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Abstract 
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This article reviews the Landau theory of interacting Fermi liquids such as mobile electrons 
in solids or helium-3. It starts with Landau's original formulation which takes advantage of 
the existence of a Fermi surface to map the strongly interacting single-particle excitations 
near the Fermi surface into a system of weakly interacting quasiparticle excitations. The 
theory relates microscopic parameters for the quasiparticle energies and scattering strengths 
to experimental observables. The resulting low lying collective modes of the system, such as 
zero sound in helium-3, are then discussed. Next the rigorous microscopic basis of the theory 
is presented. Finally there is an outline of a recent modification of the theory which may 
resolve some of the puzzles about the nature of the electron states in materials exhibiting 
high transition temperature superconductivity. 

1. Quasiparticles and Landau Parameters 

1.1 Quasiparticles in interacting systems of fermions 

The Landau theory of Fermi liquids (Landau 1957) replaces the complexities 
of a strongly interacting system of fermions by a system of weakly interacting 
quasi particles lying in states near the Fermi surface. The proximity of the 
Fermi surface blocks most of the interactions between the low lying quasiparticle 
excitations which makes them long lived and approximate eigenstates of the 
system. The theory is particularly suited to transport properties since for 
interacting Fermi systems these properties are mostly determined by excitations 
close to the Fermi surface (Baym and Pethick 1991). 

While Landau theory has some of the appearance of a phenomenological theory 
it has a rigorous microscopic basis. Parameters appearing in the theory are 
specified in terms of microscopic scattering amplitudes of particles sitting on 
the Fermi surface. At the same time one of the theory's strengths is that the 
parameters are related to experimentally measurable quantities. 

A primary assumption in the theory is that near the Fermi surface there exists 
a one-to-one correspondence between the physical particles of the system and 
the long-lived quasiparticle excitations. In the adiabatic approximation we start 
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with a system of non-interacting fermions at time t approaching minus infinity. 
As t increases we slowly switch on the interactions between the particles at 
such a rate that by t = 0 the interactions have reached full strength. It is 
assumed that as this happens there continues to be a one-to-one correspondence 
between the low lying excited states of the non-interacting system and the 
states, of the new interacting system. The excited single-particle states in 
the interacting system are occupied by quasi particles. These are not strictly 
eigenstates of the interacting system but when they are sufficiently close to the 
Fermi surface they can closely approximate true excited eigenstates for long 
periods of time. While the interactions between low lying quasi particles are weak, 
they cannot be totally neglected and they are treated within a self-consistent 
field description. 

The assumption of a one-to-one mapping for the excited states cannot always 
hold true for systems of interacting fermions. For example if bound states should 
develop as the interaction is slowly switched on then the quasiparticle picture 
breaks down since a bound state is a coherent superposition of many of the 
non-interacting states. 

Let us start with N non-interacting fermions of spin ~ in a volume n. The 
Fermi surface is a sphere of radius equal to the Fermi momentum kF given by 
k}/37r2 = N/n. At zero temperature all non-interacting single-particle states 
Ika) with momentum k::; kF and spin a = ±~ are occupied with occupation 
number no(ka) = 1 and all states for k > kF are empty with no(ka) = o. 

As we switch on the interaction the quasi particles continue to obey Fermi 
statistics and the occupation number of the quasiparticle state Ika) for the ground 
state remains the step function no(ka). Since the quasiparticles are only long 
lived close to the Fermi surface it is desirable to describe excitations in terms of 
changes in the occupation numbers, 8n(ka) = n(ka) - no(ka) (Nozieres 1964). 
For low lying excitations the 8n(ka) will-only be non-zero close to the Fermi 
surface and 

{ 
> 0 

8n(ka) ~ g (1) 

The difference in energies between the excited and ground states can be written 
in terms of 8n(ka), 

8E[8n(ka)] = L Eku8n(ka) . (2) 
ku 

This appears identical in form to the expression for the non-interacting system 
but here the quasiparticle energies Eku themselves depend on the 8n(ka), 

[8 (k )]_ 8E[8n(ka)] 
Eku n a - 8n(ka) , (3) 
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so the excitation energy 8E is a nonlinear functional of the 8n(ka). We denote the 
energy of a quasiparticle when there are no other excited quasi particles present 
by 1:2,,.. Then we get 

8E = L:>2".8n(ka) +! L J(ka, k'a')8n(ka)8n(k'a') , (4) 
k". kU,k'u' 

where 

(5) 

measures the interaction between quasiparticles 

€k". [8nk".J = €2". + L J( ka, k' a')8n( k' 0") . (6) 
k'u' 

In the absence of magnetic fields the system is isotropic and J(ka, k'a') can 
depend only on the relative orientation of the spins (0'.0"). We can make this 
dependence explicit by writing 

J(ka, k'a') = Js(k, k') + (4a.a')Ja(k, k'), 

where the functions Js(k, k') and Ja(k, k') are spin independent. 

1.2 The Landau parameters 

(7) 

For quasi particles lying very close to the Fermi surface the dependence of 
J(ka, k'a') on the magnitudes of k and k' is not important and Js(k, k') and 
Ja(k, k') are functions only of the angle ( = cos-I(k.k' /k}). We expand on the 
Legendre functions basis, 

Js (k, k') = L JsePe( cos () , Ja(k,k') = LJaePi(COS() , (8) 
l e 

where Jsi and Jai are the Landau pammeters. By factoring out the density of 
states at the Fermi surface, Np = (0.m*kp )/Ti2 , where m* is the effective mass, 
the Landau parameters can be expressed in dimensionless form, 

(9) 

Implicit in Landau theory is the hope that the series in (8) converges rapidly 
with increasing i. The leading parameters can be related to experimentally 
measurable quantities 

(10) 

1 1 FsI -=-+-, 
m m* m* 

(11) 
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(12) 

where c is the low frequency velocity of ordinary compressive sound waves, XM 

is the magnetic susceptibility and J-lB is the Bohr magneton. We set Planck's 
constant ti = 1 throughout. We now derive (10) to (12) (Nozieres 1964; Negele 
and Orland 1988). 

1.2.1 Fso 

For Fso we start with the definitions of the chemical potential, J-l = (fJEo/fJN), 
and the compressibility of the system, 

(13) 

where Eo is the ground state energy and P the pressure. Combining these gives 

.!. = N 2 dJ-l1 
X n dN 

It 

(14) 

Using (14) and the relation between compressibility and the low frequency velocity 
of sound, c2 = n/(NXrn), we obtain 

2 N dJ-l 
c =--. 

rndN 
(15) 

The chemical potential J-l = EkF0" [nkO"] depends on N both directly because of 
the change in Fermi momentum, 

(16) 

and also because of changes in the occupation numbers onkO". The total change 
in J-l is 

(17) 

where OEkO"/ok = "'\hEkO" is the group velocity Vk of a quasiparticle in state ka. 
For an isotropic system k and Vk are parallel and we can write 

(18) 
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Since 15nk' <7' is only appreciable near the Fermi surface we can replace the sum 
over k' in (17) by an integral over the angle ( between k and k', 

dJ.l kF j nk2 
dk = -; + L d(cos() -f f(ka, k'a') , 

F m <7' 4n 
(19) 

or using (16), 

dJ.l = n2 + Ljd(cos() f(ka,k'a') . 
dN nkFm* 1 4 

q 

(20) 

Equation (10) then follows using (15) and the orthogonality of the Legendre poly­
nomials. The parameter Fso is thus determined from experimental measurements 
of m* and c2 . 

1.2.2 Fs1 

For the parameter Fs1 we consider the current Jk associated with the movement 
of a quasiparticle having velocity Vk = '\;\Ek<7. The relationship between Vk and 
Jk is made complicated by the fact that when a quasiparticle moves forward 
in the medium the net current is reduced by a compensating backflow of other 
quasiparticles. These move to fill in the space vacated behind the quasiparticle 
as it propagates forward. This effect is particularly pronounced in a medium of 
helium atoms with their large hard cores. For electrons which lack a hard core 
the effect is much smaller. 

To determine the effect of backflow on the total current we perform a Galilean 
transformation on the Hamiltonian for the system H = L:i (PT /2m) + V in the 
centre of mass frame to another frame that is moving with velocity q/m relative 
to the centre of mass. Here Pi is the momentum operator for the physical particle 
i and V represents the interactions between the particles. Since V depends only 
on the relative separation of the particles it is not affected by the transformation 
so the Hamiltonian in the moving frame is 

N Pi q2 
Hq = H - q. L - + N- . 

;=1 m 2m 
(21) 

Writing the energy for the state 11» in the moving frame as Eq == (1)IHql1>) 
then 

(22) 

Since pdm is the velocity operator for the physical particle the right-hand side 
of (22) is the total current for the state 11». 

In the ground state the current must vanish because of reflection symmetry 
so the current associated with the quasiparticle excitation ka is simply 

(23) 
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Under the Galilean transformation the quasiparticle energy Eka changes because 
the state ka becomes (k - q)a leading to an energy change of -q.\hEka and 
also because the occupation numbers n(ka) change (see equation 4). The n(ka) 
change because states which had been on the Fermi surface in the centre of mass 
frame are shifted away from the surface. In the direction of q these states now 
lie above the Fermi surface and the 8n( ka) will be negative while states in the 
direction of (-q) will lie below the surface giving a positive 8n(ka). States in 
directions transverse to q will to lowest order be unaffected. Aligning angles so 
that ( = 0 is along the direction of q then the changes 8n(ka) are 

8n(ka) = -(qcos()8(lkl- kF)' (24) 

The total energy shift is 

8Eka = -q.\lkEka + Lf(ka,k'a')[-(qcos()8(lk'l- kF )] , (25) 
k'a' 

and using (23) 

Jk = \lkEka + L f(ka, k'a')(cos()8(lk'l- kF)' (26) 
k' (1'1 

For a translationally invariant system the total current is a constant of motion 
and commutes with the interaction term V in the Hamiltonian. The current for 
the quasiparticle ka must thus be the same in the interacting system as in the 
non-interacting one where it is 

Jk = kim, (27) 

with m the bare mass. Combining (26) and (27) and using (18) gives 

1 1 nkF J - = - + -2 L d(cos() f(ka,k'a') cos ( , 
m m* 47r f 

a 

(28) 

from which (11) follows. Thus the effective mass m* determines Fsl . 

1.2.3 Faa 

For the parameter FaD we consider the shift in the quasiparticle energy Eka 
caused by a magnetic field H. When H is switched on Eka changes because of 
the shift in the single-particle energies -2J.lBa H and because of the changes in 
the occupation numbers. The total change in Eku is 

OEka = -2J.lBaH + Lf(ka,k'a')8n(k'a'). (29) 
k'a' 
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Let us assume that 8Eku depends linearly on H with some proportionality 
constant T} so 8Eku = -T}O' H. The consistency of this can be checked at the end 
of the calculation. The shift in the Fermi momentum is then given by 

(30) 

Since the up and down shifts in kp are symmetric the chemical potential and the 
average of the kp for the two spins will not change. A total of 47rk}8kp additional 
quasiparticle states with spins parallel to H will be shifted from above the Fermi 
surface to below it and an equal number of states with spins anti-parallel to H 
will move up out of the Fermi surface. For parallel spins 8n(kO') = +1 and for 
anti-parallel spins 8n(kO') = -1. Equation (29) then becomes 

Om*k J 
8Eku = - 2/L BO' H + 0' 2 p T}H '2)40'.0") d( cos () f (kO', k' 0") 

47r u' 

(31) 

using (7) and (8). Equation (31) is consistent with the assumption that 8Eku is 
proportional to H with the constant T} given by 

(32) 

The magnetic susceptibility of a system is XM = (ljO)(MjH) where the 
magnetic moment M is determined by the shift in occupation numbers 

M = L 2/LB0'8n(kO') , 
ku 

and so using (30) 

*k 2 = Om p /LB H 
7r2 1 + Fao ' 

and from this (12) follows giving Fao in terms of XM and m*. 

2. Inhomogeneous Excited States on a Macroscopic Scale 

2.1 The Boltzmann equation for quasiparlicles 

(33) 

(34) 

We have assumed until now that the system is spatially uniform in density 
but provided inhomogeneous variations change slowly over distances comparable 
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to the spacing between particles we can generalise (4) and write (Nozieres 1964) 

oE = L f d3r Eguon(ka, r) 
ku 

+! L f d3r f d3r'f(kar,k'a'r)on(ka,r)on(k'a',r'). (35) 
kuk'u' 

For helium atoms where the interactions are finite in range we can assume that 
interactions act only over distances for which on(ka, r) is almost independent of 
r. Equation (35) then becomes 

oE = L f d3r Eguon(ka,r) 
ku 

+! L f d3rf(ka,k'a')on(ka,r)on(k'a',r) , 
kuk' u' 

(36) 

where we take f(ka,k'a) = fd3r'f(kar,k'a'r'). 
Let us further assume that the inhomogeneous variations on( ka, r) = [n( ka, r) -

no(ka)] are small compared with the mean value no(ka) that is, on(ka,r)/no(ka) 
«1. Since in the absence of an external driving force the no(ka) is independent 
of rand t the linearised Boltzmann equation of motion for on(ka, r) is (Nozieres 
1964) 

= (!on(ka,r)) .. . (37) 
collisIOn 

Since on(ka, r) is only appreciable near the Fermi surface (37) describes the 
time development of a system of quasi particles which are long-lived and weakly 
interacting. The system resembles a dilute gas and for many applications the 
collisional term on the right-hand side can be neglected. In (37) there is a term 
'V rEku (r) which is not present in the classical Boltzmann equation for a dilute gas. 
This term is associated with the spatial variations of the quasiparticle energy, 

Eku(r) = Egu + L f(ka, k' a')on(k' a', r) , (38) 
k'u' 

so that 

'VrEku(r) = Lf(ka,k'a')'Vron(k'a',r). (39) 
k'u' 
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Then 

where we have used (18), and 'Vkno(krr) = -vk8(Ek<1 - f-L). 
For electrons (36) cannot immediately be used because Coulomb interactions 

are long range. However we can still use it if we first replace the long-range 
part of the interaction between points rand r' by an equivalent electrostatic 
interaction. This acts between the average charge densities at rand r', 

VH(r - r') = ! f d3r f d3r' L 8n(krr, r) L 8n(k'rr', r') Ir ~2 r'l . (41) 
k<1 k' <1' 

We can account for VH(r) by introducing a Hartree electric field EH(r) which 
obeys the Poisson equation, 'V.EH(r) = 41Te Lk<1 8n(krr, r). With EH(r) treated as 
an external field the remaining interactions between electrons are of finite range 
and (36) can be used. 

We consider two applications of the Boltzmann equation, the first collective 
oscillations in a neutral system in the absence of an external driving term and 
the second the response of electrons to an external electric field. 

2.2 Collective mode in the neutral system 

We search for periodic solutions to the Boltzmann equation for an uncharged 
liquid in the absence of an external field. These are of the form 

8n(krr, r) = 8n(krr)ei (Q.r-wt) . (42) 

The periodic perturbations to which the Landau theory can be applied are 
macroscopic and satisfy the conditions q « kF and w «f-L. We will assume that 
w is also much greater than the collisional frequency v, so that we can neglect 
the collisional term in (40). For sufficiently low temperatures this condition will 
be satisfied since the collisional frequency vanishes with temperature. Equation 
(40) is then homogeneous and we have 

(q.Vk - w)8n(krr) + q.Vk8(Ek<1 - f-L) L f(krr, k'rr')8n(k'rr') = O. (43) 
k'a' 

Solutions to (43) only exist for discrete values of w / q corresponding to free 
oscillations of the medium with phase velocity v¢ = w / q. These oscillations form 
the collective modes of the system. 
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Replacing 8n(ka) by a function u(ka) which gives the displacement of the 
Fermi surface in the k direction, 

(44) 

(43) becomes 

(q.Vk - w)u(ka) + q.Vk L f(ka, k'a')8(Ek 1 a l - /J)u(k'a') = O. (45) 
k'a' 

Expressing the phase velocity s = V<f;/VF in units of the Fermi velocity 
VF = kF/m*, and with a slight change of notation we get 

(cos B - s)u( B, ¢, a) + cos B L J{ d¢' d( cos B')} m* k~ f((aa')u(B', ¢', a') = 0, (46) 
a ' (27r) 

where (B, ¢) and (B', ¢') give the directions of k and k', and ( is as usual the 
angle between k and k'. 

When u(B,¢,a) is independent of spin (46) has the solution 

u(B,¢)= cosB J{d¢'d(cosB,)}Fs(()U(B',¢'). 
s-cosB 47r 

( 47) 

If the phase velocity eigenvalue s ;oS 1 the collective mode can only be damped 
by excitations of two or more particles and the mode will be a sharp resonance. 
For s < 1 the velocity will be matched by some of the quasiparticle excitations 
and the collective mode will be strongly damped. 

Approximating Fs(() by Fso the eigenvalues of (47) are given by solutions of 

s s + 1 1 
-log -- = 1 + - . 
2 s -1 Fso 

( 48) 

Provided Fso > 0 a solution to (48) always exists with s,<; 1. For small positive 
Fso the phase velocity approaches unity as s = 1 + 2exp( -2/ Fso) and for large 
Fso it increases as s = vi Fso /3. 

The eigenfunction u(B, ¢) has the form 

u(B,¢)= cosB X 47rC, 
s - cosB 

(49) 

where C = Fso J {d¢'d(cosB')}u(B', ¢'). For s> 1 u(B, ¢) has a maximum in the 
direction of q where B = 0, for B = ±7r /2 the u( B, ¢) is zero and in the (-q) 
direction it is a negative minimum, but with a magnitude less than in the q 
direction. Thus u(B, ¢) distorts the Fermi surface into an oval shape with the 
elongated end pointing in the direction of propagation. For s approaching unity 
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the distortion becomes a nodule on the Fermi surface localised in the q direction 
and all the quasiparticle excitations in the collective mode will have the same 
velocity equal to s. To distinguish this mode from ordinary sound it is called 
zero sound. Zero sound is a quite different mode from the ordinary compressive 
sound waves which form the low frequency collective mode for w «v. In ordinary 
sound the whole Fermi surface is uniformly displaced as the density oscillates 
so the shape of the Fermi surface does not change. In zero sound the Fermi 
surface displacement u( e, 4» is highly asymmetric and points towards the forward 
direction. 

2.3 External field acting on a charged system 

If an external electric field E(r, t) acts on a system of electrons of charge e 
then the total driving force comes from the sum of E(r, t) and the Hartree field 
EH(r, t), 

F(r, t) = e{ E(r, t) + EH(r, t)}. (50) 

We again look for solutions of the Boltzmann equation for a particular wave 
number q and frequency w, 

E(r, t) = Eei(q.r-wt) , 8n(krT, r) = 8n(krT)ei(q.r-wt) , (51) 

with w in the range v« w « 11 so that the collisional term can be neglected. 
Setting the collisional term in (40) equal to zero and adding the driving term 
associated with F(t) we get 

k'a' 

(52) 

The quasi particles excited by the external field will result in a current 

J(r, t) = e L 8n(krT)Jk ei(q.r-wt) , (53) 
ku 

where Jk is the current of the quasiparticle krT. 
Solution of (52) can be mathematically involved and we choose for illustration 

an elementary example. Taking a spatially uniform external field we can set 
q = 0 and (52) has the solution 

(54) 
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Combining (53) and (54) and taking Jk = kim 

ie ""' ( k ) . t J(t) = -:F. ~ Vk 8(€k". - f-l) - e-tw 

W k". m 

= ieF Ne- iwt • 

mw 

D. Neilson 

(55) 

Recalling that the conductivity tensor aa{3 is the ratio of current J to the 
driving force F we get the limiting long wavelength expression 

iNe2 
aa{3(w) = --8a{3, 

mw 
(56) 

a result which can be obtained directly from translational invariance arguments. 

3. Microscopic Basis of the Theory 

3.1 Single-particle Green's functions 

We now look at the microscopic theory on which the Landau Fermi liquid 
theory is based (Abrikosov 1963; Nozieres 1964; Brown 1972; Jones and March 
1973; Negele and Orland 1988; Bedell 1994). We assume a uniform system 
and recall that the single-particle Green's function G(ka, t) which describes the 
propagation of a bare particle when k > kF or a hole when k < kF over a time 
interval t is 

G(ka, t) = i(wb'IT {ak".(t)al".(O)} Iwb'), (57) 

with Iwb') the exact N-particle interacting ground state of the system. The 
operator T time orders the annihilation and creation operators ak".(t) and al".(O). 

Because of the time-ordering operator, Green's function has a discontinuity at 
time t = 0, 

while for t = O± 

G(ka, t = 0+) - G(ka, t = 0-) = i, 

G(ka, t = 0+) = i(l - mk), 

G(ka, t = 0-) = - imk. 

(58) 

(59) 

Here mk = (wb"lal".(O)ak".(O)lwb") is the distribution of bare particle states ka 
in the interacting ground state. The discontinuity in G(ka, t) does not depend 
on mk. 
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From equation (59) for t = 0- we have 

mk = ~ 1 dwG(ka,w) , 
27r 1'c 

where the contour C is closed in the upper half of the complex w plane. 
In the Heisenberg picture (57) is 

t>O 

t<O 

91 

(60) 

(61) 

with a time independent Iw(i). Introducing a complete set of exact eigenstates of 
the full Hamiltonian, 'Hlw;;'±l) =E,;'±llw;;'±l) for systems with N±l particles 
we can express (61) in the Lehmann representation as 

t>O 
(62) 

t < 0, 

with excitation energies WnO = IE,;'±l - Ecfl Let us introduce ~nO = WnO =f fL as 
the excitation energy relative to the chemical potential fL = IE6'HI - E6"I. This 
is the excitation energy for a system with a fixed number of particles. 

Introducing the real positive spectral density functions 

n 

(63) 
n 

(62) can be written in the form of a spectral expansion 

t>O 
(64) 

t < 0, 

and hence 

G(k ) = l°O d ' {A+(ka,W') A_(ka,W')} a,w w, . + + , . + 
o w - w + fL - ~O w + w - fL - ~O 

(65) 

3.2 Single-panicle excited states 

The excited state aL,.(O)lw(i) consists of the N-particle ground state to which 
an additional bare particle ka has been added at time t = O. The at,.(O)lw(i) 
is not an eigenstate of the Hamiltonian, being some superposition of eigenstates 
of different energies with the distribution given in (64). Here A+(ka,w) is the 
probability density at energy w + fL for the state aL,.(O)lw(i) and A_(ka,w) 
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the probability density at (-w + Il) for W&""lakO"(O)). If atO"(O)lw&,,") were an exact 
eigenstate with energy I;,k then A+(ka,w) would simply be the delta function 
8(w -I;,k). 

Even though atO"(O)lw&,,") is not itself a quasiparticle state it may initially 
contain a quasiparticle at energy I;,k. If the quasiparticle decays with a lifetime 
l/rk then there will be a peak in A+(ka, w) which is centred on w = I;,k > 0 and 
with a half-width of rk. The area under the peak will be a spectral strength 
Zk. The remaining contributions from states of other energies will make up 
a smoothly varying background with a spectral strength of (1 - mk - Zk) (see 
equation 59). The smaller Zk is in the range 0 ::; Zk ::; 1, the greater will be 
the tendency of the single-particle excited states to mix with states involving 
excitations of two or more particles. For Zk = 1 there would be no mixing 
and the single-particle states would be pure eigenstates. For Zk = 0 the mixing 
with excitations of two or more particles would be complete leaving behind no 
detectable quasiparticle component. We concentrate on the quasiparticle case 
with k> kF but the argument for the quasihole proceeds in the same way. A 
quasihole ka leads to a peak in A_(ka,w) at I;,k < 0 and the background spectral 
strength would be (-mk - Zk). 

To study the properties of the quasiparticle state we need to isolate it by 
filtering the background out of atO"(O)lw&,,"). With this aim let us look at the 
propagator for the state atO"(O)lw&,,"). Choosing t > 0 we distort the contour of 
integration in (64) from the positive real axis into the lower half of the complex 
w plane. We take it first down the negative imaginary axis for some finite 
interval 0 ::; 'Sm w ::; -a and then we run it parallel to the real axis out to ~e w 
approaches infinity 

-iG(ka, t) = e-il-'t 

where R is the residue contribution from any singularities in A+ (ka, w) that the 
contour passed over as we pushed it into the lower half plane. For a given time 
t let us choose the value of the constant a such that at »1. Then the e-a:t 
factor in (66) is negligible and we can drop the second integration. 

A quasiparticle state contained in atO"(O)lw&,,") will lead to a pole in A+(ka,w) 
in the lower half of the complex w plane. With the peak parameters we introduced 
above the pole will be at w = I;,k - irk with a residue of zk/2rri. The longer 
the lifetime of the quasiparticle the closer the pole will be to the real axis. If 
rk < a then the residue of the pole will be picked up in (66) and 

(67) 



Landau Fermi Liquid Theory 93 

For large t such that at » 1 the exp( -iwt) factor in (67) oscillates rapidly 
with frequency causing destructive interference and the contribution from the 
integral in (67) will be small. Provided t remains less than l/rk then a » rk 
and we will pick up the residue of the pole giving 

(68) 

When t becomes so large that t » l/rk the constant a can be chosen smaller 
than r k leaving no contribution R from the pole. By this time the quasiparticle 
excitation has decayed completely away and the entire spectral strength of G(kO", t) 
is located in the smooth background. 

3.3 Quasiparticles and self-energies 

In perturbation expansions the effect of interactions on a single-particle Green's 
function G(kO",w) can be completely absorbed into the self-energy correction 
E(kO",w). The Dyson equation gives the relation between G(kO",w) for the 
interacting system and the non-interacting Go(kO", w) = [(k 2 /2m) - w - iO±l-l in 
terms of E(kO",w), 

G(kO",w) = Go(kO",w) + Go(kO",w)E(kO",w)G(kO",w). (69) 

We now show that the quasiparticle energy ~k, its lifetime l/rk and its spectral 
strength Zk can be related to E(kO",w) (Brown 1972; Negele and Orland 1988). 

The solution of (69) is 

G(kO" w) = Go(kO",w) 
, 1- E(kO",w)Go(kO",w) 

1 

(k2 /2m) - w - J1- - E(kO",w) . 
(70) 

If G(kO",w) contains a quasiparticle pole its energy will be at ~k = (k2 /2m)­
~e E(kO"'~k) and its half-width will be r k = -CSm E(kO"'~k). 

We can show in a finite perturbation expansion that CSm E(kO",w) will vanish 
as w2 and that it will change sign at the Fermi surface as follows. Near the Fermi 
surface the dominant decay channel for a quasiparticle is into two quasiparticles, 
call them Pa and Pb, and a quasihole h. Denoting by IVmaxl a finite upper bound 
on the strength of the interaction within the phase space available for scattering 
we can then write an upper limit for CSm E(kO",w), 

CSm E(kO", w)::; L V;~ax21T8(w - ~Pa - ~Pb + ~h) , (71) 
PuPb h 

where ~Pa > 0, ~Pb > 0 and ~h < 0 are the particle and hole energies of the final 



!l4 D. Neilson 

states. Energy conservation requires that ~p", ~Pb and I~h I are all less than w. 
Then we have 

= V;;'ax27r l w d~pl l w d~p2N(~pl)N(~p2)N(~pl + ~p2 - w). 

(72) 

Introducing Nmax as an upper bound on the density of N(~) in the range 
0:::; ~:::; w we get 

(73) 

Thus, provided the interaction strength and the density of states remain finite in 
the vicinity of the Fermi surface, C:Sm L:(kO", w) is bounded by a constant times 
w2 and the quasiparticle lifetime diverges at the Fermi surface as w goes to 
zero. A similiar argument for a quasihole produces an inequality on the value 
for C:Sm L: (kO", w) just below the Fermi surface but with a change of sign so that 
we have 

C:Sm L:(kO",w) rv sign(w)w2 . (74) 

C:Sm L:(kO",w) passes through zero at the Fermi surface and from (70) this implies 
that the pole in G (kO", w) crosses the real w axis as w passes through the Fermi 
surface. 

The spectral strength Zk of the quasiparticle peak is determined by the residue 
of the pole in (70). Near the Fermi surface 

(75) 

Since ~e L:(kO", w) changes from a negative to a positive sign when w passes through 
the Fermi energy its gradient must be positive there. Provided ~e L:(kO",w) is 
continuous (75) gives the inequality 0 < Zk F :::; 1. 

3.4 Quasiparticle propagator 

We have noted that the state at,.(O)lwS") differs from a quasiparticle excitation 
because of the spectral contributions from the background of excitations with two 
or more particles. We had to filter out this background in order to isolate the 
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quasiparticle state. Refering to (64), we want to confine the frequency integration 
to a small interval centred on the quasiparticle peak in A+ (kIT, w), 

(76) 

Suppose we can construct a state l7,bk(7) that approximates a quasiparticle kIT 
added to the N-particle ground state Iw!i') (Nozieres 1964; Jones and March 
1973). We can then introduce a creation operator qL which adds just the 
quasiparticle kIT to the ground state, 1't,Uk(7) = qk(7lw!i'). From the discussion in 
the preceding section the propagator for the quasiparticle fluctuation from the 
ground state should for t > 0 be of the form, 

where we have introduced the function a2/[a2 + (~k - w)2] as a filter to pick 
out frequencies centred on w = ~k with a passband width of a. This filter 
differentiates qL from at(7 (see equation 64). By keeping a as small as possible 
we eliminate most of the background. In the limit a goes to zero the filter would 
become the delta function b(~k - w) but we cannot actually take this limit since 
A+(kIT,w) has a half-width of fk. We must keep the passband width a> fk in 
order to encompass the entire peak. 

We construct the states l7,bk(7) and (,t,Uk(71 in such a way that we recover (77). 
We define 1't,Uk(7) = qLlw!i') as 

1't,Uk(7) = ~1° dt'e-i~kt' eat' aL(t')lw6"), 
yZk -00 

and (7,bk(71 = (7,b!i'lqk(7 as 

(7,bk(71 = ~ roo dt"(w6"lak(7(t")ei~d'e-"'t". 
yZk Jo 

(78) 

(79) 

The factor a/,fik normalises the states. In the Heisenberg picture qk(7(t) 
exp( iHt )qk(7exp( -iHt), and the propagator is 

(80) 

Since we have taken care to construct t" > t' the ground state expectation value 
on the right-hand side of (80) is Green's function G(kIT, t" + t - t') for t > o. 

Using equation (57) we can carry out the time integrations recovering the form 
we want (equation 77). If the peak part of A+ (kIT, w) transmitted by the frequency 
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filter is given by (76) then substituting this we get 

(81) 

For times t < l/fk the state qt,.(t)lwei) thus acts as an eigenstate of the 
interacting system. 

3.5 Excited state Green's function 

Let us now calculate the Green's function propagator for a bare particle in 
the quasiparticle excited state l?fJko-) 

(82) 

With the definitions for (?fJko-l and l?fJko-) given by (78) and (79) Gko-(k'(J', t) is the 
ground state expectation value of four single-particle creation and annihilation 
operators. It closely resembles the two-particle Green's function for the ground 
state lwei), 

K(k(J, til; k' (J', t; k' (J', O;k(J, t') = (wei IT { ako- (t")ak'o-' (t)a1,o-' (O)aL( t') } lwei) , 

(83) 

but it is not identical since in (82) only two of the four creation and annihilation 
operators are acted upon by the time ordering operator T. This can be remedied 
by shifting time scales in the definitions (78) and (79). Let us redefine 

l?fJk) = ~ fO dt'e-i';k(t'+T')eat' a1o-(t' + T')lwei), 
V Zk -00 

where T' and Til are constants. This does not affect the construction of the 
frequency filter in equation (77) and so (84) is an equally acceptable definition. 
Choosing the values of the constants T' « 0 and Til » t so as to bracket the time 
interval from 0 to t then, with the help of the convergence factors exp( -at), the 
four operators in (82) are by construction correctly time ordered and 

. 2 fO 100 Gko-(k'(J',t) = ~ dt' dt"e-i';dtl+TI-t'-T')ea(t'-t") 
Zk -00 ° 

X K(k(J, til + Til; k' (J', t; k' (J', 0; k(J, t' + T') . (85) 
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Equation (85) provides the connection between Green's function for the excited 
state l'lh) and the two-particle Green's function for the ground state Iw!il 
Separating out the non-interacting part of K (ka, t" + T"; k' a', t; k' a', 0; ka, t' + T') 
which represents the free propagation of the two particles from the interacting 
Part 6.K(ka t" + T'" k' a' t· k' a' O' ka t' + T') we write , """ 

K(ka t" + T"· k' a' t· k' a' O' ka t' + T') , """ 

= -G(ka, t" + T" - t' - T')G(k' a', t) 

+ G(ka, t" + T")G(ka, t - t' - T')8kk , ,uu' 

+ 6.K(ka, t" + T"; k' a', t; k' a', 0; ka, t' + T') . (86) 

The second term on the right-hand side is the exchange term in which we 
interchange the two incoming free particle propagators when they are in identical 
states. 

In the interaction term 6.K(ka t"+T'" k'a' t· k'a' O' ka t'+T') the two particles , """ 
must be within range of the interaction, so in (86) this term will be smaller by a 
factor of lin compared with the non-interacting part where both particles can 
propagate independently throughout the volume n. Thus to leading order (85) is 

. 21° 100 Gku(k'a',t) = ~ dt' dt"e-il;dt"+r"-t'-r')e,,(t'-t") 
Zk -00 ° 

x [-G(ka, t" + T" - t' - T')G(k'a', t) 

+ G(ka, t" + T")G(ka, t - T' - t')8kk',uu,J. (87) 

The first term on the right hand side is simply G(k'a', t) because the quasiparticle 
wave functions are normalised 

. 21° 100 za . II /I " '/I _ dt' dt"e-tl;k(t +r -t -r )e,>(t -t ) 

Zk -00 ° 
x G(ka,t" +T" -t' -T')G(k'a',t) 

= (1/Jk I'lh) x G(k' a', t) 

= G(k'a', t), (88) 

so for ka =I- k'a' Gku(k'a', t) and G(k'a', t) are equal to leading order. For 
ka = k'a' the exchange term in (87) also contributes, Because of the exp( -at) 
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convergence factors we can replace both the single-particle Green's functions 
under the integrations by their quasiparticle parts, 

t>O 

t < 0, 
(89) 

so that equation (87) becomes 

Gka ( k' a', t) = G(k' a', t) - iZke-i~k te- rk t Okk' ,aa' (90) 

Thus to leading order the Gka(k'a', t) and G(k'a', t) differ only by the additional 
contribution from the quasiparticle pole for ka = k'a'. With ka = k'a' (89) and 
(90) give for times It I < l/rk , 

t < 0, 
(91) 

and so G ka (ka, w) has a pole in the upper half of the complex w plane while 
G(ka,w) had its pole in the lower half plane. This means that the excitation ka 
is a quasiparticle for G(ka,w) but a quasihole for Gka(ka,w). The effect comes 
from the fermion nature of quasiparticles which requires that, if there is already 
an excitation ka out of the ground state, then a further excitation ka can only 
be a quasi hole which takes the system from I¢k) and returns it to the ground 
state. 

From (91) the change in the bare particle distribution function when the 
quasiparticle ka is added is 

(92) 

Thus Zka represents the fraction of the bare particle ka which is contained in 
the quasiparticle ka. By analogy with (60) we write 

(93) 

closing the contour C in the upper half of the complex w plane. When k passes 
down through kF and the excitations change from quasiparticles to quasi holes 
the pole in Gka(ka,w) crosses the real axis. When this happens the pole is no 
longer within the contour and the value of rnka will drop by a discontinuous 
amount equal to Zk F • 

3.6 Microscopic expression for the quasiparticle interaction energy 

To leading order we have established that Gka(k'a', t) and G(k'a', t) are 
equal for ka =f=. k'a' (equation 90). To obtain a microscopic interpretation of 
the quasiparticle interaction energy (Nozieres 1964; Jones and March 1973) we 
must retain the next higher order correction terms. In (89) the addition of the 
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quasiparticle ka with ka i= k'a' changes Zk' and ek' in G(k'a', t). The change 
in energy ek' as a result of the addition of the quasiparticle ka is by definition 
f(k'a', ka) (see equation 6). Denoting the change in Zk' as Ok(Zk'), the difference 
between the Green's functions for ka i= k' a' is 

Gku(k' a', t) - G(k' a', t) = i[Zk' + Ok (Zk' )]e-i(ek,+f(ku,k'u'))te-rk,t 

Since both f(ka, k'a') and Ok(Zk' ) are of order l/n the difference to leading order 
is 

For large t we can neglect the Ok(Zk' ) term and solve for f(ka, k'a'), 

f(ka, k'a') = ~t [Gku(k'a', t) - G(k'a', t)] eiek'terk't. (96) 
Zk' 

Using equations (85) to (88) we see that contributions to equation (96) come 
only from the interaction part of the two-particle Green's function, so that 

x D-K[ka, (t" + 7"); k'a', t; k'a',O; ka, (t' + 7')]. (97) 

Equation (97) provides the formal microscopic expression relating f(ka, k' a') to 
the two-body Green's function for the ground state. 

Since D-K contains only the interacting part of the two-particle Green's 
function we can directly relate f(ka, k'a') to the irreducible two-particle scattering 
amplitude ,,(, which is defined schematically by 

D-K = GG"(GG . (98) 

Using the exp( -at) convergence factors in (97) to replace the external propagators 
by their quasiparticle parts we obtain, 

D-K[ka, (t" + 7"); k'a', t; k'a',O; ka, (t' + 7')] 

= J dtldt2dt3dt4[G(ka,t" +7" -tl)G(k'a',t -t2)] 

x"((katt,k'a't2,k'a't3,kat4) x [G(k'a',-t3)G(ka,t' +7'-t4)] 

~ Z~Z~I J dtl dt2dt3dt4 [e-iek (t" +r" -tl HI +T'-t4)e-iek' (t-t 2 -t3 )] 

x J dWldw2dw3dw4e-iwltle-iw2t2e-iw3t3e-iw4t4 

(99) 

xr(kaWl' k'a'W2, k'a'W3, kaW4)O(Wl + W2 - W3 - W4)Dk+k' ;k'+k. (100) 
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For the vertex function f the energy and momentum conservation delta functions 
shared by t::.K and "y have been made explicit, 

Substituting (100) into (97) we get 

f(ku, k' u') = 27rizkZk' f(ku~k' k' U' ~k" k' U' ~k" kU~k) . (102) 

Thus the quasiparticle energy f( ku, k' u') is proportional to f( kU~k,k' U' ~k" 
k'U'~k" kU~k), the irreducible forward scattering amplitude of two quasiparticles 
on the Fermi surface with the four external propagators removed. 

4. Marginal Fermi Liquid Theory 

The copper-oxide based metals exhibiting high transition temperatures to a 
superconducting state have in their normal state some peculiar non-Landau Fermi 
liquid-like properties. In an effort to understand these from a phenomenological 
point of view a theory has been proposed lying between Landau Fermi liquid 
theory and theories for systems of localised excitations. Marginal Fermi liquid 
theory (Varma 1991) retains a Fermi surface but the lifetimes of the low lying 
excited states do not diverge as the energy w goes to zero. Instead when w gets 
very small the thermal energy T replaces the Fermi energy as the applicable energy 
scale and the quasiparticle lifetimes remain finite for non-zero temperatures. 

The polarisability in the Landau Fermi liquid theory is 

XO(q,w) 
X(q,w) = 1 + f(k,k')x0(q,w) . (103) 

In the limit of small q the Lindhard function XO ( q, w) for the quasi particles is 

(104) 

Replacing the quasiparticle interaction f(k, k') in (103) by the first Landau 
parameter fa we obtain 

w > qVF 

(105) 
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For systems with excitations that are spatially localised there is little or no 
q dependence in x( q, w) and the low energy scale is controlled by the external 
temperature rather than by any intrinsic scale implied by the Hamiltonian, 

w 
SSm X(q,w) rv T' (106) 

In marginal Fermi liquid theory the proposed form for the imaginary part of the 
polaris ability at small w is 

w«T 
(107) 

where We is some cut-off energy, the exact value of which is not important for 
small w. 

The corresponding real and imaginary parts of the self-energy are 

~e E(w) = AW log [max~:I, T)], 

. 7f 
SSm E(w) = slgn(w)A- x max(lwl, T), 

2 
(108) 

where A is a coupling constant. Here SSm E(w) changes sign at w = 0 so that 
quasiparticles still change to quasiholes at the Fermi surface. However, since for 
non-zero temperatures the change in sign is discontinuous with a jump of A7fT 
the lifetimes remain finite at the Fermi surface. This result can be contrasted 
with the Landau Fermi liquid theory expression (74) which gives inverse lifetimes 
that vanish quadratically with w near the Fermi surface. 

Equation (108) can be used to determine a spectral strength for the quasiparticles, 

1 
Zk = . 

1 - Alog{max(Ek, Tjwe } 
(109) 

At zero temperature the spectral weight vanishes logarithmically as k approaches 
the Fermi surface and ~k goes to zero, but at non-zero temperatures Zk is bounded 
from below and ZkF remains finite. The very existence of quasiparticles depends 
on the temperature making them truly marginal. 
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