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Abstract 
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We investigate the phase diagram of electrons in two dimensions at T = 0 by means of 
accurate diffusion Monte Carlo simulations within the fixed-node approximation. At variance 
with previous studies, we find that in an isolated layer Slater-Jastrow nodes yield stability of 
the fully polarised fluid at intermediate coupling, before freezing into a triangular crystal sets 
in. We have also studied coupled layers of electrons and of electrons and holes. Preliminary 
results show that at large coupling, as two layers are brought together from infinity, inter-layer 
correlation first stabilises the crystalline phase at distances of the order of the in-plane 
inter-particle spacing. As the distance is further decreased the effect of correlation, as 
expected, turns into an enhanced screening, which disrupts the crystalline order in favour of 
liquid phases. 

1. Introduction 

The electron gas, a system of electrons interacting with the liT potential in 
the presence of a uniform neutralising background, is one of the simplest models 
to study the electronic motion in two dimensions. In spite of its simplicity, 
the system is interesting from many points of view. It is a non-trivial model 
for many-body theory (Isihara 1989) and has a phase diagram displaying, with 
lowering the density, transitions to states with magnetic ordering and to the 
Wigner crystal (Ceperley 1978). In fact, a two dimensional electron gas can be 
realised at the interface between GaAs and AlxGal-xAs and at the interface of 
metal-oxide-semiconductor structures (Ando et al. 1982). In past years, systems 
of electrons confined to two dimensions have attracted a great deal of experimental 
attention in connection with the quantum Hall effect (von Klitzing et al. 1980; 
Tsui et al. 1982), high-temperature superconductivity (Bednorz and Miiller 1986; 
see, e.g., Gupta and Multari 1993), and Wigner crystallisation (Jiang et al. 1990; 
Goldman et al. 1990; Williams et al. 1991; Pudalov et al. 1993). More recently, 
experiments focussing on the effect of inter-layer correlation on transport have 
been carried out on coupled layers of two-dimensional carriers, both without 
(Eiseinstein et al. 1992a; Sivan et al. 1992) and with a magnetic field (Eiseinstein 
et al. 1992b, 1995) . 
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The phase diagram of the electron gas has received a lot of attention since 
Wigner (1938) pointed out that at low density electrons would crystallise to 
minimise the potential energy, while at high density the electronic plasma becomes 
an ideal Fermi gas with total spin S = 0 (normal fluid) to minimise the kinetic 
energy. In fact, a few years earlier, a suggestion had been made by Bloch 
(1929) that with decreasing the density the Pauli exclusion principle would make 
the state with all the spins aligned (polarised fluid) lower in energy than the 
normal fluid. Somewhat later, Overhauser (1959, 1960, 1962) argued that within 
an Hartree-Fock treatment states with a spatial modulation of the spin (spin 
density waves) would be favourable in energy with respect to the normal fluid 
at all densities. All these considerations, originally made for the electron gas 
in three dimensions at T = 0, are naturally extended to the two-dimensional 
situation, where all properties of the system are functions of one dimensionless 
parameter Ts = l/yl7rnoaB, with no the average planar density and aB the Bohr 
radius. It may be shown that the density parameter T s also gives a measure of 
the coupling, expressed as the ratio of potential and kinetic energies. 

A first assessment of the phase diagram of the two-dimensional electron gas 
was made with the variational Monte Carlo (VMC) method by Ceperley (1978), 
who investigated the competition between normal and polarised fluids and the 
triangular Wigner crystal. He found that, by lowering the density, the sequence 
of stable phases was: normal fluid, polarised fluid, Wigner crystal. However, a 
subsequent study (Tanatar and Ceperley 1989) using the more accurate fixed-node 
diffusion Monte Carlo (DMC) method gave no evidence for the stability of the 
polarised fluid, predicting a crystallisation from the normal fluid. Also, a recent 
VMC investigation of Moroni et ai. (1993) on spin density waves (SDW) found 
no evidence of stability for such an inhomogeneous phase, with respect to the 
fluid phases, at relevant values of Ts. 

When two layers of electrons are brought together from infinity, at a distance 
d comparable to the in-plane inter-particle spacing, correlation between electrons 
on different layers starts to play an important role (Swierkowski et al. 1991; 
Neilson et ai. 1993; Zheng and MacDonald 1994), possibly yielding a richer phase 
diagram. In fact a dielectric approach (Swierkowski et ai. 1991; Neilson et ai. 
1993), treating correlation within the STLS (Singwi et ai. 1968) approximation, 
gives indirect evidence of a stabilisation of modulated phases with respect to 
the normal fluid. One may naively argue that at large in-plane coupling, as 
d is reduced from 00, correlation should first reinforce the stability of charge 
modulated phases, because of the Madeiung energy gain. On the contrary, for 
d smaller than the in-plane spacing TsaB and yet in the absence of tunnelling 
between the layers, inter-layer screening should weaken the intra-layer correlations, 
yielding to a stabilisation of the fluid phases. This is certainly the case when 
tunnelling sets in, as the two-layer system becomes closer and closer to a single 
layer at larger density. 

In this paper we present some results of a systematic Monte Carlo investigation 
of the phase diagram of coupled layers of electrons and of electrons and holes. 
Being the single layer situation our d = 00 (in practice d» TsaB) limit, we first 
repeat the single layer calculations for various phases. This preparatory study 
is additionally motivated by recent fixed-node diffusion Monte Carlo simulations 
of Kwon et al. (1993) on the normal fluid, yielding predictions at variance with 
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those of Tanatar and Ceperley (1989). We next investigate two coupled layers 
of electrons and of electrons and holes, at an in-plane coupling rs = 30 and for 
a few values of d. We restrict our study to the symmetric situation of equal 
in-plane densities and carrier masses. Using the Rydberg as the unit of energy 
and the in-plane spacing a = rsaB as the unit of length (Le., m = ~, ti = l/rs, 
e2 = 2/rs ), the Hamiltonian for a single layer (labelled a) reads 

(1) 

where the constant is the term due to the presence of the charged background. 
Similarly for two symmetric layers (labelled a and b) at distance d one has 

(2) 

with the new constant accounting for the interaction energy of the particles on 
one plane with the background on the other plane, and the upper (lower) sign 
referring respectively to the electron-electron(hole) situation. 

The outline of the paper is as follows. In the next section, we briefly review 
both VMC and fixed-node DMC methods and show the form of our trial functions, 
emphasising changes necessary for the coupled layers. In Section 3, we present 
our results for an isolated layer, discuss its phase diagram and compare with 
previous studies. Finally, in Section 4 we present some preliminary results for 
the electron-electron and electron-hole coupled layers. In all cases, we give 
predictions for the energies and for pair correlations, and for the isolated layer 
we also give spin resolved pair correlations. 

2. Monte Carlo Method 

In dealing with a quantum many-body system one is faced with the calculation 
of multidimensional integrals. For N particles in 2 dimensions the calculation of 
the expectation value of the operator 0, on the wavefunction wT(R), is given by 

(3) 

with R denoting a point in the 2N-dimensional space of configurations. An 
efficient technique to evaluate such multidimensional integrals is provided by the 
Monte Carlo (MC) method (Metropolis et al. 1953). The integral in (3) is readily 
rearranged into the standard form 

(0) = J dRlwT(R)1 2 WT~R) OWT(R) / J dRlwT(R)1 2 

= J dRP(R)OL(R) , (5) 
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with the probability density P(R) given by 

(6) 

and the local operator 

(7) 

According to the Monte Carlo method, one generates a set {R} of configurations 
Ri , sampled from the probability P(R) and evaluates the required integral as 

(8) 

with a statistical error that decays as 1/ VM for large M. 
In the VMC method, one assumes a trial wavefunction wT(R; a), which 

can be optimised with respect to the variational parameters a, by minimising 
the expectation value of the energy E(a) = (wT(a)!ilIwT(a))/(WT(a)!WT(a)), 
or alternatively the energy variance (Umrigar et al. 1988). All the integrals 
required in the calculation of expectation values are calculated using the :MC 
method sketched above. The choice of the wavefunction and the modelling of its 
variational flexibility are crucial in the VMC method. 

One may improve on the variational estimates by resorting to the fixed-node 
DMC (Reynolds et al. 1982; see, also, Umrigar et al. 1993). In this method 
one propagates a trial wavefunction wT(R) == <I>(R,t=O) in imaginary time t, 
to project out the higher energy components and filter out the ground state 
<I>o(R) = <I>(R, t=oo). In fact, for reasons of computational efficiency one introduces 
the importance sampling and works with the density f(R, t) = <I>(R, t)wT(R). It 
is easy to show that the Schrodinger equation in imaginary time implies, for a 
system of N particles, the differential equation 

N 
af(R, t) 1 '" 2 at = r; ~ Vi' (Vd - fVln WT ) - (EL(R) - ET)f, (9) 

with the local energy EL(R) defined according to (7), from the Hamiltonian 
iI, and ET a normalisation constant. This equation may be interpreted as a 
diffusion equation for the probability density f, provided that f(R, t) ~ 0, and 
this may be most easily accomplished by forcing the nodes of <I>(R, t) to coincide 
with those of wT(R). This fixed-node approximation has a variational character 
(Ceperley 1991) and gives the best energy upper bound consistent with the nodal 
structure of the trial function. 

In practice, in the DMC method, an initial ensemble of configurations {R}, 
sampled from the probability density f(R,O) = w}(R), is evolved forward in 
time by the diffusion equation (9) and reaches the equilibrium distribution at 
sufficiently large t. Asymptotically, the configurations are sampled according 
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to the (mixed) probability density f(R,oo) = IPO(R)WT(R) and can be used to 
evaluate the mixed estimator (Ceperley and Kalos 1979) 

(10) 

of an operator O. Here IPo(R) is the lowest-energy eigenstate of the Hamiltonian 
which satisfies the fixed-node boundary condition (Le., IPO(R)WT(R) :::: 0). Only for 
operators which commute with the Hamiltonian will the mixed estimator coincide 
with the ground state expectation value (IPoIOllPo)/(lPollPo). For other operators, 
the bias in the mixed estimator is first order in 8, where IIPo) = IWT) + 8Iw). 
One can improve by computing the extrapolated estimator, 

(11) 

with (O)VMC = (wTIOlwT)/(WTlwT) the variational estimate. The bias in the 
extrapolated estimator is second order in 8. Methods to compute unbiased ground 
state expectation values have been proposed (Liu et al. 1974); however they 
introduce large statistical errors, and in this paper we will use the extrapolated 
estimator. 

In the actual simulation one evolves the discrete representation of the density 
f(r, t) using a finite time step T and an approximation for the Green function 
of the differential equation (9) which is exact only in the limit T --t O. This 
introduces a time step error, which can be either (i) extrapolated out by repeating 
the simulation with various time steps or (ii) made small by choosing time steps 
that yield a high acceptance of the MC moves (Reynolds et al. 1982). Most of the 
energies calculated in this work have been obtained with the second procedure, 
i.e., working at constant acceptance (typically of ~ 99.94%) to conform with 
the prescription of Kwon et al. (1993) (see also Kwon 1994). However, for the 
single layer, we have also performed extrapolations to T = 0 (see below). For 
the structural properties, on the other hand, we always report results for fixed 
acceptance, since statistical noise tends to be larger than the time step bias. The 
time step error can be avoided altogether by using the Green Function Monte 
Carlo method (Ceperley and Kalos 1979). 

Because of the finite number N of particles used, simulations yield predictions 
that are affected by size effects. For charged fermions they are particularly severe, 
both in the kinetic and potential energies (Ceperley 1978). Even using numbers of 
particles N corresponding to closed shells of one-particle orbitals and performing 
the Ewald summation of the interactions on the infinite periodic replicas of the 
simulation box, residual size effects need to be extrapolated out. In practice, 
one assumes (Ceperley 1978) that the N dependence of the energy is the same 
for VMC and DMC and performs simulations yielding VMC energies and their 
size dependence. Thus one may perform the more costly DMC simulations only 
for one value of N and extrapolate the DMC energy to the bulk limit using the 
VMC information. Tanatar and Ceperley (1989) checked the assumption above 
in selected cases and found that indeed the number dependence of VMC and 
DMC energies was the same within statistical error. 
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3. Trial Wavefunctions 

In the present investigation, the primary role of the trial wavefunction WT is 
(i) to provide the nodes to use in the DMC simulations and (ii) to yield the 
VMC energies and their N dependence. The simplest choice of trial function for 
a single layer with N = Nl + NT electrons is of the Slater-Jastrow (SJ) type 

N 

wT(R) = Dl(¢nm)DT(¢nm)exp ( - ~ 6"=U(rij)) , 
'r-J 

(12) 

where the determinant Dl (DT) is constructed with the Nl (NT) one-particle 
orbitals ¢n(rm) == ¢nm that are lowest in energy and u(r) is a suitable two-body 
pseudopotential. The form of the orbitals depends on the phase under investigation, 
a natural choice being plane waves for the fluid phases and localised gaussians 
for the crystal. Improved trial functions (BF3) including backflow, as well as 
three-body terms in the J astrow exponential, have been recently used to study 
the normal phase of the 2-dimensional electron gas (Kwon et aZ. 1993). They 
yield some improvement on the SJ trial function, but are computationally more 
demanding. In view of the very large number of simulations necessary to build 
a phase diagram, here we choose to work with the simpler SJ functions. 

For the two-body pseudopotential u(r) we use in the fluid phases the form 
that minimises (wT!H!WT)/(WT!WT) in the random-phase approximation (RPA) 
(Gaskell 1961; Ceperley, 1978) and which turns out to be nearly optimal in VMC 
simulations (Ceperley 1978) 

1 
2nou(k) = - So(k) + 

Above, So(k) is the static structure factor of non-interacting fermions 

(13) 

(14) 

with y = k/2kF and kF the Fermi wavevector. This pseudopotential is known 
to reproduce (Ceperley 1978) the cusp condition for particles with unlike spin 
projection 

lim du(r) = -rs , 

r->O dr 
(15) 

as well as the long-range behaviour necessary for the correct plasmon dispersion 

lim u(r) = 1.48y'rs /r. (16) 
r->CX) 

In the crystalline phase a similar pseudopotential was shown to be nearly 
optimal (Ceperley 1978), 

4 
2nou(k) = -1 - -- + 

(kZ)2 
(17) 
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with l = l(rs) the localisation length of the gaussian orbital ¢(r) ex: exp(-(r/l)2) 
centred at the sites of the chosen lattice. 

The above SJ trial functions for a single layer are easily generalised to the 
case of two coupled layers (a and b), 

(IS) 

with the second sum excluding the term with i = j when 0: = (3, and De>a a 
determinant of single particle orbitals for the particle with spin projection (J 

on the layer 0:. We have obtained the two-body pseudopotentials u<>f3(r) by a 
straightforward generalisation of Ceperley's (197S) approach. For the fluid phases 
we get 

and for the crystal 

+~( 

where 

+~( 

Srs 
V±(k) = -3 [1 ±exp(-kd)], 

k 

_1_ V (k)) 
SJ(k) + - , (19) 

(20) 

(21) 

with the upper (lower) sign referring to electron-electron (hole) coupled layers 
at distance d. 

We note that the above formulae for two layers are restricted to the symmetric 
case, which is the only one that will be considered here, and to situations in which 
the in-layer motion of the fermions is strictly two-dimensional and inter-layer 
tunneling may be neglected. For the electron-hole situation we find that the 
above inter-layer pseudopotential uab(r) may become poor for strong inter-layer 
couplings. In such a case we augment it with a short range attraction, which we 
expand in cosines with coefficients that are determined variationally. More details 
of the coupled layers study will be given elsewhere (Rapisarda and Senatore 
1996). Here we stress that optimal pseudopotentials are of primary importance 
for the reliability of extrapolated estimates according to (11), in that they bring 
WT closest to <Po. 
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4. The 2-dimensional Electron Gas 

(4a) Ground State Energies and Phase Diagram 

We have performed Monte Carlo simulations of the 2-d electrons gas for three 
different phases and for several values of the coupling constant rs. In all cases 
we have used SJ trial functions, as briefly summarised above. To the best of our 
knowledge, the ingredients of our calculations are equivalent to those of similar 
calculations carried out by Tanatar and Ceperley (1989) and by Kwon et al. (1993) 
and we would expect our results to coincide with those of these previous studies, 
within statistical errors. This is indeed the case when we compare our energies 
with the SJ results of Kwon et al. that is for the normal fluid at rs = 5,10,20. 
However, the same is not true for the comparison with the results of Tanatar and 
Ceperley, in which case we have to record significant discrepancies, largely outside 
the error bars. This is quite evident from Tables 1-3, where all our energies, 
variational and diffusion, have been collected, together with the diffusion results 
of Tanatar and Ceperley. We find that their total energies are always below ours 
for the normal fluid and always above for the polarised fluid and the triangular 
crystal, with the exception of the polarised fluid at r s = 30 where they agree 
within error bars. We have no explanation for these discrepancies and we may 
only stress that our results do agree with the more recent study of Kwon et al. 

Table 1. Size dependence of the Slater-Jastrow VMC energy (in Ry) of the normal electron 
liquid at 5 ::; rs ::; 40 and X2 parameters 

Fixed-node DMC total energies for N = 58 and in the bulk limit are shown and compared 
with the results of Tanatar and CeperJey (1989) [in square brackets]. Also, the correlation 
energy Ec is given, together with the kinetic (T) and potential energies (V), as obtained from 

our fit to the correlation energy 

rs = 5·0 r" = 10·0 rs = 20·0 rs = 30·0 rs = 40·0 

N=26 -0·29356(8) -0·16851(:3) -0·09173(1) -0·063346(6) -0·048479(4) 
N=42 -0·29596(5) -0·16897(2) -0·091802(9) -0·063345(5) -0·048477(3) 
N=58 -0·29357(5) -0 ·16837(2) -0·091651(9) -0·063283(5) -0·048442(3) 
N=74 -0· 29446( 5) -0 ·16856(2) -0·091677(8) -0·063291(4) -0·048446(3) 
N = 114 -0·29374(5) -0 ·16837(2) -0·091601 (8) -0·063257(6) -0·048426(3) 

EVMC 
00 -0·29351(6) -0 ·16826(2) -0·091558(9) -0·063230(6) -0·048410(3) 

bl 0·043(1) 0·0099(4) 0·0024(2) 0·0008(1) 0·00044(7) 
b2 -0·046(3) -0·017(1) -0·0071(4) -0·0038(3) -0·0023(2) 

X 
2 3·66 2·35 1·69 0·53 0·54 

E DMC 
58 -0·2980(1) -0·17036(2) -0·09248(1) -0·063792(8) -0·048813(4) 

[-0.2998(1)] [-0·17105(8)] [-0·09273(2)] [-0·063934(7)] 
E DMC 

00 -0·2979(2) -0·17023(4) -0·09240(2) -0·06374(1) -0·048780(9) 
[-0·2996(1)] [-0·17089(9)] [-0·09268(2)] [-0·06392(1)] 

(T) 0·0745 0·02513 0·00875 0·00480 0·003159 
(V) -0·3724 -0·19537 -0 ·10115 -0·06855 -0·051940 
Ec -0·0978(2) -0· 06019( 4) -0·03488(2) -0·02485(1) -0·019394(9) 

[-0·0955(1)] [-0·06085(9)] [-0·03516(2)] [-0·02502(1)] 

The fixed-node DMC results given in Tables 1-3 have all been obtained with 
simulations at a fixed acceptance of about 99·94%. This is accomplished by 
carefully tuning the time step at each r s, between T = 0·06 Ry-l for r s = 5 and 
T = 6·6 Ry-l for r .. = 75. We have also performed linear extrapolations to T = 0, 
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to ascertain the systematic bias introduced by the use of a small but finite time 
step. In Fig. 1 we show a typical extrapolation. Similar fits are obtained for all 
the cases studied. We find that the overall effect of extrapolation to T = 0 is a 
rigid downward shift of r~/2 E(rs) by an amount of the order of a couple of mRy. 

Table 2. Size dependence of the Slater-Jastrow VMC energy (in Ry) of the fully polarised 
electron liquid at 5 ::; r. ::; 75 and X 2 parameters 

Fixed-node DMC total energies for N = 57 and in the bulk limit are shown and compared 
with the results of Tanatar and Ceperley (1989) [in square bracketsJ. Also, the correlation 
energy Ec is given, together with the kinetic (T) and potential energies (V), as obtained 

from our fit to the correlation energy (equation 28) 

1',,=5·0 1'" = 10·0 1'" = 20·0 1'" = 30·0 1',,=40·0 r.~ = 75·0 

N = 21 -0·28958(7) -0·16965(2) -0· 092584(8) -0·063880(6) -0· 048851( 4) -0·026912(1) 
N =37 -0.28603(9) -0·16855(3) -0·09222(1) -0·063687(5) -0.048727(3) -0, 026868(2) 
N =57 -0·28401(8) -0·16793(3) -0·092025(9) -0·063590(5) -0·048670(3) -0,026850(1) 
N =69 -0.28529(7) -0·16833(3) -0·092136(7) -0.063650(5) -0·048697(2) -0, 026857(1) 
N = 113 -0.28401(7) -0·16792(2) -0·092004(7) -0.063574(4) -0·048657(2) -0·026845(1) 
E'::oMC -0.28374(9) -0·16785(3) -0·09197(1) -0·063558(6) -0·048639(3) -0·026836(1) 
b1 0.055(3) 0.017(1) 0·0050(3) 0·0026(2) 0·0014(1) O· 00041( 4) 
b2 -0 ·050(6) -0·015(2) -0· 0064(6) -0·0033(4) -0· 0025(2) -0·00103(8) 
x2 0·27 0·13 0·46 3·31 4·13 4·77 

E DMC 
57 -0.2869(1) -0·16902(2) -0·09246(1) -0· 063854( 4) -0.048865(4) -0·026960(1) 

E~MC 
[-0.28581(9)] [-0.16853(5)] [-0·09237(2)] [-0.063826(8)] [-0.048841(2)] [-0·026947(3)] 
-0·2866(2) -0.16895(7) -0·09240(2) -0·06383(1) -0·048843(9) -0·026947(3) 

[-0·2858(2)] [-0,16807(9)] [-0.09223(2)] [-0·06379(1)] [-0.048844(7)] [-0·026932(3)] 

(T) 0·0951 0·02846 0·00920 0·00488 0·003134 o· 001210 
(V) -0·3817 -0·19739 -0· 10161 -0·06870 -0·051978 -0·028157 
Ec -0.0271(2) -0·01918(7) -0.01252(2) -0· 00945( 1) -0.007652(9) -0·004667(3) 

[-0.0263(2)] [-0·0183(1)] [-0·0123(2)] [-0.00942(1)] [-0.007653(7)] [-0·004652(:3)] 

Table 3. Size dependence of the Slater-Jastrow VMC energy (in Ry) of the triangular electron 
crystal at 20 ::; rs ::; 75 and X2 parameters 

Fixed-node DMC total energies for N = 56 and in the bulk limit are shown and compared 
with the results of Tanatar and Ceperley (1989) [in square bracketsJ 

rs = 20·0 rs = 30·0 rs = 40·0 rs = 50·0 rs = 75·0 

N = 16 -0·092154(9) -0·063753(5) -0·048836(3) -0·039631(2) -0·026992(1) 
N =30 -0·091974(8) -0·063653(4) -0·048768(3) -0· 039580(1) -0· 026963( 1) 
N=56 -0·091904(6) -0·063613(3) -0·048738(2) -0· 039560( 1) -0·026953(1) 
N=80 -0·091897(6) -0·063600(3) -0·048727(2) -0· 039556( 1) -0·026949(1) 
N = 120 -0·091888(6) -0·063592(3) -0·048727(2) -0· 039553( 1) -0·026947(1) 
EVMC 

00 -0· 091869( 4) -0·063585(2) -0·048720(1) -0·0395484(7) -0·0269450(6) 
c -0 ·0180(7) -0·0108(4) -0·0075(2) -0·0052(1) -0·00300(8) 
X2 3·26 0·96 4·07 1·48 0·89 

EDMC 56 -0·092376(8) -0·063846(5) -0·048878(2) -0·039646(2) -0· 026993( 1) 

EDMC 
[-0·063778(5)J [-0.0488863(5)J [-0·039621(3)J [-0·026988(I)J 

00 -0·09233(1) -0·063820(6) -0·048860(2) -0·039634(2) -0· 026986( 1) 
[-0.063760(9)J [-0·048852(6)J [-0·039613(5)J [-0·026981(2)J 

As we have already mentioned, simulations are made at finite number N of 
particles and results need to be extrapolated to the bulk limit. In Tables 1-3 
we have recorded our variational energy for N ranging between 16 and 120. For 
the fluid phases, the extrapolation to N = 00 is made according to a scheme due 
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to Tanatar and Ceperley (1989), through the following ansatz for the energy per 
particle 

(22) 

where 6.TN is the kinetic energy difference between a system with N electrons 
and one in the bulk limit (Le., N = 00), for non-interacting electrons at 'rs = l. 
We determine the variational parameters Eoo , b1 , and b2 by a least squares fit 
of our variational energies. To extrapolate the DMC energies we assume with 
Ceperley (1978) that the difference EN - Eoo is the same for VMC and DMC, 
being given by the last two terms on the rhs of (22). We proceed in a similar 
manner for the crystalline phase by resorting to the ansatz (Tanatar and Ceperley 
1989) 

(23) 

All the extrapolated energies listed in Tables 1-3 have been obtained with these 
procedures and we also give in the same tables details of the fits. 
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Fig.1. Extrapolation to T = 0 for the total energy ET = Eo+aT 
in the 2-dimensional electron gas, for the fully polarised fluid 
at T.s = :30 and N = 57. Here Eo = -0·063857(4) Ry, 
a = 9·6 X 10-6 Ry2, with a X2 = 1·73. 

The present results for the energies of the electron gas are the most accurate 
to date covering normal and polarised fluids, as well as the triangular crystal, 
over a large range of densities. Therefore we have fitted our extrapolated DMC 
energies to analytic expressions, one for the fluid phases and one for the crystal. 
For the crystal we have used the same form as Tanatar and Ceperley (1989) 

(24) 
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The resulting coefficients are shown in Table 4. 

Table 4. Parameters of the approximant of (28) to the correlation energy of normal and 
polarised electron liquids, and of (27) to the total energy of the triangular crystal, determined 

by a nonlinear fit 

The resulting X2 values are also shown. Here ao and q are in Ry 

ao al a2 a;l X2 

Normal fluid -0·3850 7·3218 0·16008 3·1698 0·09 
Polarised fluid -0·062217 4·4469 0·93426 8·0116 0·62 

Crystal q C3 C2 X2 
2" 

-2·20943 1·58948 0·146762 2·55 

To fit the fluid energies we have chosen to use an approximant for the 
correlation energy different from the one used in previous studies, in order to 
reproduce the structure of the small r s expansion up to the first two leading 
terms (see e.g. Isihara 1989), 

(25) 

Previous fits were short of the logarithmic term present in (25). Here Ec = E - E H F 

denotes the correlation energy per particle (in Ry) and the Hartree-Fock energy 
is given by 

(26) 

for a system with spin polarisation ~ (0 :s; ~ :s; 1). We shall show below that 
the present fit, which was inspired by similar work of Vosko et al. (1980) on 
the 3-dimensional electron gas, appears to be superior to the one previously 
employed. 

We start by noting that the choice 

(27) 

with x = Fs, admits the structure of (25) for small r s , as well as reproducing 
the structure of the crystal expansion of (24) for large rs. Assuming that the 
denominator on the rhs of (27) has a real root for negative values of x and two 
complex roots, one obtains after some algebra, in terms of the four parameters 
ao, aI, a2, a3, 

E ( ) - {I A 2[Bl x+al Cl Vx2 + 2a2::r+a:3 c r s - ao + x n + n -'-------
x x 

D ( -1 X + a2 7r)] } 
+ tan J a:3 _ a§ - '2 ' (28) 
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where 

A = 2(al + 2a2) 
2ala2 - a3 - ai' 

Also, the parameters bl , b2, b:3 appearing in (27) are related to aI, a2, a3 by 

~ 
6 1.64 

\ /////1 

.... t. y .. 
......... ..... ~ .. ~.t.-.. .::.~t- - - -4- - - - - - - - - " 

1.60 0 20 40 60 80 
r, 

Fig. 2. Ground state energy of the electron gas in 2 dimensions 
as function of the coupling r s , calculated by S.l fixed-node 
DMC. The DMC energies of the normal fluid, polarised fluid 
and triangular crystal are given by the triangles, squares and 
circles, respectively. We have subtracted the Madelung energy 
-2·2122/rs and multiplied by r;/2 . The curves are fits to the 
DMC points as explained in the text. 

(29) 

(30) 

In Table 4 we report the coefficients of the fits of the correlation energy for 
both normal and fully polarised fluids. One can see from the small values of the 
X2 that the chosen approximant works really well. In fact from Fig. 2, where 
the energies are shown in an expanded scale, it is clear that for the fluid phases 
the fitting curves go through the calculated points within fractions of error bars, 
though these are extremely small. For the normal fluid the relative discrepancy 
between calculated correlation energies and fit predictions are always less than 
3 x 10-4 , while for the polarised phase they are always less than 2 x 10-3 . We note 
that for the normal fluid we have fixed ao = -0·3850 according to the small r s 

expansion. Had we treated it as a free parameter we would get similar parameters 
and X2, with ao = Ec(rs=O) about 1% below the exact value. For the polarised 
fluid, in fact, we treated ao, which is not known, as a free parameter obtaining 
ao = -0·06222. It would be interesting to determine the exact value of Ec(rs=O) 
for the polarised fluid, to further assess the quality of the present fitting scheme. 
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We have also fitted our correlation energy to the Pade approximant proposed 
by Tanatar and Ceperley (1989) and also used by Kwon et al. (1993). In such a 
fit one has also four parameters, with the first, say ao, satisfying ao = Ec(rs=O). 
We find that fixing ao = -0·3850, a X2 = 2·43 is obtained, which is satisfactory, 
though larger than X2 = O· 17 found with our approximant. However, if ao is 
considered as a free parameter one finds X2 = 0·58 and ao = Ec(rs=O) = -0·3246, 
which is about 16% off the exact high density value. We may conclude that our 
fit is more accurate that the previous one. In fact we find overall that it gives a 
better account of our data as well as of the limiting behaviour of the correlation 
energy both at small and large densities. 

A knowledge of the correlation energy as an analytic function of r s, together 
with the virial theorem for the electron gas (see e.g. March 1958), 

dE 
2(T) + (V) = -rs -, 

drs 
(31) 

with (T) and (V) the kinetic and potential energy per electron, allows the 
determination of (T) and (V). In fact, using E = (T) + (V), one immediately gets 

(T) = _ d(rsE) , 
drs 

(32) 

In Tables 1-3, we have also reported (T) and (V) calculated from (32) and 
our fit of (28). One can easily check that the overall energy gain induced 
by correlation involves an increase of the kinetic energy and a lowering of the 
potential energy, with respect to their Hartree-Fock values (see e.g. equation 26). 
The fractional changes of these two quantities in fact increase with the coupling 
r s. In the normal fluid, for instance, (T) / (T) H F goes from 1· 86 to 5·07 in going 
from r s = 5 to r s = 40, and (V) / (V) H F from 1· 55 to 1· 73. Similar though 
somewhat smaller changes are found in the polarised fluid. 

In Fig. 2 we compare our DMC energies for the three phases that we have 
studied over a range of r s values from 5 to 75. We find as expected that the 
normal fluid is stable at high density (Le., small rs) and up to rs = 20 ± 2. 
However, between rs = 20 and rs = 34 our Slater-Jastrow fixed-node DBC 
simulations predict the stability of the polarised fluid. This is qualitatively in 
accord with the early conjecture of Bloch (1929) and the VMC study of Ceperley 
(1978), while it is at variance with the results of Tanatar and Ceperley (1989), 
who found that the fully polarised fluid would never be stable and crystallisation 
would take place at r s = 37 ± 5 from the normal fluid. Our simulations yield 
crystallisation into a triangular lattice at r s = 34 ± 4, which is in accord with 
the previous estimate of Tanatar and Ceperley. 

We should remind the reader that the phase diagram shown in Fig. 2 was 
obtained employing SJ trial functions and the fixed-node approximation. As we 
have mentioned above, Kwon et al. (1993) have investigated the normal fluid for 
rs ::; 20 with improved nodes (BF3), finding energies that are a bit lower than the 
SJ ones. It is tempting to speculate what the phase diagram would look like if all 
phases were treated with BF3 nodes. One may conjecture, as it appears likely, 
that the BF3 wavefunctions would yield much smaller changes for the polarised 
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fluid and the crystal, since these phases are much more constrained than the 
normal fluid. If this is the case, we anticipate that the range of stability for 
the polarised fluid should shrink and possibly disappear, with crystallisation in 
fact taking place from the normal fluid at a coupling of rs ~ 35. That backflow 
effects are almost negligible in the polarised fluid has been recently demonstrated 
for 3He by Moroni et al. (1995). 

(4b) Spin Correlations 

Structural properties of the 2-dimensional electron gas have been studied 
before (Tanatar and Ceperley 1989; Kwon et al. 1993), but were restricted to 
number-number correlations. Here, we have sampled not only the number-number 
pair correlation function 

1 
g(r) = - L (8(l r i - rj - r)l), 

Nno ii-j 

but also its two independent spin components in the normal phase, namely 

4 N/2 N 

gn(r) = N L L (8(l r i - rj - r)I)· 
no i=l j=N/2+1 

(33) 

(34) 

(35) 

Above, particles 1 to N /2 have spin up, particles N /2 + 1 to N have spin down, 
and as is known g( r) = (!) [gn (r) + gn (r)]. Since the operators whose average 
yields the pair correlations do not commute with the Hamiltonian, one has to 
resort to extrapolated averages, according to (11). Thus using (33) and (34) one 
constructs independently VMC and DMC pair correlations, and from these the 
extrapolated estimator g(r) == gext(r) = 2gmix (r) - gVMc(r). 

In Fig. 3 we show the pair correlation function g(r) for the various couplings 
that we have studied. Where comparison is possible, we find that our results are 
in agreement with the predictions of Tanatar and Ceperley (1989), while minor 
differences exist with the results of Kwon et al. who used different trial functions. 

In Fig. 4 we compare g(r), gn(r), and gn(r), at rs = 5 and rs = 40, the 
largest and the smallest densities that we have studied. Clearly the gn (r) has a 
much smaller peak than the gu (r), and this is immediately traced to the Pauli 
exclusion principle, which discourages the close approach of like spins pairs. We 
find that with increasing the coupling all functions become more structured, but 
also qualitative changes take place. At high density, one observes an alternation 
of shells of down and up spins (around a given up spin). The effect is small but 
clearly discernible. As the density is lowered, however, and the coupling becomes 
more important, the location and coordination of down and up spin shells tend 
to coincide. The first peak of gU(r), though, remains much higher than the 
corresponding peak in gn (r). 
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Fig. 3. Extrapolated pair correlation function g( r ) of the normal electron liquid at 
rs = 5, 10, 20,30,40, calculated by SJ fixed-node DMC simulations. Curves with increasing 
peak height refer to increasing values of rs. 
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Fig. 4. Comparison of the number-number, up-down, and up-up pair correlation functions 
of the normal electron liquid at (a) r. = 5 and (b) r. = 40, as calculated by SJ fixed-node 
DMC simulations. Full, dashed, and dotted curves give respectively g(r), gn(r), and grr(r). 
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5. Preliminary Results on Coupled Layers 

(5a) Energetics 

Quite generally, when two neutralised layers of electrons are brought together 
from infinity there is an energy gain due to the correlated motion of the electrons 
in the two layers. Though there is similarity with the (van der Waals) problem 
of the forces between two neutral atoms, there is also a substantial difference 
due to the planar geometry. For two neutral atoms the interaction energy decays 
as an inverse power of the distance d, whereas for two planes we expect it to 
decay with an exponential law. Thus we expect all relevant effects to take place 
when d;:; rsaB. To illustrate the point above we report in Fig. 5 the potential 
energy of two (classic) static crystals of electrons as a function of the inter-layer 
distance, at rs = 30. As expected the energy is remarkably flat for d ~ rsaB. 
Calculations were made with the standard Ewald technique (see e.g. Ceperley 
1978). 
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Fig. 5. Ground state energy of coupled crystalline electron 
layers at T. = 30, as a function of the inter-layer spacing d. The 
full and dashed curves give the potential (Madelung) energy 
of respectively two static triangular crystals and two static 
square crystals, both in AB stacking (see text). The squares 
are DMC energies of two triangular crystals, with the dotted 
line a guide to the eye. 

We have in fact considered two situations. In the first two triangular crystals are 
positioned one above the other at distance d in an AB stacking, i.e., with a relative 
in-plane translation of (al +a2)/3, where al and a2 are the primitive vectors of 
the triangular lattice. Similarly, we have considered two square crystals in an AB 
stacking, i.e., with a relative in-plane translation of (al +a2)/2, and al and a2 the 
primitive vectors of the square lattice. It is worth noting that the coupled triangular 
arrangement is stable with respect to the coupled square crystals only for d ~ rsaB, 
where one recovers the isolated layer energetics, favouring triangular over square 
crystal (see e.g. Bonsall and Maradudin 1977). For smaller distances the reverse is 
true, with the square arrangement being lower in energy. Eventually, for d = 0 one 
has a single layer and therefore the triangular lattice will again win. A competition 
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of this kind has been recently noted by Zheng and Fertig (1995), in Hartree-Fock 
calculations for coupled crystalline electron layers in the Hall regime, i.e., with 
an applied magnetic field. We also report, in Fig. 5, the energy of two coupled 
triangular crystals of electrons in the fully degenerate regime, for comparison. 
There appears to be an almost rigid upward shift in energy, with respect to the 
static crystal. This is mostly due to the kinetic energy cost of localising electrons 
as well as to the increase in Hartree energy in going from point to smeared charges. 

Before discussing the DMC results that we have obtained for the phase diagram 
of coupled electron layers, we should emphasise the importance of working with 
optimal pseudopotentials, to obtain accurate extrapolated estimates, as well as 
to reduce statistical errors on the DMC energy estimates for fixed run length. 
The details of our fixed node DMC simulations for coupled layers are similar to 
those of the isolated layer. In particular we have worked at a fixed acceptance of 
about 99·94% and for the energies we have performed extrapolation to the bulk 
limit, using the same formulae as in the preceding section. In Table 5 we give, as 
an example, the size dependence of coupled layers at d = 0·5rsaB and rs = 30. 

Table 5. Size dependence of the Slater-Jastrow VMC energy (in Ry) of two coupled electron 
layers at r. = 30 and d = 0·5r.aB, with X2 parameters 

Fixed-node DMC total energies for finite N and in the bulk limit are also shown 

Normal fluid Polarised fluid Triangular crystal 

N=26 -0·066322(6) N =21 -0·066627(7) N = 16 -0· 066630(6) 
N=42 -0·066353(5) N=37 -0·066464(6) N=30 -0·066566(5) 
N=58 -0·066283(5) N=57 -0·066378(5) N=56 -0·066548(4) 
N=74 -0·066298(4) N=69 -0·066420(4) N=80 -0·066535(3) 
N= 114 -0·066270(4) N = 113 -0·066369(4) N = 120 -0·066538(3) 

E'toMC -0·066249(6) -0·066345(6) -0·066530(2) 
bl 0·0010(1) 0·0020(2) c -0·0063(4) 
b2 -0·0030(2) -0·0032(4) 
X2 0·01 1·28 2·99 

E DMC -0·06754(1) E DMC -0·067473(8) E DMC -0·06751(1) 58 57 56 
E~MC -0·06751(1) E~MC -0·06744(2) E~MC -0·06749(1) 

Ec -0·02861(1) -0·01307(2) 

To date we have performed calculations for coupled layers of electrons at r s = 30 
and d/rsaB = 0·2,0·5,1,1·5. In fact we also have results for rs = 00 from the 
previous section. In Tables 6 and 7 we report our energies extrapolated to the 
bulk limits as obtained respectively from VMC and fixed-node DMC calculations. 
The DMC data are also illustrated in Fig. 6, where we compare the energy of the 
three phases that we have studied. It is evident that correlation indeed favours 
and stabilises the triangular crystal at intermediate distances 0·5;oS d/rsaB ;oS 2·0, 
reverting the isolated layer situation, where the fully polarised liquid is still stable 
at this coupling, with the normal fluid having the largest energy. However for 
smaller distances, d ;oS rsaB, it is the normal fluid that takes over the other two 
phases, favoured by the inter-layer screening (see below). We may mention that 
also the polarised fluid coupled layers will eventually become, for distances small 
enough for tunnelling to set in, lower in energy than the crystalline phase, as for 
d = ° it becomes equivalent to a single unpolarised layer of double in-plane density. 
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Table 6. The VMC ground state energy (in Ry) in the bulk limit for two coupled electron 
layers at r. = 30, as a function of the distance d, for three different phases 

d/TsaB Normal fluid Polarised fluid Triangular crystal 

0·2 -0.075261(6) -0·075037(7) -0·075037(4) 
0·5 -0·066249(6) -0·066345(6) -0·066530(2) 
1·0 -0·063572(3) -0· 063859( 4) -0·063942(2) 
1·5 -0·063322(3) -0·063618(4) -0·063664(2) 

Table 7. The fixed-node DMC ground state energy (in Ry) in the bulk limit for two coupled 
electron layers at r s = 30, as a function of the distance d, for three different phases 

d/TsaB 

0·2 
0·5 
1·0 
1·5 

Normal fluid Polarised fluid 

-0·07657(2) -0· 07627( 1) 
-0·06751(1) -0·06744(2) 
-0·06412(1) -0·06420(1) 
-0·06384(1) -0·06388(1) 
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Fig. 6. Ground state energy of coupled layers of electrons at 
Ts = 30, as a function of the inter-layer distance d, in the 
normal and fully polarised fluid phases, referred to that of 
two crystalline layers in a triangular AB stacking (see text). 
Triangles, squares and dots refer respectively to the normal, 
fully polarised, and crystalline phase. Error bars are also 
shown. The lines are a guide to the eye. 

We also have preliminary scattered results on coupled electron-hole layers at 
To = 30 and distances d ~ TsaB, but large enough to prevent both tunnelling as 
well as excitonic pairing (see, for instance, Lozovik and Yudson 1976). We again 
find a stabilisation of coupled crystalline layers with respect to the fluid phases. 
Clearly, in the presence of attraction between electrons and holes, we consider 
an AA stacking for the crystalline layers; that is, the second layer is displaced 
vertically from the first one without any in-plane translation. 
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(5b) Correlations 

The study of pair correlations in coupled layers is interesting in its own right. 
Moreover, it gives further insight into the energetics of these systems. The pair 
correlation functions for two symmetric coupled layers a and b, of average in-plane 
density no, are conveniently defined by 

1 N 
gaa(1') = N L (8(lrf - rj - r)I), 

no i#j=l 

(36) 

1 N 
gab(1') = - L (8(lrf - r~ - r)l) . 

Nno .. 1 
'l.,3= 

(37) 

As in the case of an isolated layer, we construct independently VMC and DMC 
pair correlations, and from these the extrapolated estimator. 

We should emphasise that the above definition of the pair correlation functions 
is also applied to the crystalline phase, with an additional spherical average 
over the orientation of r. This is quite common in all simulations studies. The 
relation with the pair correlation function usually encountered in the literature 
on non-uniform systems, n(1)(rl)n(1)(r2)g(rl,r2) = n(2)(rl,r2), is as follows. 
Within a proportionality factor, our averaged g(1') is nothing but the average of 
n(2)(r', r' +r) over r' and the orientation of r. Above, n(l) and n(2) are respectively 
the one- and two-body densities. Thus, the present definition mixes intrinsic 
pair correlations, described by g(rl, r2), with the one-body order described by 
n(l)(r). 

In Fig. 7 we give the pair correlations functions for coupled crystalline layers 
and fully polarised fluid layers, at a distance d = 1· 51' saB and for 1's = 30. It is 
evident that in both cases the in-plane correlations are identical to those of an 
isolated layer, which are also shown. The inter-layer correlations are essentially 
absent [gab(1') ~ 1 within error bar] for the polarised fluid. There appears to be 
a substantial amount of inter-layer correlation instead for the coupled crystals. 
However we should caution the reader that this is just an artifact of the present 
definition, which mixes one- and two-body order. We anticipate that, if one 
sampled g(r', r' +r), one would find a structureless inter-layer function, as for the 
polarised fluid. Unfortunately g(r',r' +r)-or for what matters its average on r 
and the orientation of r-is not easy to sample. To the best of our knowledge 
we are not aware of any computer simulation to date sampling g(rl' r2), neither 
for classical nor for quantum systems. 

In Fig. 8 we show the same functions as in Fig. 7, but for d = 0·21'saB. The 
inter-layer correlations are now quite strong, and in fact appear to be much stronger 
than the in-plane ones for both cases considered. This increase of the inter-layer 
correlations is clearly at the expense of the in-plane ones which are depressed 
with respect to their value in the isolated layer. We have in fact results for gaa(1') 
and the gab(1') also at the intermediate distances d = 1'saB and d = 0·5T .. aB. We 
can draw the following conclusions: gaa(1') [gbb(1')] remains essentially unchanged 
as the distance is decreased up to d = 1'saB. For smaller distances one finds 
a progressive depression of in-plane correlations, and substantial enhancement 
of the in-plane tunnelling to small inter-particle separation. The gab(1'), on the 
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Fig. 7. Pair correlation functions in (a) two coupled crystalline 
layers with a triangular structure and an AB stacking (see 
text), and (b) two coupled fully polarised fluid layers, at r. = 30 
and d = 1·5r.aB. Full and dashed curves give respectively 
the in-plane and the inter-layer pair correlation function. The 
g(r) of an isolated layer is indistinguishable from the full curve 
giving the in-plane pair correlation function. 

other hand, becomes more and more structured with decreasing distance and its 
oscillations appear to be in anti-phase with those of gaa(r). Similar conclusions 
appear to be valid for the normal fluid coupled planes. For a more detailed 
discussion we refer the interested reader to Rapisarda and Senatore (1996). 

The relations between the behaviour of pair correlation functions and that 
of the energy in the coupled layers systems should be now clear. The intrinsic 
two-body intra-layer correlations are negligible for distances larger than rsaB. 
Thus, at these distances the energy lowering in bringing together two planes 
should be larger for the crystalline phase, for which there is a pre-existing density 
modulation yielding a small though not negligible gain of (Hartree) potential 
energy. The picture changes as inter-layer correlations build up, at the expense 
of the intra-layer ones. This clearly disrupts the crystalline order, as is evident 
from Fig. 8a, eventually favouring the fluid phases. 

6. Conclusions 

We have presented an extensive state-of-the-art Me study of interacting 
electrons in two dimensions and in various phases for an isolated layer, as well 
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Fig. 8. Pair correlation functions in ( a) two coupled crystalline 
layers with a triangular structure and an AB stacking (see 
text), and (b) two coupled fully polarised fluid layers, at rs = 30 
and d = o· 2rs aB. Full and dashed curves give respectively 
the in-plane and the inter-layer pair correlation function. The 
g( r) of an isolated layer is also shown for comparison (dotted 
curve). 
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as for two coupled layers at strong coupling and at various inter-layer distances. 
We have discussed in detail the phase diagram of the 2-dimensional electron gas 
and its pair correlation functions. Also, we have presented preliminary results for 
coupled electron layers, both for the energetics and the pair correlation functions, 
discussing how correlations yield a stabilisation of coupled crystals with respect to 
fluid phases. This is the first MC study on such a system and provides the most 
accurate information to date. We are currently extending our investigation to yield 
a more thorough mapping of the phase diagram and we are also systematically 
extending calculations to the problem of electron-hole coupled layers. 
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