey Workshop on Atomic 
and Electron Fluids, held at the University of New South Wales, Sydney, in September 1994. 

0004-9506/96/010025$05.00 



26 T. Munakata 

by Mikhailov (1989) in connection with hopping diffusion, is presented. In Section 
4 we consider, as applications of a TD-DFT, some dynamical processes such as 
density fluctuations in liquids, crystal-liquid interface dynamics and mass flow 
around a fixed particle to calculate transport coefficients of liquids. Section 5 
contains a summary of this paper. 

2. Density Functional Theory (DFT) and Phase Transitions 

Let us start from the grand-canonical ensemble 

IG(rN) = exp{ -(3(HN - p,N)}/S(p" T, V), (1) 

where {3 == l/kB T, rN = {rl. ... , rN, PI' ",PN} and V, p, and T denote volume, 
chemical potential and temperature respectively. The Hamiltonian H N for an 
N -particle system is given by 

where cPext ( r) denotes an external field and a two-body interaction is assumed for 
simplicity. The grand potential nG(p" T, V) is obtained from the grand partition 
function S, 

S == 'E(1/h3N N!) J drN exp[-{3(HN - p,N)] == Trexp[-{3(HN - p,N)] , (3) 

by the relation 

nG == -kB Tln(S) = -pV (p = pressure). (4) 

The foundation of the DFT consists in the following two theorems (proofs are 
given in Hansen and McDonald 1986): 

Theorem 1: Consider a functional 

n[/o] == Tr 10[HN - p,N + kB Tln(fo)] (5) 

of a distribution 10. Then for an arbitrary 10, which satisfies the normalisation 
Trio = 1, n[fo]2':n[fG] = nG· 

Theorem 2: Consider an arbitrary density field nCr). Then there exists a 
unique external field cPext ( r), which produces the n ( r) by the relation 

i=N 

nCr) = Tr fa L 8(r - ri) == Tr fa nM(r). (6) 
i=O 

Theorem 2 allows us to use a notation cPext(rln), expressing the fact that this 
external field is determined functionally by n ( r), and accordingly to define two 
density functionals, 

F[n] == Tr fa (HN,O + kB Tln(fG)) , (7) 

n[n, cPext] == F[n] - J dr[p, - cPext(r)]n(r). (8) 
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We note first that the external field <Pext (r) in I a on the rhs of (7), see (1) and 
(2), is determined by (6) and F[n] has nothing to do with <Pext(r), even if the 
system of interest is under the influence of ,an external field. Secondly O[n, <Pext] 
is regarded as a functional of two independent functions n ( r) and <Pext ( r). 

With these preparations we arrive at the following fundamental theorem: 
Variational Principle: As a functional (If n'(r) with <Pext(r) fixed, O[n', <Pext] 

is minimised for n'(r) = n(r) where n(r) 1s related to <Pext(r) by (6). 
Prool: Suppose that an external field <P' f'xt (r) and a density field n' (r) satisfy 

the relation <P' ext ( r) = <Pext (rln') and that the grand ensemble I a' is given by 
(1) with <Pext(r) replaced by <Pext(rln'). Then using (5) and (7) 0[/0'] = Tria' 
[H N,D + L <Pext(ri)-JLN +kB Tln(fa')] = F[n']+ J dr n'(r)[<Pext(r)-JL] = O[n', 
<Pext]. From theorem 1 we see that O[n', ipext] :::: 0[/0]' However, it is readily 
seen that O[Ja] = O[n,<Pext] and thus O[n',<Pext] ::::O[n,<Pext]. 

From the variational principle, we obtain an equation to determine the 
equilibrium density profile neq (r): 

80[n, <Pext] _ 8F[n] _. ,/" () _ 0 
8n(r) - 8n(r) p. + 'f'ext r - . (9) 

We note that all the difficulties of a many-body problem are embedded in the 
free-energy functional F[n] and there have been many methods already proposed 
(Oxtoby 1990). All the approaches divide P[n] into an ideal gas part Fid[n] and 
an interaction (excess) part -<I>[n] , with Fid exactly given by 

Fid[n] = kB T J dr n(r)tln(n(r)A3) -1], (10) 

with A the thermal wavelength (h2/2rrrhkB T)!. Standard perturbational 
approaches employ a functional Taylor expahsion around the uniform liquid state 
n(r) = nL, a constant, 

which is usually truncated after m = 2 (Ramakrishnan and Yussouff 1979). In 
this case F [n 1 takes the form 

(12) 

+ (kB T /2) J drl J dr2 c2(l r 2 ---; rll)[n(rt) - nL][n( r2) - nL]} , 

where use is made of the fact that for a ttniform system Cl is a constant and 
C2 is a function of Ir2 - rll. It is not difficult to derive the relation between C2 
and the radial distribution function g(r) = h(r)+l, 
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(13) 

Equation (13) is the familiar Ornstein-Zernike relation and hereafter we denote 
the direct correlation function c2(r) as c(r). Inserting (12) into (9) we obtain, 
when there is no external field, 

neq(r) = A -3 exp{,B/L + Cl + J drl c(lr - rll)[neq(rl) - nL]}. (14) 

Since neq(r) =A-3exp{,B/L+c!l is the trivial solution to (14), it is rewritten as 

(14') 

If we could find some solutions to (14') [usually two, one representing a liquid 
phase neq(r) = nL and the other a crystalline phase], we could calculate the 
grand potential based on (8) with 4>ext(r) = 0 and choose the solution neq(r), 
which gives the smallest value for n, as representing the equilibrium phase. At 
the point where two solutions give the same n, namely the same pressure, the 
phase transition takes place. Of course, there are a lot of subtle points in the 
actual calculations and we refer to Haymet and Oxtoby (1986). 

Finally we remark that non-perturbative approaches in the DFT attract 
considerable attention due to slow convergence of the expansion (11) (Tarazona 
1985; Curtin and Ashcroft 1985; Denton and Ashcroft 1989). 

3. Time-dependent Density Functional Theory (TD-DFT) 

We now derive a Langevin-diffusion (L-D) equation for the density field n( r,t) 
and the corresponding Fokker-Planck (FP) equation for the distribution functional 
![n(r),t], and discuss general properties of the TD-DFT (Munakata 1989, 1994). 
For the purpose let us start from the following phenomenological hydrodynamic 
equation for the density n(r,t) and the momentum density g(r,t): 

8n(r, t) 
at =\l.g(r,t)/m, (15) 

8g(r, t) of 
= = -n(r,t)\l ( ) 
U~ On r,t 

- jdr'1tdt'G(r,r"t-t')g(r"t')+f(r,t), (16) 

where ~ \l of /8n( r, t) represents a generalised force on a particle at r (Kirkpatrick 
and Wolynes 1987) and the fluctuation-dissipation (FD) theorem expresses the 
damping matrix Gij(r, r', t) = r(r, r', t)8ii in terms of the correlation function 
of the random force (fi(r, t) Ji(r', t')) = F(r, r', t - t')8ii as 

r(r,r', t)oii = L j dr" F(r,r",t) Oik {(g (r") g(r,))-lhi . (17) 
k 

The static momentum density correlation function is given by (Hansen and 
McDonald 1986) 
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(18) 

Since the density field n( r, t) is assumed to be the only dynamical variable 
(order parameter) that changes slowly in time, the crucial step to derive the 
desired TD-DFT is that we replace the equilibrium density neq( r) in (18) by a 
time-dependent (non-equilibrium) n(r,t). Thus inserting (18) with neq(r) replaced 
by n(r,t) into (17) and assuming for simplicity r(r,r', t) = 2ro 8(r-r') 8(t) with 
r ° a constant, we arrive at a modified FD theorem 

(fi(r, t) fj(r', t')) = 2mkB Tro n(r, t) 8(r - r') 8(t - t') 8ij , (19) 

and (16) reduces to 

ag(r, t) = -n(r, t) \7 8F _ rog(r, t) + f(r, t). (20) 
at 8n(r, t) 

Since we are interested in long time behaviour, we employ an adiabatic 
approximation for (20), yielding 

g(r, t) = ( - n(r, t) \7 8n~; t) + f(r, t)) / ro. 

From (21) and (15) we finally obtain the L-D equation, 

an(r, t) 
at - \7. ( - n(r, t)\7 8n~:' t) + f(r, t)) / mro 

(21) 

(22) 

with the FD theorem (19). Here is and iR denote the systematic and the 
random current respectively. From the FD theorem (19) it is seen that the 
random current iR(r;t) =.f(r;t)/mro is a multiplicative noise (Gardiner 1982) 
and one must specify how one interprets the noise. Here for our purpose it is 
to be treated as an Ito type. Following a routine procedure (Gardiner 1982) to 
derive an FP equation from a Langevin equation, we see that the distribution 
functional J[n(r), tl evolves in time, with D =. kB T /mro, according to 

af 8 
at = - f dr 8n(r) J(f), (23) 

J(f) =. D((3f\7 .n(r) \7 8~~) + \7 .n(r) \7 8~{r)) . (24) 

When f is proportional to exp( -(3F[n]), \7. n(r) \78f /8n(r) \7. n(r) 
x {-(3f \78F /8n(r)} = -(3f\7 . n(r) \78F/8n(r) and we confirm that the stationary 
solution is given by exp( -(3F). In other words, the L-D equation (22) actually 
samples, in a steady state, the density field n( r) according to the weight 
exp( -(3F). Tracing our derivation of the FP equation (23) we notice that the 
replacement of neq(r) by n(r,t) in the FD theorem (19) and the Ito interpretation 
of the noise current i R ( r, t) are the important ingredients of a TD-D FT. This 
point will be discussed from a different viewpoint later in this section. 
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General properties of the TD-DFT are most concisely represented by the 
following two H-theorems, the proofs of which are given in Munakata (1994). 
First we neglect the random current j R and consider the diffusion equation 

on(r, t) 8F. 
=f3D"V.n(r,t)"V ( )=-"V'Js(r,t). at 8nr,t 

(25) 

First H-theorem: When the density field n( r, t) evolves in time according to (25), 
F[n] decreases in time according to dF/dt = _(f3D)-l J dr{js(r, t)}2/n(r, t) ~ 0, 
until j s ( r, t) vanishes, and it holds that 8 F / 8 n ( r) = J-L, representing the variational 
condition (9) in the DFT to determine the equilibrium density field for the case 
¢ext( r) = 0. 

Now we turn to the full L-D equation (22): 
Second H-theorem: When the distribution functional f[n,t] evolves in time 

according to the FP equation (23) the generalised free-energy functional F g[f] 
defined by 

Fg[J] = J DnF[n]f[n; t] + kB T J Dnf[n]ln(f[n]) , 

decreases in time monotonically according to 

d~g _ J Dn J dr{( kB T f/ Dn( r)) t j s (r) 

- (DkB Tn(r)jf)!"V(8f/8nr)}2 ~ 0, 

until f [ n, t] takes the form 

fsdn] = const. exp( -F[nJlkB T). 

(26) 

(27) 

(28) 

We note that J Dn denotes the integration over the function space of n(r). 
When the integrand of (27) is zero, we have (28). Comparing the two theorems 
it is seen that the noise j R prevents the density field n( r, t) from being trapped 
in a local minimum of the functional F[n]. That is to say, there can be many 
solutions to (9) (Dasgupta and Ramaswamy 1992), which determines the (local) 
extremum of F[n]. 

Finally we comment on the FD theorem (19) from the point of view of the 
internal noise, proposed by Mikhailov (1989). In order to make our discussion 
clearer, we take as the free-energy functional F[n] the one for a free gas with all 
the direct correlation functions put equal to zero. Then the L-D equation (22) 
becomes 

on(r, t) 2 
----'----'- = D"V n(r, t) - "V. f(r, t). 

at 
(29) 

Now let us consider, following Mikhailov, a hopping process of particles among 
a set of interconnected cells j = 0, ±1, ... put on a linear chain. The microscopic 
state of the system is specified by a set of numbers nj of the particles in the 
cell j. The master equation for the distribution function f({nj}, t) is given by 
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(30) 

where w denotes the hopping rate for one particle, and the hopping is assumed 
only between neighbouring cells. If the occupation numbers {nj} are sufficiently 
large one can treat {nj} as a continuum and (30) is transformed to 

where a continuum approximation like 

(32) 

has been used. Changing from a box j to a smooth x description, Mikhailov 
(1989) showed that (31) is equivalent to the (one-dimensional version of the) 
L-D equation (29) with the FD theorem (19). Thus the multiplicativeness of the 
noise (19), which was obtained by modifying the equilibrium FD theorem (18), 
can be interpreted based on the internal noise, which results from the atomistic 
nature of the constituent (diffusing) particles. 

4. Applications of TD-DFT 

In this section we apply TD-DFT developed in the previous section to 
study dynamic density fluctuations (4a), liquid-solid interface dynamics (4b) 
and transport coefficients (4c). In these studies the approximation (12) for 
the free-energy functional is employed since we have no reliable information on 
higher-order direct correlation functions Cn (n :::: 3). 

(4a) Dynamic Structure Factor 

Inserting (12) with (10) into (22) we obtain the following L-D equation: 

an~, t) = D'\l2n _ D'\l.n(r, t)'\l J dr' c(lr - r'l)[n(r', t) - nL]- '\l.iR. 

(33) 
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We note that the second term on the rhs describes a diffusion process, which is 
induced by the Vlasov field V F == -kB T J dr' c(lr-r'l)[n(r', t)-nLJ. Equation 
(33) with or without the random current (Munakata 1977, 1989), together with 
its generalisation to a two-component system (Bagchi 1987) and to polar liquids 
(Oalef and Wolynes 1983; Hirata 1992), has played an important role and is now 
generally called a Smoluchowski-Vlasov equation. Here we calculate the dynamic 
structure factor (see e.g. Hansen and MacDonald 1986), 

G(q, t) = (n(q, t) n( -q, 0)) / (n(q) n( -q)) , (34) 

with n(q,t)==Jdr{n(r,t)-nL}exp(-iq.r)/N!, based on the nonlinear L-D 
equation (33). Fourier-transformation of (33) and the FD theorem (19) yields 

8n(q, t) 
at 

- ,(q) n(q, t) + L V(q, k) n(k, t) n(q - k, t) + ~(q, t), 
k 

(35) 

(~(q, t) ~(q', t')) = - 2Dq. q' o(t - t'){Oq+q',O + n(q + q', t)/N!} , (36) 

where ,(q) = Dq2/s(q), with s(q) denoting the static structure factor, c(q) 
=l-l/s(q), and V(q,k)=Dc(k)q.k/NL If we neglect the effects of both 
nonlinearity in (35) and the multiplicativeness of the noise, n(q,t) becomes a 
simple Ornstein-Uhlenbeck process (Gardiner 1986) and G(q,t) and the dynamic 
structure factor Gil (q, w) = ~ J dt G (q ,t) exp(i wt) are given by 

Go(q, t) = exp[-,(q)tJ and GO"(q, w) = ,(q)/b(q)2 + w2J (37) 

respectively, where the subscript 0 on G means that we regard it as the zeroth 
approximation to G. 

In calculating G(q, t) based on (35) and (36), we follow a nonlinear theory of 
fluctuations by Mori and Fujisaka (1973). Referring the details of the calculation 
to Munakata (1990), we only give the final mode-coupling equation for G(q, t): 

q, = i O(q) G(q, t) - ds W(q, t - s) G(q, s), dG( t) it 
dt 0 

(38) 

where, under a decoupling approximation, i O( q) = -,( q) and 

W(q, t) = L W(q, k) G(k, t) G(lq - kl, t), (39) 
k 

with the vertex function of the form 

D2 
W(q, k) = -- c(k) q. k{ s(k)(q2 - q. k) - s(lq - kl)(q2s(k) - q. k)}. (40) 

Ns(q) 

To calculate G(q, t) we use (38) where w(q, t) is obtained from (39) with G(k, t) 
appearing on the rhs of (39) replaced by Go(k, t) from (37). Thus, we avoid 
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the full-scale iteration calculation to obtain G( q, t), as is often done in the 
mode-coupling calculation (Bosse and Munakata 1982). 

Numerical calculation is performed for a hard sphere system characterised by 
a packing fraction p = 7r(73 nL /6. The Percus-Yevick approximation is used to 
supply the structural information. If we choose 7 == (72/ D and (7 as the unit 
of time and length, respectively, the numerical results do not depend on D, a 
parameter in our theory. In Fig. 1, we compare Go"(q,w) and G"(q,w) at 
q(7 = 1· 25 for various values of p. As p becomes large we observe a narrowing 
of the central peak, reflecting a slowing down of the density fluctuations due 
to nonlinear coupling in (35). At p = 0·53 a dynamic 'instability' occurs where 
the effective diffusion constant crosses zero. As is well known, the hard sphere 
system freezes at p ~ 0·5 and the DFT in its various versions, has been applied 
to study the transition (Haymet and Oxtoby 1986). It is interesting to note 
that the interaction part (11) of the free energy gives rise to the equilibrium 
transition on the one hand and it also gives rise to the instability through the 
nonlinear coupling in the L-D equation (35). 

(a) (b) (c) 

o 100 0 100 0 100 

TW 

Fig. 1. Dynamic structure factor G" (q, w) at qu = 1· 25 for the hard sphere system for 
(a) p = 0·4, (b) p = 0·45 and (c) p = 0·5. The dashed curves correspond to the linear 
approximation (37). 

Before leaving this section we note that if we take the free-energy functional as 
given by Chandler et al. (1986) for molecular (polyatomic) liquids, we obtain from 
(22) a L-D equation for each of the atomic species constituting the molecules, 
which is very similar to (35). After linearisation as in (37), we obtain a linear 
diffusion equation, which was used by Hirata (1992) to investigate the dynamic 
structure factors of water. 

(4b) Liquid-Solid Interface Dynamics 

Recently (quasi)microscopic approaches to interface dynamics were initiated 
based on the DFT (Harrowell and Oxtoby 1987). Interest has been centred 
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around the interface velocity or growth rate v, which may depend on various 
factors such as the degree of supercooling, anisotropy, interface disorder, and so 
on. Time evolution of the order parameter(s) in the theory is usually assumed 
to be governed by a time-dependent Ginzburg-Landau (TD-GL) equation of the 
form 

EJ/Ji _ r 6H 
at - - i 6/Ji(r) , 

for a non-conserved order parameter and 

( 41) 

(42) 

for a conserved one. Usually one deals with either (41) or (42) depending on the 
problem at hand. However, as we show below, in the problem of liquid-solid 
interface dynamics, conserved and non-conserved order parameters are coupled 
to each other and thus give rather complicated problems. 

Let us start from (14'), which is based on the approximate free-energy functional 
(12). Before proceeding to dynamics we first consider how the interace in an 
equilibrium state is dealt with, following Haymet and Oxtoby (1981) and Oxtoby 
and Haymet (1982). For a uniform solid, the density profile is assumed to be 

ns(r) = nd1 + /Jo + L /Ji exp(i G i • r)], 
i>O 

( 43) 

where G i denotes the reciprocal lattice vector of the crystal and {/Ji} constitute 
the order parameters of the problem. At the transition point {/Ji = /J;,s}' the 
difference in the grand potential nS-nL == kB TnL W({/J;}) becomes zero where 

W( {/Ji}) = (co - 1)/J0 + Co /J6/2 + L Ci /J7 (44) 
;>0 

and Ci denotes the Fourier transform of c(r) at the wavevector q = G i . Since 
Co < 0 and the density usually increases on freezing (/Jo > 0), the first two terms 
on the rhs are negative and the third one is positive since Ci > O. If we consider 
a flat interface we assume that the parameters /Ji in (43) are slowly varying 
functions of z, which is perpendicular to the surface. If z = 00 (-00) corresponds 
to a solid (liquid) phase we have /Ji(oo) = /Ji,s and /Ji(-oo) = O. Under the 
circumstances, one applys a square gradient approximation, i.e. 

EJ/J; ) 1 EJ2/Ji ( )2 /Ji(zd :::::: /Ji(Z) + -,_. (Zl - Z + 2"--2 zl - Z 
EJz EJz 

( 45) 

to the convolution integral in (14') to derive a coupled set of differential equations 
for {/Ji (z)}. These equations are shown to be equivalent to the Lagrange 
variational equation for the interface free-energy functional 

( 46) 
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where J(z) = W({lLi})-j3Uo(z)(1+1L0)-j32:i>0 Ui(Z)lLi, Cti is a direction cosine 

of G i and the z-axis, and co" = dco/dq2. Here Ui, each function of {lLi}, 

represents the effective force necessary to stabilise the uniform crystal with order 

parameters {lLi}; thus for {lLi,s} and {lLi = O}, {U i = O}. 

In order to deal with dynamical situations, we now generalise the order 

parameters to be a function of z and t. First, we linearise the L-D equation (22) 

and neglect the random current jR to obtain on(r, t)/at = (nL/mfo)'\l2oF/on(r), 

and then use the functional (46) for F together with the identity 

of -1 (OF "oF . ) 
-- =n -- + ~ --exp(-lG i .r) 
on(r) L 0lLo(r) i>O 0lLi(r) 

(47) 

to derive 

where Ai == oj /OlLi - le/'IIL/' /2. Since Ai is a slowly varying function of z, we 

neglect \l Ai compared with \l exp[i G i • r] and finally we arrive at the following 

coupled TD-GL equations for the conserved (1L0) and non-conserved (lLi, i > 0) 

parameters: 

°lLi = -DG2 A. 
at ' , (49) 

Similar equations have been used to analyse the dynamics of the liquid-(bcc) 

solid interface by Harrowell and Oxtoby (1987). 

(4c) Some Transport Coefficients 

In this subsection we put a particle at the ongm in a velocity field u( r) 

and study the effects of flow on a stationary density profile nst (r). When there 

is no flow u(r) = 0, nst(r) is obviously given by nL g(r), with g(r) a radial 

distribution function. Due to the flow u(r), this equilibrium distribution is 

distorted and from the distortion we can calculate transport coefficients such as 

the viscosity and friction constant, as we show below. 

We consider a one-component system and neglect random current jR in (33) 

to obtain 

on(r,t) 

ot 
- V .js(r, t), (50) 

js(r, t) = - DVn - j3DnV[f dr' veff(lr - r'l) n(r', t) + ¢(r)] + nu, (51) 

where veff(r) = -kB Tc(r) and ¢(r), the two-body interaction of equation (2), 

represents effects of the particle fixed at r = O. The last term on the rhs of (51) 

represents particle flow due to the velocity field u(r). We are interested in a 

stationary density profile nst ( r) around the fixed particle. 

First we consider the equilibrium solution neq(r) when u = O. In this case 

the particle flow is js = 0 and from (51) we readily obtain 
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In[g(r)] == In[neq(r)/nL] 

= - (3 J dr' veff(lr - r'l)nL [g(r') -1] - (3¢(r) , (52) 

where the boundary condition neq ( 1') -t n L as r -t 00 is taken into account. 
From the relation (13) between hand c, we observe immediately that (52) is 
equivalent to the HNC equation to determine g(r). Thus our theory, when 
applied to an equilibrium situation, gives the HNC result for g(r) (Hansen and 
McDonald 1986). 

Now let us turn to specific effects of the flow field u(r) on nst(r). We consider 
shear flow 

u(r) = 'Yyex , (53) 

where ex denotes a unit vector in the x-direction. In this case we assume a 
solution of the form 

where Ob)h -t O. Inserting (54) into (50) with an/at = 0, we obtain 

g\12w - nL g\12 J dr' c(lr - 1"1) g(r') w(r') + \1 g. \1w 

(54) 

- nL \1 g. \1 J dr' c(lr - 1"1) g(r') w(r') = xy g'(r)/r. (55) 

With use of a Fourier transformation it is seen that (55) has a solution of the 
form 

w(r) = xya(r) , (56) 

and a( r) satisfies a complicated integro-differential equation, which we do not 
write down here. 

The final step to obtain the shear viscosity 'rl is to calculate the xy component 
of the stress tensor a xy, which is expressed, on the one hand, in terms of 'rl and 
'Y as 

a xy = 'rl'Y, (57) 

and also microscopically as (Evans and Morriss 1991) 

(58) 

where ¢'(r) == d¢/dr and we have neglected the kinetic contribution, which is 
very small at a liquid density. Use of the solution (56) together with (57) and 
(58) gives 

'rl = (n'i/2D) J dr (xy)2g(r) ¢'(r) a(r)/r. (59) 

If we fix a particle in a uniform flow u( 1') = Uo ex, we can calculate the friction 
constant ~ from a stationary force on a fixed particle by following similar lines 
of reasoning as above. 
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Our preliminary results for shear viscosity TJ of a soft-core system with 
¢(r) = E(alr)12 show that the main contribution in the integrand in (56) comes 
from the region r ~ (V I N)! (of course in the high-density state) and that TJ 

increases sharply as a' function of p* == (ElkB T)t(Na3 IV). Although detailed 
analysis of TJ and ~ based on our TD-DFT needs some time to be completed, 
it seems that our approach is promising in view of the fact that we have at 
the moment no (microscopic) theory for TJ and ~, especially for dense complex 
systems like water. 

5. Summary 

In this paper we have given a dynamic extension of the DFT, by deriving 
a L-D equation (22) with the fluctuation-dissipation theorem (19). We showed 
that the stochastic equation correctly samples the density field according to the 
probability exp{ -!3F[n]} in (28), based on the second H-theorem (27). At this 
point we note, however, that our TD-DFT is phenomenological and it is desirable 
to have a first-principles dynamics generalisation of DFT. 

As applications of the TD-DFT, we considered density fluctuations in liquids, 
interface dynamics and transport coefficients. We are currently trying to solve 
the L-D equation in real space-time to study slow dynamics in supercooled 
liquids. This study may be considered a dynamic counterpart of the work by 
Dasgupta and Ramaswamy (1992), and as a similar attempt we mention the work 
by Lust and Valls (1993). We expect that our L-D equation has many fields 
of application. One example is dynamics in molecular liquids, as noted at the 
end of Section 4a, which is a very important field in connection with chemical 
reactions in solutions but, at the same time, is very complex to deal with from 
first principles. 
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