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Abstract 

The influence of Lyapunov instability on the lifetimes of antisteady states is investigated 
using nonequilibrium molecular dynamics simulations. It is found that the lifetime is inversely 
proportional to the smallest Lyapunov exponent of the steady state system and proportional 
to the logarithm of the trajectory error per timestep. 

1. Introduction 

If one applies a dissipative force to a thermostatted N-particle system one 
can often generate a nonequilibrium steady state. An example might be low 
Reynolds number shear flow between thermostatted walls. In the nonequilibrium 
molecular dynamics SLLOD algorithm which employs Lees-Edwards periodic 
boundary conditions and a reversible deterministic thermostat, one calculates 
the material properties of shearing systems in a homogeneous fashion (Evans 
and Morriss 1990). The shearing motion is induced by the shearing periodic 
boundary conditions rather than by moving walls. The viscous heat is removed 
by employing a homogeneous thermostat derived from Gauss' Principle of Least 
Constraint rather than by conduction to the thermostatted walls. 

In the linear regime close to equilibrium it has been proved (Evans and 
Morriss 1990) that the properties of the simulated system are identical to those 
of a corresponding real fluid flowing between moving thermostatted walls. In 
the absence of the thermostat it has been proved that the adiabatic SLLOD 
equations of motion give an exact description of adiabatic shear flow even far 
from equilibrium (Evans and Morriss 1990). 

Like real experimental systems thermostatted SLLOD dynamics is time 
reversible. Thus one can then apply a time reversal mapping, MT , to 
the phase r=(XI,YI,ZI,X2 ... PxN,PyN,PzN) and shear rate 'Y of the system, 
MT[r, 'Yl = [(Xl, YI, Zl, X2 ... -PxN, -PyN ,-PzN), -'Y]' and the system will retrace 
its path. Such a process becomes very interesting if it is applied to phases 
which are typical of nonequilibrium steady states. In nonequilibrium steady 
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states one invariably finds that the thermostat removes heat generated irreversibly 
by the dissipative field. This is of course consistent with the Second Law of 
Thermodynamics. 

However, if one applies a time reversal mapping to a typical steady state phase, 
then from the properties of the mapping and the reversibility of the equations 
of motion we know that the system must retrace its path. If the initial path 
was, as we have assumed, entropy producing, then the retraced path must be 
entropy absorbing. We call such a trajectory an antisteady state trajectory. In 
the antisteady state the thermostat supplies heat which is converted into work 
in defiance of the Second Law. 

In practice one cannot integrate the equations of motion of any system exactly. 
Computer simulations always have finite accuracy and experiments can never 
be completely isolated from uncontrolled external perturbations. So what one 
observes in practice is that after the application of the time reversal mapping an 
antisteady state is only followed for a finite time. Eventually the perturbation 
errors grow and the antisteady state decays into a positive entropy producing 
steady state, satisfying the Second Law. 

In this paper we characterise the lifetime of antisteady states and the dependence 
of this lifetime on trajectory error and trajectory instability. 

Trajectory instability can be described in terms of the Lyapunov exponents 
of the system. The largest Lyapunov exponent describes the exponential rate 
of separation of two phase space trajectories which are generated by the same 
equations of motion but which originate from two infinitesimally close initial 
phases (Eckmann and Ruelle 1985). Consider a phase ro with another phase 
r 1 , displaced from it at time zero by or1(O). If or1(O) is infinitessimally small 
and the system is chaotic, the phase separation evolves as 

(1) 

where or1 = 1T1 - rol and Al is the largest Lyapunov exponent for the system. 
The largest Lyapunov exponent can be defined as 

Al = lim lim -.!... in ( 0 rl ( t) ) . 
t-->oo 6Tt-->O 2t orl(o) (2) 

The number of Lyapunov exponents for a system is equal to the dimension 
of phase space of the system. Therefore an N-particle system in three Cartesian 
dimensions confined to a constant energy hypersurface and with the centre of mass 
and the total momentum conserved has 6N - 7 Lyapunov exponents. The higher 
order Lyapunov exponents are defined in terms of the growth of infinitesimally 
small volume elements of increasing dimension about a phase. Tangent vectors 
or n are defined for each dimension such that they are orthogonal to orrn, where 
m = 1,2, ... , n -1 and the nth volume element is therefore given by or lOr 2 ... or n' 

The growth of an infinitessimally small volume element of dimension n is 
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and the nth Lyapunov exponent is given by 

(4) 

We call the trajectory ro(t) the mother trajectory and r 1(t), r 2(t), ... , r n(t) 
are called the first, second, ... , nth daughter trajectories, respectively. 

The calculation of the Lyapunov spectrum using equation (4) leads to problems. 
Taking the br1(0) ----+ 0 limit is difficult in numerical work. For finite br1(0), 
if t ----+ 00 the finite extent of the accessible phase space limits the growth in 
separation. In order to directly calculate the Lyapunov spectrum using equation 
(4) it is necessary that the right-hand side of the equation converges before the 
finiteness of phase space makes itself felt. In order to prevent the exponential 
growth or shrinking of the tangent vectors periodic rescaling can be carried out 
(Benettin et al. 1976). 

Goldhirsch et al. (1987) and Hoover and Posch (1985) concurrently developed 
a differential formulation of the standard method of determining Lyapunov 
exponents which avoids these problems and has an error of cn/t, where Cn is a 
constant and t is the length of the finite time simulation (Goldhirsch et al. 1987). 
In this method the phase separation is kept constant using continuous rescaling 
in a constraint algorithm (Sarman et al. 1992). The equations of motion for the 
displacement vectors of the daughter trajectories, which are constrained to be 
a fixed distance from the mother trajectory and orthogonal to each other, are 
given by 

bt~ = T . br~ - L (nm br~ - (nm br~ , (5) 
m<n 

where 
r _ br~.T .br~ +br~.T .br~ 
<,nm - (br~)2 ' (6) 

r _ br~ . T . br~ 
<,nn - (br~)2 

(7) 

It can be shown (Sarman et al. 1992) that the Lyapunov exponents are then 
related to the constraint force (nn by 

1 it An = lim - (nn ds . 
t->oo t 0 

(8) 

Molecular dynamics simulations have been used to obtain the full Lyapunov 
spectra for equilibrium and nonequilibrium systems (Evans et al. 1990; Hoover 
and Posch 1994; Morriss 1989; Sarman et al. 1992) with high accuracy. The 
increase in the computational effort with the number of particles has limited the 
accurate calculation of the complete Lyapunov spectra to quite small systems at 
this time. However, in recent work (Hoover and Posch 1994) the full spectrum 
for 32 and 100 particle systems undergoing colour diffusion or shear flow was 
calculated. 
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In order to examine the relationship between Lyapunov instability and the 
lifetime of antisteady states, we carried out nonequilibrium molecular dynamics 
simulations of steady states and antisteady states for systems undergoing shear 
flow. Steady states are produced by thermostatting a system to which an external 
dissipative field is applied. The complete Lyapunov spectrum of the steady state 
system with various strain rates was calculated using the constraint algorithm. 
Antisteady states were produced by applying a time reversal map to steady state 
phases. We integrated the equations of motion quite accurately and artificially 
introduce a controlled amount of error at the time the time reversal map is 
applied. 

When a steady state simulation is reversed the entropy production becomes 
negative. This state is unstable and the system will eventually decay into a 
stable, entropy producing steady state. Inevitable trajectory error is amplified 
by Lyapunov instability. If L( r, ,) is the Liouville operator (Evans and Morriss 
1990) the phase space separation between the forward phase 

n(t) = exp[iL(r, r)tlr (9) 

and the corresponding reversed phase 

rr(t) == exp[iL(r, ,)(trey - t)lMTexp[iL(r, ,)treylr (0 < t < trey) (10) 

obtained by continued time integration of the time reversal mapped phase 
MTr(trey) is given by 8T(t) == IFr(t) - n(t)l, where trey is the time at which 
the time reversal mapping was applied. From the properties of the time 
reversal mapping under exact time reversible dynamics, we have lvIT rr(t) = rf(t), 
Vt: 0 < t < treY. In this paper we will consider the forward solution of both the 
mother ro, 

rro(t) = exp[i L(ro, ,)tlFo (0 < t < trey) , (11) 

and daughter trajectories r I, 

rn(t) = exp[iL(n, ,)tlrl . (12) 

where r l = ro + 8rl . We also follow the reverse time evolution of these 
trajectories, 

rrO(t) == exp[i L(ro, ,)(trey - t)lMT exp[i L(Fo, ,)treylrO (0 < t < treY), (13) 

(0 < t < trey) . (14) 
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Finally we shall consider the following trajectory 

rrl,(t) == exp[iL(rl" "Y)(trev - t)MTn" (15) 

with 

(16) 

where a random tangent vector or l , is added to the mother phase immediately 
before the time reversal map is applied. This enables us to study the variation 
of the antisteady state lifetime as a function of integration accuracy. 

In a perfectly reversible system, the reverse trajectory exactly retraces the 
forward trajectory. When noise is present, the displacement of both the forward 
and the reverse trajectory from their respective perfect trajectories will increase 
exponentially with rates given by the largest Lyapunov exponent of the forward 
and the reverse systems respectively. In this work, time reversed simulations 
were carried out to demonstrate this fact. Furthermore we compare the largest 
Lyapunov exponent determined from the reverse simulation with the smallest 
Lyapunov exponent of the forward simulation calculated using the constraint 
algorithm. 

The lifetime of an antisteady state can be characterised by its half-life t 1/ 2 , 

which we define as the time required for the ensemble averaged shear stress 
of the time reversed trajectory to become equal to zero (Evans et al. 1991). 
A relationship between tl/2 and the Lyapunov spectrum is developed in this 
paper by monitoring the divergence of the shear stress from its antisteady state 
value as a function of strain rate and the noise introduced on time reversal. 
The divergence in the shear stress of two trajectories whose initial conditions 
differ by a small amount and are both simulated in the forward direction is also 
examined. 

After time reversal, the Lyapunov spectrum is inverted (Le . .Ai -> -Ai) (Eckmann 
and Ruelle 1985). This means for example that the largest Lyapunov exponent 
of the antisteady state is -1 times the smallest (Le. most negative) Lyapunov 
exponent of the steady state. We have exploited this fact to calculate the smallest 
exponent of steady states which is otherwise a difficult numerical task. This is 
an efficient method of determining this exponent for systems where the conjugate 
pairing rule is not valid (Evans et al. 1991). 

2. Simulations 

Nonequilibrium molecular dynamics (NEMD) simulations of shear flow were 
carried out to study the influence on Lyapunov stability on the lifetime of 
antisteady states. The simulations were carried out in two Cartesian dimensions 
with a constant temperature maintained using a Gaussian thermostat (Evans and 
Morriss 1990). (Reduced units are used throughout this paper.) 

The equations of motion employed were the SLLOD equations (Evans and 
Morriss 1990) which are given by 

(17) 
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where ., is the strain rate and a is the thermostat multiplier 

(18) 

The shear stress of the system is -Pxy , where Pry IS the xy element of the 
pressure tensor which is given by 

N N 

Pry V = LPXipyi/m - ~ L Xij Fyij . (19) 
i=I ij 

A Lees-Edwards periodic system of eight WCA disks (Evans and Morriss 1990) 
was examined at a temperature of T = 1 ·0 and a particle density of n = 0 . 4. 

Table 1. Strain rate dependence of the Lyapunov exponents and the rate of increase in the 
difference in shear stress of trajectories 

Rate of increase in shear stress difference 
'Y Amax Amin A B C D 

0·1 2·19(5) -2 ·19(6) 2·12(4) 2·1.5(2) 2·16(3) 2 ·149(9) 
1·0 2·13(2) -2·59(6) 2 ·14(2) 2·55(2) 2·58(3) 2·56(2) 
2·0 2·15(5) -3·64(13) 2·09(3) 3·584(9) 3·62(8) 3·60(4) 
3·0 2·23(6) -5·75(11) 2 ·1:3(8) 5·49(2) 5·48(:35 ) .5· :37(26) 

B = d(lnl(rrdt) - no(t))I)/dt, 

D = d(lnIPcy(rrO) - Pry(rfIJ)I)/dt. 

3. Results 

Full Lyapunov spectra for steady state systems with various strain rates were 
determined using the constraint algorithm (Sarman et al. 1992). The largest 
and smallest exponents are shown in the second and third columns respectively 
of Table 1. Whereas the largest Lyapunov exponent is weakly dependent on the 
strain rate, the smallest Lyapunov exponent is observed to vary significantly with 
strain rate. 

The time evolution of the absolute value of the difference in the shear stress 
for pairs of steady state trajectories which are initially close was examined. A 
nonequilibrium molecular dynamics simulation was used to produce a steady state 
at the required strain rate. At some time, a displaced phase was formed by adding 
random noise 15r I' in the range -1 x 10-4 to 1 X 10-4 to each component of the 
phase. Both trajectories were then simulated (forward in time) and the difference 
in their shear stress was monitored. It was found that the ensemble average of 
the absolute value of the difference in the shear stress grows exponentially with 
a rate given by the largest Lyapunov exponent of the steady state, A~~ax' This 
is demonstrated in Fig. 1 which shows the time evolution of the shear stress 
separation obtained from nonequilibrium molecular dynamics simulations of a 
steady state system with of strain rates of 0·1 and 3· O. After initial alignment 
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Fig. 1. Time evolution of the ensemble average absolute value of the difference in the shear 
stress of two trajectories which are initially close. The system is undergoing steady shear flow 
at T = 1· 0 and n = 0·4. The results obtained with a strain rate of 'Y = 0·1 are given by the 
solid curves, whereas those for 'Y = 3·0 by the dotted curves. 

of the displacement vectors, the separation increases exponentially with growth 
rates of 2 '12(4) for 'Y = 0·1 and 2 ·13(8) for 'Y = 3·0, which are equal to the 
largest Lyapunov exponent for the steady state at the specified strain rate (see 
column A in Table 1). After approximately t = 3·0, the growth becomes inhibited 
due to the finite momentum space CLJP7/2m = NkT). 

An unstable antisteady state is produced when time reversal is carried out 
on a typical steady state phase. The antisteady state is maintained until noise 
results in departure of the trajectory from the antisteady state to a steady 
state. In order to demonstrate this, nonequilibrium steady states with various 
strain rates were produced and steady state trajectories recorded from t = 0 to 
t = 10. Each trajectory was then simulated in the reverse direction with noise 
8r1, introduced on time reversal (i.e. trey = 10) and the phase separation of the 
forward and reverse trajectories was calculated. Fig. 2 shows the time evolution 
of the separation of simulated reverse trajectories from their forward trajectories 
and the influence of the magnitude of the noise introduced on time reversal for 
a system with 'Y = 1· O. The growth in the separation is exponential until the 
effect of the finite nature of momentum space is felt. 

The fifth column of Table 1 gives the rate of exponential growth of the 
phase space separation at various strain rates. Comparison with the Lyapunov 
exponents at these strain rates (shown in the second and third columns of Table 1) 
confirms that the rate of this exponential separation is equal to the negative of 
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Fig. 2. Time evolution of the deviation of a time reversed trajectory from the forward 
trajectories due to noise introduced at time reversal (trev = 10·0). The system is undergoing 
shear flow at T = 1· 0, n = 0·4 and 9 = 1· O. Each curve is labelled with the magnitude of 
the maximum noise introduced at time reversal. 
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Fig, 3. Time evolution of the shear stress for steady states which are reversed at trey = 10·0 
and the influence of noise introduced at time reversal. The system is undergoing shear flow 
with T = 1· 0, n = 0·4 and 9 = 1· O. The results for the forward simulations are given by solid 
curves and the reverse simulations are given by the dotted curves. Each set of data from the 
time-reversed simulation is labelled with the magnitude of the maximum noise introduced at 
time reversal. 



Lifetimes of Antisteady States 47 

the smallest Lyapunov exponent for the steady state or, equivalently, the largest 
exponent of the antisteady state _A"S. (= Aass ) , Illln tnax . 

Fig. 3 shows the response of the ensemble averaged shear stress after time 
reversal with 'Y = 1· O. Random noise 8 r l' was introduced to all phase space 
coordinates on time reversal and the influence of the magnitude of this noise 
is shown. Initially the separation is exponential and the rate of exponential 
growth for the system is given in Table 1. From Table 1 it is clear that the 
rate of increase is equal to the smallest Lyapunov exponent for the steady state, 
-A~in (= A~~~x)' The rate of increase obtained when no noise is introduced (D) 
on time reversal (that is r rl' -7 r rO) is also shown in Table 1 and is equal to 
the smallest Lyapunov exponent for the steady state. In this case all errors are 
due to the finite accuracy of the computer simulation. 

A simulated forward trajectory separates from an exact forward trajectory 
at a rate given by the largest Lyapunov exponent of the steady state and the 
simulated reverse trajectory separates from an exact reverse trajectory at a rate 
given by the smallest Lyapunov exponent for the steady state. Therefore it might 
be anticipated that the separation of the reverse simulated trajectory from the 
forward simulated trajectory would be influenced by both the largest and smallest 
Lyapunov exponent of the steady state. In the computer simulations only an 
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Fig. 4. A schematic diagram depicting the change in distance of the simulated trajectory 
from the exact trajectory which starts at t = O. For the forward simulation the magnitude of 
the tangent vector 8rf(t), increases exponentially with a rate given by the largest Lyapunov 
exponent of the steady state )..~ax' whereas the magnitude of the tangent vector for the reverse 
simulation 8 r r (t) increases at a rate given by the smallest Lyapunov exponent of the steady 
state -)..~~in' Clearly, separation of the reverse simulated and forward simulated trajectories 
will be dominated by the influence of the separation of the reverse trajectory from the exact 
trajectory when 0 < t < treY' 
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influence due to the smallest Lyapunov exponent is observed. The reason for 
this observation is demonstrated in Fig. 4 and is due to the dominant influence 
of the smallest Lyapunov exponent when t < treY. 

In Fig. 4 we give a schematic diagram of the time evolution of the error 
'cones' bF for the forward and reverse trajectories. The ensemble averaged phase 
separation of the forward and from the corresponding reversed trajectory as a 
function of time can be estimated as the mean separation of phase points inside 
the trajectory cones at a specific time. As the time after reversal increases the 
error cone of the antisteady state increases in radius while the corresponding 
error cone for the steady state actually decreases. So at long times the separation 
of the forward and reversed trajectories is 

which is dominated by the largest Lyapunov exponent of the antisteady state. 
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Fig. 5. Dependence of the half-life of the antisteady state on both the initial noise, or!, at 
a constant strain rate of "I = 1·0 (squares) and on the smallest Lyapunov exponent '>":::'in of 
the steady state system with a constant initial trajectory error of In(orr) = -8·05 (circles). 
The lines are least squares fits to the data. The system is undergoing shear flow at T = 1·0 
and n = 0·4. 
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The half-life of the anti-steady state is given by the time required for the 
shear stress to become zero (see Fig. 3). The half-life decreases as the noise 
orl , is increased and as ..\~~in of the steady state decreases. We increase the 
magnitude of the minimum steady state Lyapunov exponent by simply increasing 
the strain rate. Fig. 5 shows that tl/2 decreases linearly with the logarithm of 
the noise introduced and is inversely proportional to ..\min giving a relationship of 
t 1/ 2 = -{In(k) -In(or(trev))}/..\~in. This relationship is easily derived when we 
recognise that the steady state is likely to decay when the Lyapunov amplified noise 
Dr ( t) becomes a significant fraction of the average interparticle separation and 
momentum, so that Or(t l / 2 ) = k. We therefore have k = or(trev ) exp( -..\~'~in t l/2) 
and simulations show k = 3·0±O·2. 

4. Conclusions 

Using nonequilibrium molecular dynamics simulations of an eight particle 
two-dimensional system undergoing shear flow we have demonstrated the effects 
of Lyapunov instability on the separation of phase space trajectories and on the 
reversibility of the system. The rate of exponential growth of the separation of 
trajectories is given by the largest Lyapunov exponent of the ergodic system, 
while the rate of separation of a reversed trajectory from its forward path is given 
by the negative of the smallest Lyapunov exponent for the system simulated in 
the forward direction. 

Antisteady states can be created by taking a phase point from a steady 
state and simulating backwards in time. This state violates the Second Law of 
Thermodynamics and, due to Lyapunov instability, will eventually form a Second 
Law satisfying steady state if noise is introduced. The half-life of an antisteady 
state can be related to the noise introduced to the system and is increased by 
reducing noise. The half-life is infinite when no noise is introduced. 

The dependence of the half-life of the antisteady state on the smallest Lyapunov 
exponent of the steady state has been demonstrated. It was found that the 
half-life is inversely proportional to the smallest Lyapunov exponent of the steady 
state. Since the smallest Lyapunov exponent is negative and decreases with strain 
rate, this results in a decrease in the half-life with an increase in strain rate for 
shearing systems. 
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