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Abstract 

The close-coupling method for electron/positron-atom scattering promises to give a complete 
description of the scattering process provided the space of target states is properly spanned. 
This paper will discuss the structure of the equations, emphasising questions of stability 
associated with the expansions over sets of target states. For electron-atom scattering, 
the character of the solution is discussed and a simple example is given to illustrate the 
non-convergence of the half-shell T-matrix. This lack of convergence can be fixed by application 
of the symmetrisation boundary condition, leading to new forms of the equations. For positron
atom scattering, the standard equations yield convergent half-shell T-matrices for all but the 
largest calculations. 

1. Introduction 

The purpose of this paper is to review and discuss the close-coupling equations 
and to concentrate in particular on questions which have a bearing on the accuracy 
of their numerical solution. The close-coupling expansion seeks to represent the 
full scattering wave function in terms of a complete expansion over target states. 
This type of expansion seems physically reasonable since at large distances after 
the scattering, the boundary condition is that of a diverging spherical wave in 
the scattering-particle coordinate with the target atom left in some excited state. 
Even processes where the target is ionised by the collision can be taken into 
account through use of the continuum states of the target. 

The key to the application of this method and the models it generates depends 
on the approximations we make to incorporate the 'complete' set of target states. 
Since the complete set always includes an infinite number of discrete excited 
states as well as non-normalisable continuum states, approximations will always 
have to be made. The simplest one is to omit all target states other than those for 
which we calculate excitation amplitudes. This is a rather drastic approximation 
usually, except at very low energies where excitation to neglected target states is 
virtual. Thus the close-coupling equations were solved in the low-energy regime 
in the early days of computer solutions. At the same time as these calculations 
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were being undertaken, it was noted that for impact energies above the target 
ionisation threshold, the method was generally unsatisfactory since no account 
was taken of the excitation to the continuum states. The coupling to these 
states will remove flux from the channels whose scattering amplitudes we wish 
to obtain. Consequently close-coupling solutions with only a few low-lying states 
tended to overestimate the cross sections. 

Progress towards improved close-coupling models for intermediate energies 
came initially by extending the close-coupling expansion through the addition of 
'pseudostates' which are orthogonal to the included target states and therefore 
in some sense represent a linear combination of the states in the neglected 
portion of the target space. These states are of bound-state character and hence 
normalisable in the usual sense. By including these states (which are not true 
eigenstates of the target) the equations now had a mechanism in them to absorb 
flux from the transitions to the low-lying target states. An example of the way 
pseudostates approximate the continuum functions is shown in Fig. 1 for hydrogen 
targets where the overlap between a positive-energy pseudostate formed from the 
Laguerre basis 

( 
A'I ! 

el. = z.) (Ar)l+1 exp( -Ar/2) L~H2(Ar) 
, (2£ + 2 + i)! • 

i=O,l, ... 

and the true continuum functions is shown for various numbers of expansion 
functions. The continuum functions are not square integrable and consequently 
this expansion converges rather slowly (see Stelbovics and Winata 1990) so we 
require large subsets of the full basis to obtain realistic models for continuum 
coupling. Generally the reduction of flux by using the pseudostates was successful 
in that the transition amplitudes gave improved agreement with experiment but 
at a cost; there were unphysical resonances introduced above the ionisation 
thresholds in some cases (Burke and Mitchell 1973). We now know that their 
effect is diminished whenever a large enough expansion set is used but this 
understanding has become clear only in the past few years when systematic 
calculations on a large scale could be attempted widely through the advent of 
the powerful work-stations [see for example Bray and Stelbovics (1995b) and 
references therein]. The trend is now inescapably towards close-coupling equations 
which couple large numbers of real target as well as pseudostates. 

To solve the equations we favour recasting the coupled-channels equations from 
the Schrodinger to the Lippmann-Schwinger form. This is an alternative approach 
to solving the differential equations by use of Green's function techniques to yield 
an inhomogeneous integral equation which has the advantage that the boundary 
conditions are built into the inhomogeneous term. 

Fig. 1. (Left) The £2 approximations to an 1=3 hydrogen continuum wave at E = 50 eV. 
Fig. Ia shows a continuum target wave (dashed curve) and its £2 expansion (solid curve) 
with A = 6·0 truncated to N = 60 terms. Fig. 1 b shows the details of the approximation 
for small radial distances. Fig. 1 c shows the overlap between two truncated expansions as a 
function of N. For large N this gives a representation of a delta function in energy. In an 
actual calculation the energies E, E' are fixed by diagonalisation of the target Hamiltonian 
in the function set. 
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Fig. 2. Various scattering 
channels for a target with one 
valence electron and incident 
electron/positron are shown. For 
incident electrons, processes (a), 
(b) and (d) are permitted, and (a) 
and (b) are indistinguishable. For 
incident positrons processes (a), 
(c) and (d) are permitted, and 
(a) and (c) are distinguishable. 

2. Electron-Atom Close-coupling Formalism 
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(d) Breakup/lonization 

The close-coupling method is based on the expansion of the projectile plus 
target wave function in terms of the complete set of target states (see for example 
Burke and Seaton 1971). For the discussion we consider the simplest target, 
namely hydrogen, but indicate extensions to other targets later. The scattering 
channels are shown in Fig. 2 for electron and positron projectiles. We have 
labelled the incoming projectile by the white circle and the target valence electron 
by black. If we consider an electron projectile, the Pauli principle requires that 
the wave function be properly antisymmetrised under interchange of the black and 
white electrons. For the example of hydrogen this means the coordinate-space 
wave function obeys the symmetry 

(1) 

where S is the total spin quantum number for the system. Now if we denote 
target states by lin), then the wave function may be expanded in terms of the 
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complete set as 

(rl,r2IwS) = t(rllin)(r21P!), (2) 

n 

where 

(3) 

Here we indicate the space of the particle we are integrating over by the labels 
1,2. The close-coupling equations are equations for the IPS) which have a single 
coordinate label, but are also labelled by the target-state index i. The trade-off 
in reformulating the full scattering wave function in terms of IPS) is that it is 
much easier to make physically reasonable approximations to the target space 
rather than attempting to solve equations in two coordinates. Expansion (2) 
is deceptively simple because the antisymmetrisation property (1) must still be 
imposed. The standard way this condition is enforced is to replace expansion (2) 
by an explicitly symmetrised one: 

wS (rl,r2) =! t (in(r2)F!(rl) + (-1)sin(rl)F!(r2») . (4) 

n 

We now discuss the implications of the above choice of expansion (4). 

(2a) Close-coupling Equations 

The time independent Schrodinger equation for electron scattering from atomic 
hydrogen is 

(5) 

where the Hamiltonian is 

(6) 

Here K 1,2, Vl,2 refer to the kinetic-energy operators and potentials associated 
with electrons 1,2 and V12 is the electron-electron potential. To derive the 
close-coupling equations we note that the target states satisfy 

(7) 

Then inserting expansion (4) into the Schrodinger equation (6) and folding on the 
left with the target states one obtains the standard or 'old' form of close-coupling 
equations 

# (Kbmn + V~n)F! = (E - €m)F!. , (8) 

n 
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where 

(9) 

and where Pr is the space-exchange operator interchanging the coordinate labels 
for rl and r2 and K is the kinetic energy. They may be written more compactly 
as 

(10) 

where IPS) is the column vector whose components are the F!" E is a diagonal 
matrix in the target indices m, n with elements the energies Em and VS has 
components V';;n. Since our aim in solving these equations is to extract transition 
amplitudes, it is also convenient to write down the Lippmann-Schwinger (LS) 
forms of the equation for the F S and the T-matrices. To this end we define the 
free channel Green function operator Go by 

(11) 

The LS equation for the system is 

(12) 

where Inkn)m == omnlinkn) is the incident-channel asymptotic state function. 
We adopt the Green function Go(E(+)) which ensures outgoing spherical-wave 
boundary conditions. The LS equation for the T-matrix operator is derived by 
noting 

(13) 

It is easy to check that the LS equation for T becomes 

(14) 

In order to solve the integral equation it is converted to a functional equation 
in momentum space. The momentum-space matrix elements of the T-operator 
are 

(15) 

where the momenta Pn, Pm are allowed to range over all possible values. 
The scattering amplitudes are derived from the on-shell amplitudes for which 
Pm,n = km,n and En + ~k~ = Em + ~k~ = E. 

(2b) Questions of Uniqueness of Solutions 

To model the electron scattering we now must decide how to treat the target 
states. The simplest method is to truncate the expansion so that only the first 
few excited states are included. For our examples we will confine ourselves to 
this class of approximations. The interested reader who would like to know how 
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Fig. 3. Real part of the J = 0 partial-wave half-off-shell elastic scattering amplitude for 
electron scattering from the ground state of hydrogen in the CC(l) model is shown for (a) 
singlet and (b) triplet scattering as a function of the quadrature size N. Note the lack of 
convergence for the triplet channel. The kinetic energy of the incident electron is 54·42 e V. 

the continuum and higher excited states can be accounted for is referred to Bray 
and Stelbovics (19950.). 

The scattering equations (12) and (14) have interesting properties with regard 
to uniqueness of solutions. This has been studied by Stelbovics (1990) and an 
illustration is useful. Suppose we take the simplest possible subset of target 
states, that is, include only the ground state in the expansion. We refer to this 
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Table 1. Convergence with quadrature size N of the J = 0 partial-wave elastic scattering 
amplitude for an electron from the ground state of hydrogen is shown for models CC(l), CC(2), 

CC(3) 

CC(N) indicates the first N target states are used in the close-coupling expansion. The 
incident electron kinetic energy is 54·42 eV. The meaning of the reciprocal condition number 

is discussed in the text 

Quadrature Dimension of Reciprocal Number of eigs Tis-Is 
size kernel matrix condition no. 11-AI<0·01 Re 1m 

k = 2·0 a.u. E = 54·4232 Ev 
CC(1) singlet 

32 33 0·95e-02 0 -0·704:30e-01 -0·425:34e-01 
48 49 0·46e-02 0 -0·7042ge-01 -0·42533e-Ol 
64 65 0·27e-02 0 -0·704:30e-01 -0· 42534e-01 
80 81 0·18e-02 0 -0·704:30e-01 -0·42534e-01 

CC(2) singlet 
32 66 0·17352e-07 1 -0·65621e-01 -0·43337e-01 
48 98 0·98881e-07 -0·65421e-01 -0·43173e-01 
64 130 0·21437e-06 -0·65413e-01 -0·43155e-0l 
80 162 0·9831ge-07 -0· 65397e-01 -0·43134e-01 

CC(3) singlet 
32 99 0·32e-04 1 -0·64311e-01 -0·42943e-01 
48 147 0·66e-06 1 -0·64345e-01 -0·42968e-01 
64 195 0·13e-06 1 -0· 64:348e-01 -0·42991e-01 
80 243 0·14e-06 1 -0·64361e-01 -0·43008e-0l 

CC(1) singlet 
:32 33 0·77e-06 1 -0· 79285e-01 -0·86391e-01 
48 49 0·17e-05 1 -0· 79284e-01 -0· 86400e-01 
64 65 0·16e-06 -0· 79284e-0l -0· 86400e-01 
80 81 0·13e-06 -0· 79284e-01 -0· 86400e-01 

CC(2) singlet 
32 66 0·52e-08 3 -0· 782:32e-01 -0·86553e-01 
48 98 0·1ge-07 3 -0·78231e-01 -0· 86503e-01 
64 130 0·22e-07 3 -0· 7822ge-01 -0·86531e-01 
80 162 0·16e-07 3 -0· 7822ge-01 -0·865:35e-01 

CC(3) singlet 
32 99 0·17e-05 4 -0· 77467e-01 -0·86688e-01 
48 147 0·33e-06 4 -0· 77470e-01 -0·86685e-01 
64 195 0·41e-07 4 -0· 77480e-01 -0·86673e-0l 
80 243 0·41e-07 4 -0· 77480e-01 -0·86674e-01 

model as CC(1). Let us solve the T-matrix equation numerically by converting 
it to a partial-wave expansion and solving for each partial wave. Details of the 
numerical methods used are set out in McCarthy and Stelbovics (1983). We 
will consider the J = 0 wave only, as this contains the interesting phenomena. 
In Fig. 3 we show the real part of the half-off-shell T-matrix amplitude (the 
imaginary part behaves similarly) as a function of the channel quadrature size. 
The quadrature size refers to the number of Gaussian integration points used in 
the quadrature approximation to the momentum integrations occurring in the 
functional equation (14). For the singlet scattering (5 = 0) it is seen that the 
half-off-shell T-matrix has converged to the thickness of the line by N = 32. On 
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the other hand for triplet (S = 1) scattering there is no convergence for the 
half-off-shell T-matrix except for a single momentum which happens to be the 
on-shell value. The on-shell amplitude has converged as is confirmed in Table 1. 

The explanation for these behaviours is that the explicit symmetrisation of 
the three-body wave function introduced in equation (4) is sufficient to satisfy 
the Pauli condition (1) but is not strong enough to ensure that IFs ) is unique. 
For example if one looks at the triplet channel, if IF1) is a solution then 
so is If1) = 1F1) + ali1) according to (4) where a is an arbitrary constant. 
This can also be checked by substituting directly into equation (10). From 
the L8 equation point of view this non-uniqueness is dissatisfying because 
the whole purpose of the formalism is to convert the 8chrodinger equation 
to an integral-equation form which incorporates the boundary conditions in 
the inhomogeneous term and has a unique solution. Clearly from Fig. 3 this 
is not so. The reason is easy to to see. If we regard the L8 equation 
(14) as a Fredholm equation of the second kind, its solution may be written 
as 

(16) 

which requires the construction of the inverse to (1- V S Go) for scattering energies. 
A basic result of scattering theory (see for example Newton 1982) is that the 
inverse operator will exist provided there are no solutions to the homogeneous 
equation 

(17) 

in the scattering region. The most direct way to establish if there are such 
solutions is to compute the spectrum of the operator VSGo: 

i = 1,2, ... (18) 

The number of eigenvalues for which >..f = 1 independent of the energy have a 
direct correspondence with the degree of non-uniqueness of the F S . Altogether 
if the target expansion has N states, then the number of homogeneous solutions 
taken over singlet and triplet scattering is N2; the number for each Sis (8telbovics 
1990) 

(19) 

If we denote the basis for the N S solutions to equation (10) by {[lSj, j = 1, ... ,Ns 
then it follows that {{[lSj} = {Gol>..f) : >..f = I}. There may also be eigenvalues 
which are close to one over a small range of energies. These correspond to 
resonances in the three-body scattering process and we will not consider them 
further. Thus for model CC(l), we have NO = 0 and N1 = 1, and the kernel of 
the singlet T-matrix admits no homogeneous solutions, whereas the triplet kernel 
possesses a single homogeneous solution. The lack of convergence of the half-shell 
triplet T-matrix is therefore due to the homogeneous solution. The effect of the 
homogeneous solution in equation (12) on the T-matrix L8 equation (14) can 
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be readily deduced from equation (13). If (PmITr~n(E(+))lkn) is a solution for 
the half-shell T-matrix then so are the half-shell T-matrices of the form 

N S 

(Pmlt;'n(E(+))lkn) = (PmIT~n(E(+))lkn) + ~(k~ - P;n) L aJ (Pml<T?Sj)m' (20) 
j=l 

The components Tn of <T?Sj are linear combinations of the N target states 
and aJ are arbitrary constants. In particular, for the CC(1) example the sum 
reduces to a single term (pli1) which is just the momentum-space representation 
of the ground-state wave function. According to the above equation, the spurious 
solution vanishes on the energy shell. Hence we expect stability of this on-shell 
point as the quadrature meshes are varied. As we go off-shell to small P the 
off-shell correction will vary essentially as the momentum-space wave function. 
For different quadrature schemes the arbitrary constants can vary widely as shown 
by Fig. 3. 

In order to gauge the effect of the non-uniqueness of the LS equation on 
larger calculations, the on-shell T-matrix amplitude for elastic scattering from 
the ground state is shown in Table 1. The dimensionality of the final equation 
is the product of the number of coupled channels and the number of quadrature 
points in each channel (the quadrature size plus an extra quadrature for the 
on-shell point in each channel). The linear-equation solver used was the Lapack 
routine ZGESVX (Anderson et ai. 1992). Model CC(2) comprises hydrogen 
1s,2s states and CC(3) 1s, 2s, 2p states. The reciprocal condition number is a 
measure of the degree of difficulty the routine encounters in solving the linear 
equations. As the number approaches the limit of the machine precision the 
solution may be subject to excessive roundoff. From the table it is seen that 
the inverse condition numbers decrease with increasing target expansion but are 
well above machine precision, indicating the discretised linear equations have 
been solved successfully. This decrease in inverse condition number is due to 
the increasing dimensionality (Ns) of the homogeneous solutions with increasing 
target space. The on-shell amplitudes converge satisfactorily despite a lack of 
convergence for the half-off-shell amplitudes (which are not shown). Note that 
the number of eigenvalues which are very close to unity, indicated in Table 1, are 
given by the formula (19) only for CC(1) and CC(2). The reason the formula 
does not catch all the eigenvalues for CC(3) is that when one includes the 2p 
orbital-angular-momentum states in the target space, not all the homogeneous 
solutions are contained in the J = 0 partial wave. Angular and parity selection 
rules ensure the remaining solutions are in the J = 1 partial wave. 

Since momentum-space calculations of the close-coupling method have been 
used extensively since 1983, and the resolution of the uniqueness problem was 
only given in 1989, it may be helpful to comment on the accuracy of calculations 
by the Flinders group in that period. One of us (A.T.S.) had noticed that 
the solutions for the first few partial waves occasionally suffered from numerical 
instabilities but their source was not appreciated. By repeating calculations with 
a variety of meshes, on-shell amplitudes could be calculated for the affected partial 
waves to within a few percent accuracy. Since the differential cross sections are 
formed by summing over partial waves, the cross sections were affected to a 
lesser degree. Another reason it can be safely assumed that the work published 
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in that period is reliable is because a major part of it revolved around solving 
coupled channels equations with optical potentials added (the CCO method). 
The optical potentials, while being only an approximation, had the (desirable) 
side effect of eliminating the delicate balance of the coupled channel potentials 
which causes the non-uniqueness. 

(2c) Families of Equations with the Unique Solution 

Though we have shown that one can compute reliable amplitudes for smallish 
target sets using the integral equation for the T-matrix it is annoying that 
the half-shell amplitudes diverge. For larger target sets (N > 15) numerical 
instabilities begin to appear even for the on-shell amplitudes as the reciprocal 
condition numbers keep decreasing with the increasing number of homogeneous 
solutions. It is therefore important in large-scale models (such as Bray and 
Stelbovics 1992) to realise that one can formulate a set of integral equations 
which have no solutions to the homogeneous equation for scattering energies. 
The criterion to apply is the relation 

n,m = 1, ... ,N. (21) 

This identity is a result of applying the symmetry property (1) of the wave 
function to its close-coupling expansion (4). This relation is generally valid 
for finite target expansions, including those containing pseudostates. Its crucial 
importance in the scattering theory is that terms of the type (imIF7~) occur in 
the exchange part of the potentials V S defined in equation (9). Therefore we 
are at liberty to modify the close-coupling equations with considerable generality. 
The result of applying the new symmetry condition liberally is to modify the 
form of the exchange potential to the extent that there are no homogeneous 
solutions in the new forms of LS equations. In practice this can be checked 
by computing the spectrum (18) and noting that no Af = 1 for the new form. 
The nature of the choices possible has been discussed at length (Stelbovics and 
Bransden 1989; Stelbovics 1990; Bray and Stelbovics 1992). 

The techniques discussed here can be generalised to hydrogenic atoms (Bray 
and Stelbovics 1995 b) in a straightforward manner. For general atoms, the 
antisymmetrisation condition must be applied to the full electron-pIus-atom 
wave function including spin coordinates. Then it is no longer true that the 
radial coordinate wave functions have a definite symmetry but new forms can 
be developed in an analogous manner. Recently, Fursa and Bray (1995) have 
extended the method with success to helium. Other applications are being 
developed for inert gases with p-shells. 

3. Positron-Atom Close-coupling Formalism 

There are other complications which occur when the incident electron probe 
is replaced by one consisting of positrons. Positronium atoms may be formed 
in the process where the incoming positron strips the electron from the atom 
giving rise to a genuine rearrangement channel and a different set of coordinates 
is needed to describe the positronium atom as it moves away from the static 
core nucleus. For simplicity we limit the discussion to hydrogenic targets. For 
extensions to one-electron atoms with an inert core see Mitroy and Ratnavelu 
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(1994). The presence of elastic and rearrangement channels leads to a coupled 
set of close-coupling equations between hydrogen and positronium states. Mitroy 
(1993) has given a general formulation of the partial-wave matrix elements of 
the potentials in momentum space. Their computation is much more difficult 
and computationally time consuming than for electron-atom scattering. It is for 
this reason that the large scale of calculation we are familiar with for electron 
scattering is not yet evident for positron scattering. 

(3a) Close-coupling Equations 

Consider the case of a hydrogen target and expand the three-body scattering 
wave function in terms of a complete set of hydrogenic and positronium target 
states. In order to include the positronium-formation channel explicitly it is 
convenient to introduce the relative and centre-of-mass coordinates r3 and r4 for 
the positronium atom. Their relation to the original coordinates is 

(22) 

For incident positrons one must take into account the distinct direct and 
rearrangement channels; it is usual to adapt expansion (2) to include the 
rearrangement channels explicitly so that the asymptotic scattering boundary 
conditions can be directly imposed. This is achieved by writing 

(23) 
n rn 

so that the close-coupling expansion for the positron-hydrogen system comprises 
a sum over two complete sets of target states. The eigenvalue equation for the 
hydrogen target is given by equation (7) and for the positronium states by 

(24) 

All quantities labelled by n, m will now refer to the hydrogen and positronium 
states respectively. 

The coupled equations which result upon inserting the expansion into the 
Schrodinger equation are 

(E - K2 - En)Fn(r2) = tVnnf(r2)Fnf(r2) + t J dr4Vnrnf(r3,r4)Grnf(r4), 
n' m' 

(E - K4 - E'rn)Grn(r4) = t J dr2Vrnnf(rl,r2)Fnf(r2) + tVmrnf(r4)Grnf(r4), 
n' m' 

(25) 

where the potentials are given by 

(26) 
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d . K - 1 n2 d K - 1 n2 an III a.u. 2 - "2 v 2 an 4 - "4 v 4' 
We adopt an obvious matrix notation which is an extension of that used for 

electron scattering. A label Tl is defined which ranges over hydrogen states (n) 
and positron states (m) and K,/ = K2 if Tl E n, and K" = K4 if 7] E m. Now 
defining a scattering wave function by the column vector 11) = (F, G) T, we can 
write the L8 equation for the coupled-channel equations (25) as 

(28) 

The inhomogeneous term is the asymptotic state for channel rl and its 
component form in the channel space is l7]o,k,lo)" = 8"rloWrlolk"O) where W"O is 
either a hydrogen or positronium state. The physical scattering amplitudes are 
obtained from the subset of solutions for which the momentum in the initial and 
final channels is fully on-shell. We denote the general on-shell amplitude for the 
scattering from 7]0 --+ 7]f as (k,lfIT(E(+))rlf1)olk"o) where the on-shell momenta 
in a.u. for the hydrogen and positronium channels satisfy 

1 k2 I 1 k2 E 
En +"2 n = Em +"4 rn = . (29) 

(3b) Overcompleteness of Wave Function Expansions 

Let us consider the possibility of non-unique solutions. Because there are two 
complete sets in the expansion (23) the choice of F and G cannot be unique. 
To see this, suppose we have managed to obtain a suitable set of Fn , Grn. Then 
we can replace this set with Fn + Pn, where the Pn are any square-integrable 
functions provided Gm is replaced with Gm - Tm , where 

T:m (r4) = J dr3j~(r3) tin(rdPn(r2) ' (30) 

n 

since this leaves the wave function W(rl' r2) in equation (23) unaltered. From 
this argument it is clear that there is a very great degeneracy for the solutions 
to equations one constructs for the F, G. These solutions are artifacts of the 
close-coupling expansion and will be present at all energies. They convey no 
information about the physics of the system under investigation. 

The pair of functions 

(31) 

are a solution of the coupled equations (25) independent of energy and hence 
should cause non-uniqueness problems with the T-matrix formulation. But unlike 
the electron case there are no eigenvectors which are exact solutions in a finite 
target expansion over the hydrogen and positronium channels. To see this 
consider an expansion over the first N,.!If hydrogen and positronium states. The 
form of W is basis dependent and we write 

N A[ 

wN AI (rl' r2) = L in(rl)F,~ (r2) + L jrn(r3)G~~ (r4) . (32) 
n 
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Then if there exists a solution to the coupled-channel equations which is of 
a bound-state character it must have the form of equation (31) where the 
positron-channel component satisfies the conditions 

N 

Tm(r4) = J dr3j,';.(r3) L i n(rl)Pn(r2), 
n 

m=l, ... ,M, 

N 

0= J dr3j,';.(r3) L i n(rt}Pn(r2), 
n 

m = M + 1, ... ,00 . (33) 

The orthogonality requirement is necessary in order to leave \liN M (rl' r2) 
invariant. Because the coordinate systems are different, as are the target 
states, there is no simplifying feature which reduces the expansions to a finite 
number of terms, so the orthogonality requirements (33) cannot be satisfied 
for all m. Thus for small target-state sets the solutions will be unique. 
Obviously as the expansion sets are increased and approach completeness, 
approximate solutions to (33) will emerge. Their character will be such that the 
spectrum of the T-matrix kernel will contain eigenvalues which are predominantly 
real and close to one whenever the N, M target spaces are extended to 
completeness. 

(3d:) Manifestation of Non-uniqueness 

We have shown that while non-uniqueness is present even in the smallest 
symmetrised expansions for electrons, this should not be the case for positron 
scattering. The typical situation is best illustrated by looking at the spectra of the 
J = 0 kernel for the class of models denoted by CC(M, N), where M, N denote 
the number of states of hydrogen and positronium included in the expansion [see 
Mitroy and Stelbovics (1994) for a comprehensive study of the CC(3,3) model]. 
In Table 2 we list the eigenvalues closest to unity for models that have received 
attention in recent calculations. The energy of 54·4 e V is chosen because there 
are no resonances in the vicinity for the J = 0 partial wave. If we consider the set 
of eigenvalues for which I>' - 11 < 0·1 it is seen that their number increases as one 
proceeds to larger target spaces and the eigenvalues begin clustering nearer to one. 
Since these models have a fairly restricted target space it is also interesting to see 
the effect a larger pseudostate expansion has on the eigenvalues. For this purpose 
we choose the model CC(12,8) (Mitroy et al. 1994). In this model, in addition 
to the 1s, 2s, 2p target states for hydrogen and positronium, nine pseudostates 
were added to the hydrogen and five to the positronium set. As suggested by the 
analysis of the previous subsection, the number of 'near' solutions has increased 
noticeably and some are very close. Table 3 shows the convergence of the elastic 
T-matrix amplitude for positrons incident on the ground state hydrogen atom 
with increasing quadrature number. In Fig. 4 the real part of the T-matrix 
elastic scattering amplitude from the hydrogen ground state has been plotted 
for several quadrature meshes for the CC(12,8) model. We see no evidence of 
convergence for the half-off-shell amplitude but the on-shell point is convergent. 



Close-coupling Formalism 287 

Table 2. Eigenvalues of the T -matrix kernel with IA-11 < 0 -1 are shown for the J = 0 partial
wave for positron scattering from hydrogen for models CC(1, 1), CC(2, 2), CC(3, 3) and CC(12, 8) 

See text for description of the models_ The incident positron kinetic energy is 54 -42 e V except 
for CC(12,8) when it is 3-4eV 

Quadrature IA -11 < 0-11s-ls 
size Re 1m IAI 

k = 2-0 a_u_ E = 54-4232 eV 
CC(l,l) 

64 0-97038264 -0 -0004:3215 0- 970:38274 

CC(2,2) 
64 0-98894789 -0 -00044302 0-98894799 

0-95843194 -0 -00021126 0-9584:3196 
0-94554600 0-00175489 0-94554763 
0-93531813 0-07353459 0-93820431 

CC(3,3) 
64 1-02249672 0-00043149 1-02249681 

0-99546546 -0 -00070767 0-99546571 
0-99238564 -0 -00001098 0-99238564 
0-98237125 0-04257251 0-98329329 
0-96:318957 -0 -00012646 0-96318958 
0-92188729 0-03918330 0-92271963 
0-91765177 0-00184786 0-91765363 
0-90660362 -0 -00008712 0-90660363 

k = 0-5 a_u_ E = 3-4015 eV 
CC(12,8) 

36 1-05399113 -0 -00089574 1-05399151 
1-04938626 0-00002459 1 -049:38626 
1 -0:3456836 -0 -0:3958499 1-0:35:32539 
1-01:393247 0-00000075 1 -01 :39:3247 
1-01060415 0-00000000 1-01060415 
1-00439249 0-00000137 1-00439249 
0-99982208 0-00000000 0-99982208 
0-99911582 0-00000007 0-99911582 
0-99889724 0-00000001 0-99889724 
0-99854437 0-00000003 0-99854437 
0-99599563 0-00000011 0-99599563 
0-99402183 0-00000020 0-99402183 
0-99089457 0-00000001 0-99089457 
0-98533435 0-00000234 o -985:33435 
0-98429355 0-00000090 0-98429355 
0-98294423 -0 -00015416 0-98294424 
0-97392591 0-00000000 0-97392591 
0-97200059 0-00000002 0-97200059 
0-96887243 -0-01531666 0-96899:349 
0-96222545 0-00000002 0-96222545 
0-95840453 0-00000000 0-95840453 
0-94576918 -0 -00062887 0-945769:39 
0-94555685 0-00000000 0-94555685 
0-9:3458276 0-00007428 0-9:3458276 
0-93239_571 -0 -0005221:3 0-932:3958_5 
0-92579716 0-00000754 0-92579716 
0-91451950 0-00001766 0-91451950 
0-90119967 -0 -00007490 0- DO 119967 



288 A. T. Stelbovics and L. Berge 

Table 3. Convergence with quadrature size N of the J = 0 partial-wave elastic scattering 
amplitude for a positron from the ground state of hydrogen is shown for models CC(I,I), 

CC(2,2), CC(3,3) and CC(12,8) 

See text for description of the models. The incident positron kinetic energy is 54·42 e V except 
for CC(12,8) when it is 3·4 eV 

Quadrature Dimension of Reciprocal Number of eigs T 1s-ls 
size kernel matrix condition no. 11 - ).1 < 0·1 Re 1m 

k = 2·0 a.u. E = 54·4232 eV 
CC(l,l) 

32 66 0·47e-03 1 0·67972e-01 -0·39291e-01 
48 98 0·33e-03 1 0·67973e-01 -0·39290e-01 
64 130 0·24e-03 1 0·67973e-01 -0·39290e-0l 
80 162 0·18e-03 1 0·67973e-01 -0·39290e-01 

CC(2,2) 
32 130 0·54e-04 4 0·65548e-01 -0·38160e-01 
48 194 0·44e-04 4 0·65584e-01 -0· 38326e-01 
64 258 0·37e-04 4 0·6558ge-01 -0·38324e-01 
80 322 0·31e-04 4 0·6558ge-01 -0·38324e-01 

CC(3,3) 
32 194 0·lOe-04 6 0·64888e-01 -0·36473e-0l 
48 290 0·70e-05 8 0·65111e-01 -0·38115e-01 
64 386 0·13e-04 8 0·65130e-01 -0· 38057e-01 
80 482 0·l1e-04 8 0·65130e-Ol -0·38057e-01 

k = 0·5 a.u. E = 3·4015 eV 
CC(12,8) 

32 641 0·66e-07 25 -0· 38780e-01 -0· 23711e-02 
36 721 0·14e-06 28 -0·38903e-01 -0·23862e-02 
40 801 0·22e-06 18 -0· 39083e-01 -0· 24084e-02 
40 801 0·36e-06 18 -0· 39036e-01 -0· 24024e-02 

AO 801 0·50e-06 19 -0':38993e-01 -0· 2396ge-02 

This is very similar behaviour to that discussed for the electron projectile. The 
reciprocal condition numbers are not too small and the discretised equations have 
been solved with negligible roundoff. It should be mentioned that this lack of 
stability is not in evidence for the CC(l, 1), CC(2,2) and CC(3, 3) models where 
the half-shell amplitudes are convergent with increasing quadrature size. 

This CC(12,8) calculation suggests that the limit of usefulness of our present 
set of positron close-coupling equations is being reached. There is at present no 
easily implemented modification of the equations analogous to that outlined for 
incident electron beams. The condition (21) noted for electrons is not applicable 
because the total wave function has no special symmetry with respect to positron 
and electron coordinates. 

4. Conclusion 

We have demonstrated some properties of the close-coupling equations for 
electron and positron projectiles. For electron scattering we emphasised that 
solving the standard old form of coupled equations leads to half-shell amplitudes 
which do not converge with quadrature mesh. We showed by example that the 
numerical solutions for the on-shell amplitudes were accurate and did not suffer 
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Fig. 4. Real part of the J = 0 partial-wave half-off-shell elastic scattering amplitude for 
positron scattering from the ground state of hydrogen in the CC(12,8) model is shown as a 
function of the quadrature size N. The kinetic energy of the incident positron is 3·4 e V. 

from round-off for small target sets. It was also noted that this lack of uniqueness 
was a consequence of not applying all the information contained in the symmetry 
property of the full wave function. When this is put in properly, the effect is 
to create a family of equivalent close-coupling equations with effective potentials 
which differ only in their exchange term. 

It has not been our purpose to study models using large pseudostate Laguerre 
bases (the so-called eee method) which are required for realistic calculations. 
There it does prove advantageous to use forms of ee equations which have unique 
solutions for the half-shell amplitudes. These issues have been discussed at length 
in the literature (see Bray and Stelbovics 1995a,b and references therein). 

The positron equations were also investigated from the point of stabil
ity and it was demonstrated that there will be an accumulation of T
matrix kernel eigenvalues at unity if complete target sets are used, lead
ing potentially to problems analogous to those with electron projectiles. 
Our numerical results suggest this may be happening for the ee(12,8) 
model. Using it (the largest model within our computer limitations) we 
noted the accumulation of eigenvalues but the on-shell amplitudes were 
stable. However, there is a lack of convergence for the off-shell am
plitudes which cannot be simply ascribed to numerical-analysis problems. 
It is concluded that the increasingly singular nature of the discretised 
equations will eventually lead to instability even for the on-shell amplitudes using 
the present equations. It remains to be seen how far the current target spaces 
can be increased before this becomes a serious problem. 
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