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The Electron-Atom Ionisation Problem* 

1. E. McCarthy 

Electronic Structure of lvlaterials Centre, Flinders University, 
GPO Box 2100, Adelaide, SA 5001, Australia. 

Abstract 

Methods of calculating electron-atom ionisation as a three-body problem with Coulomb 
boundary conditions are considered. In the absence of a fully-valid computational method for a 
time-independent experiment the approximation is made that the incident electron experiences 
a screened potential. Approximations involving a final state that obeys the three-body 
Coulomb boundary condition are compared with the distorted-wave Born approximation and 
the convergent close-coupling method. 

1. Introduction 

There are several reasons for the interest generated by the electron-atom 
ionisation problem. The long-range Coulomb forces acting in all three two-body 
subsystems in the final state make its formulation a fascinating problem in 
mathematical physics (Chandler 1995). The diversity of kinematic regions that 
can be observed in experiments makes it possible to emphasise the interaction 
of different two-body subsystems. 

From the point of view of calculating differential cross sections it is a good 
approximation to treat the problem as the interaction of two electrons with a 
positively-charged inert core, whose kinetic energy can be neglected without any 
essential simplification. The three-body electron-hydrogen problem has the two 
essential difficulties. These are the identity of the two electrons and the final-state 
charged three-body continuum. 

We treat unsymmetrised ionisation amplitudes. Antisymmetry is achieved by 
means of exchange amplitudes obtained by relabelling the final-state electrons. 

The momenta of electrons 1 and 2 in the final state are denoted by Pl, P2. 
The incident momentum is Po. The potentials between electrons 1 and 2 and 
the core are respectively Vj and V2. The electron-electron potential is Va. In all 
cases these potentials have the Coulomb form at long range. For hydrogen they 
are pure Coulomb forces. The kinetic energies of electrons 1 and 2 are K 1 , K2 . 

Electron 2 is bound initially in the state 10:). 
The experimental kinematics is described for incident, fast and slow electrons, 

0, f and s respectively. Kinetic energies are Eo, E j , E 8 , and momenta are Po, 
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Pf, Ps· Polar angles relative to P are Of, Os, and the relative azimuthal angle cP 
is 7r - cP f + cPs· Common kinematic regions for experiments are as follows. 

Coplanar asymmetric: cP = 0, Es « Eo, Of small, Os varied; 

Coplanar symmetric: cP = 0, Es = Ef' Os = Of = 0 varied; 

Noncoplanar symmetric: Es = Ef, Os = Of = 45°, cP varied. 

2. Formal Scattering Theory 

Formal scattering theory (e.g. Gell-Mann and Goldberger 1953) treats the 
total stationary state of the system Iw~+)(po)) in terms of the long-lifetime limit 
of wave packets arising from the time development of the channel state lapo). 
The total Hamiltonian is 

(1) 

The entrance-channel Hamiltonian is 

(2) 

The potential governing the scattering from one channel state to another is 

V=H-K. (3) 

The entrance-channel state lapo) describes a plane wave with momentum Po 
incident on a bound system with electron 2 in the state la). The potential in this 
channel is of short range so that the projectile is asymptotically a plane wave. 

The time-reversed problem is equivalent. The total stationary state of 
the three-body system is IW(-)(Pl, P2)). The asymptotic boundary condition 
describes three bodies with positive energy, interacting through Coulomb forces. 
In describing states we omit spin, which is a non-essential complication treated 
by antisymmetrisation at the end of the discussion. The asymptotic final state 
was first given by Rosenberg (1973), based on unpublished work by Redmond: 

(4) 

The asymptotic phase <I> is given in terms of the relative momentum Pi, relative 
position ri and charge product Zi of each pair i = 1,3 by 

cPi = 'T/i In(Piri + Pi . ri), 

where 1/i is the Sommerfeld parameter, equal to Z.;jPi in atomic units. 

(5) 

(6) 

For computational purposes it is always useful to describe the projectile part 
of the channel state by a scattering state Ix(±)(Po)) for a suitably-chosen local, 
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central, short-range potential U1(rl). This potential is added to K and subtracted 
from V. The entrance-channel state becomes Io:x(+)(po)), which we call a 
distorted-wave channel state. 

In the present distorted-wave problem, for bound states of electron 2, the 
potential governing the motion of electron 1 is 

(7) 

which is of short range. 
For a short-range potential a time-independent experiment has an amplitude 

given in terms of stationary states by the T-matrix element: 

(8) 

where Iw~+)(po)) is the solution of an integral equation, the Lippmann-Schwinger 
equation, whose driving term is the corresponding distorted-wave channel state: 

The essential question in formulating the ionisation problem is: can we define 
a short-range potential and a corresponding exit-channel state for the ionisation 
problem? If not, then we cannot define a Lippmann-Schwinger equation for the 
problem. A formal T-matrix element has been defined by Rosenberg (1973). The 
time-dependent state of three charged particles has been discussed by Dollard 
(1964), but no means of calculating the stationary state IW(-)(PI,P2)) has been 
devised. Assuming this stationary state, the T-matrix element is given in terms 
of the entrance-channel state by applying time reversal to (8) 

(10) 

Curran and Walters (1987) and Bray et al. (1994) have adopted the position 
that for very large rl and finite r2 the potential V of (7) is of short range. 
The exit-channel Hamiltonian is then given by (2) and the exit-channel state is 
IX(-)(P2)X(-)(pJ)), where IX(-)(P2)) is a time-reversed scattering state of the 
subsystem 2 and Ix(-)(pJ)) is a scattering state of UI . The T-matrix element is 

Adopting the same point of view Klar et al. (1993) reformulated the T-matrix 
element in terms of an auxiliary state I if? ( -) (PI, P2)): 

(PIP2ITlo:po) = (if?(-)(PI, P2)IH - Elw~+)(po) - o:x(+) (Po)) 

+ (if?(-)(PI,P2)!V - U1Io:x(+)(po)). (12) 



222 I. E. McCarthy 

Here the Hamiltonian in the first term operates on the bra vector. The first 
term of (12) may be considered as a correction to the second term, which may 
be minimised by an optimum choice of either, or preferably both, of two criteria: 

1. UI should be chosen so that lax(+)(po)) is a good approximation to Iw~+)(po)). 
2. I <I>H (PI, P2)) should approximate I wH (PI, P2)) closely. 

Note that (12) becomes (10) if criterion 2 is exactly fulfilled. Note also that the 
coordinate representation of the ket vector in the first amplitude of (12) vanishes 
asymptotically. Therefore it is sufficient to satisfy the initial-state boundary 
condition. For a short-range potential V it is not necessary to satisfy the 
final-state boundary condition to make the first amplitude converge. 

3. Choice of the Distorting Potential 

The distorting potential UI is chosen so that lax(+)(po)) is as close as possible 
to the exact three-body state Iw~+)(po)). We project the integral equation (9) . 
onto the initial bound state la), and expand in the complete set 111,) of target 
states: 

The approximation requires the second term of (13) to be small. Making the 
approximation, the second term becomes 

(14) 

The approximation is consistent if (14) vanishes, requiring 

(15) 

The optimum choice of UI is the average of V for the initial bound state la) of 
electron 2. 

4. The Distorted-wave Born Approximation 

The distorted-wave Born approximation (DWBA) is most-easily understood 
as the replacement of Iw~+)(po)) in (11) by the optimum distorted-wave channel 
state, chosen according to (15). Potentials that are independent of r2 vanish 
because of the orthogonality of the eigenstates of K2 + V2. The approximation is 

(16) 

We emphasise that it is not a first-order approximation but a weak-coupling 
approximation for Iw~+)(po)), justified by the considerations of Section 3. This 
approximation has set the stamlard for calculations of (e, 2e) differential cross 
sections. It is excellent at high energy, as shown in Fig. 1 for coplanar asymmetric 
ionisation from the 3p orbital of argon at Eo = 1000 eV. 
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90 180 270 o 90 180 270 o 90 180 270 360 

Ss (deg) 

Fig. 1. Coplanar asymmetric ionisation from the 3p orbital of argon at Eo = 1000 eV, 
E. = 120 eV (Avaldi et al. 1989). 

5. The Approximation of Brauner, Briggs and Klar 

The BBK approximation (Brauner, Briggs and Klar 1989) replaces the exact 
state IW(-)(Pl,P2)) in (10) by the product of two distorted waves with Coulomb 
boundary conditions and a correlation factor C(Pl - P2), whose coordinate-space 
representation is 

C(T}, k, r) = f(1 - iT})e- Tf'l)/2 Fl1 (iT}; -i(kr + k· r), (17) 

where 

(18) 

The correlated motion of electrons 1 and 2 in the final state is represented by a 
repulsive Coulomb wave. The approximation is 

The original BBK calculation was for hydrogen with U1 = O. We have generalised 
it for larger targets. In (19), Ix(-)(pd) is distinguished from IX(-)(Pl)) by 
the Coulomb boundary condition for the former, and the plane-wave boundary 
condition for the latter. Note that the BBK approximation satisfies the three-body 
final-state boundary condition (4). 

6. Coplanar Symmetric Ionisation of Helium 

For small e, coplanar symmetric ionisation emphasises the effect of the 
electron-electron correlation in the final state. This is not explicit in the DWBA, 
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but it is in the BBK approximation, which has the additional advantage in 
terms of criterion 2 of Section 2 that the ansatz for the unknown function 
(rl, r2!\[1(-)(Pl, P2)) at least has the correct asymptotic form. BBK maintains 
the product form for all 7'1, 7'2. This is unrealistic in the interior of the atom 
where the two-electron interaction is strongly screened. 

Konovalov and McCarthy (1994) compared DWBA [calculated by setting C = 1 
in (19)] and BBK with coplanar symmetric experiments at a range of energies. 
The results are shown in Fig. 2. At lower energies the explicit treatment of the 
final-state correlation improves the agreement with experiment for BBK at small 
angles. At higher energies BBK and DWBA approach each other, with DWBA 
being slightly superior. 

It is likely that the small-distance form of DWBA and the large-distance form 
of BBK are better choices for (rl' r2!<I>(-)(Pl, P2)). Konovalov and McCarthy 
used the form for the final state correlation factor 

which is BBK for small f3 and DWBA for large f3. Fig. 2a shows that f3 = 2 
gives cross sections between the two extremes, but that (20) gives no real hope 
of finding a simple approximation that enlarges the range of validity of DWBA. 

7. The Convergent Close-coupling Method 

The CCC method (Bray and Stelbovics 1992) assumes that the potential V 
is of short range. The T-matrix element (11) is given by the solution of a 
Lippmann-Schwinger equation obtained by substituting (9) in (11), using closure 
over distorted-wave channel states and the definition (8) of the T-matrix element 
for discrete states. The sum over target states (3 implicitly includes ionised states, 
where it is a discrete notation for the continuum: 

(PIP2!T!o:po) = (X(-)(Pl)X(-)(P2)!V - U1!O:X(+)(Po)) 

+~;; J d3p(X(-)(Pl)x(-)(P2)!V - U1 !f3X(-)(p)) 

1 
x (+) 1 2 (p(3!T!o:po). 

E - E;; - 'iP 
(21) 

The method approximates the Hamiltonian operator of the target by a finite, 
discrete matrix representation using an orthonormal basis of Laguerre functions. 
In the case of hydrogen it is a single-particle basis. The range parameter of 
the Laguerre functions is adjusted for each orbital angular momentum so that 
one eigenstate has the experimental energy Es. Convergence is achieved in the 
number of partial waves included in the description of the target and in the 
dimension of the Laguerre basis for each partial wave. 

The method was first tested as an overall description of the ionisation of 
hydrogen by comparing its results for the total ionisation cross section and 
asymmetry with experiment. These are showll in Figs 3 and 4 respectively. The 
results of other theoretical methods, including DWBA, are shown for comparison. 
CCC describes the data essentially perfectly at all energies. 
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Fig. 5. Differential cross section for the coplanar asymmetric ionisation of hydrogen at 
Eo = 150 eV. Experiment: Ehrhardt et al. (1986). CCC: Bray et al. (1994); 3DWBA: Jones 
et al. (1993); BBK: Brauner et al. (1989); and PSCC: Curran et al. (1991). 

For the differential cross section, coplanar asymmetric kinematics is most 
favourable for the assumption of a short-range potential, since the screening of 
VI by V3 is more effective if Es «: E f . Exchange terms in this case are negligibl~ 
and we can equate PI with P f. Figs 5 and 6 compare various calculations with 
experimental data at 150 and 54·4 eV (Bray et ai. 1994). CCC describes the 
data quite well at the higher energy and much better than BBK for both energies. 

8. Conclusions 

Formal considerations of the ionisation problem have not yet led to a 
universally-valid computational method. The DWBA is valid in many kinematic 
cases at energies above about 100 e V and sets a high standard for more-detailed 
calculations. Correct description of the final-state boundary condition does not 
guarantee improvement over the DWBA in general. Considerable improvement 
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Fig. 6. Differential cross section for the coplanar asymmetric ionisation of hydrogen at 
Eo = 54·4 eV. Experiment: relative measurements of Brauner et al. (1991). Calculation of 
the curves is as for Fig. 5. 

for coplanar asymmetric kinematics is achieved with a detailed calculation of 
the three-body problem assuming that the projectile encounters a short-range 
potential. 
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