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Abstract 

In this study we have calculated configurational Helmholtz free energy differences between n 
and n - 1 molecule water clusters and nand n - 1 atom argon clusters using classical effective 
atom-atom pair potentials and the Bennett-Metropolis Monte Carlo technique. When plotted 
versus n-1/ 3 the slope of the free energy differences yields an effective surface tension, (1. It 
is found that these slopes display a universal (material independent) property related to the 
excess surface entropy/k per molecule (or atom), n. For most materials (in the bulk liquid 
state) the latter quantity is about 2. The results indicate that clusters as small as n = 10 
display bulk surface free energy properties. The temperature dependence of the effective 
surface tension for the model water clusters is also investigated and is consistent with a simple 
scaled form, (1/kTp~~~id ~ n(Tc/T - 1), where Tc = 647 K and n = 1·9. 

1. Introduction 

The rate at which small clusters are formed from the vapour depends on the 
surface free energy of the critical clusters, the temperature T, and the ambient 
supersaturation ratio S (Abraham 1974). In many cases the critical cluster (that 
cluster which has equal probabilities of decay and growth) is small-of the order 
of 20 to 200 molecules (or atoms). It has long been of interest to determine 
whether the effective surface tension of such small clusters can be approximated 
by the surface tension a of the bulk liquid. The nucleation rate J [that rate at 
which embryos of the new (liquid) phase are formed from the parent (vapour) 
phase] is exponentially dependent on (a/kT)3 (Becker and Doring 1935). A 
relatively small (15%) error in the surface tension can alter J by a factor of 
1014 . Often the nucleation rate is evaluated at temperatures below which bulk 
liquid surface tension data are available and for which extrapolations must be 
used. It would be of great interest, consequently, to know both the magnitude 
and the temperature dependence of the small cluster 'effective' surface tension. 
The early considerations of the effect of surface curvature on surface tension 
(Tolman 1949) have been followed by many studies on the effects of size on 
surface tension, using both thermodynamic approaches and computer calculations 
of small cluster free energy (Mandell and Reiss 1975; Nishioka 1977; Rao et al. 
19778; Vogelsbergber 1980; Sinanoglu 1981b; Falls et al. 1981, 1983; Natanson 
et al. 1983; Shreve et al. 1986; Nijmeijer et al. 1992) . 

• Refereed paper based on a contribution to the Advanced Workshop on Atomic and Molecular 
Physics, held at the Australian National University, Canberra, in February 1995. 
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(b) 

Fig. 1. (a) Snapshot of 60 molecule water cluster at 263 K after 
70 million steps; (b) snapshot of 96 molecule water cluster at 263 K 
after 143 million steps. 
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The present work focuses on free energy differences between neighbouring 
sized clusters and on the scaling of these free energy differences with a universal 
temperature dependence (Hale 1986), (Tc/T - 1), to examine the material 
independent features of the effective surface tension for small clusters. The 
classical nucleation rate formalism and some of the above small drop surface 
tension studies use the radius of the clusters T, rather than n, the number of 
molecules (or atoms). Clearly n accurately defines the small cluster size, whereas 
T necessitates assumptions about density and shape. Fig. 1 shows snapshots 
of the n = 60 and n = 96 molecule model water clusters at T = 263 K using 
the revised central force potential (RSL2) (Rahman and Stillinger 1978). The 
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water clusters consist of fluctuating five and six-membered rings and are in 
general non-spherical with ill-defined surface area. Our approach is to calculate 
configurational Helmholtz free energy differences Fe (n) - Fc (n - 1) and plot these 
differences versus o(n2/ 3 ) :::::: ~n-l/3. The slope of these data provides an effective 
surface tension for the small clusters. In this work results for model water 
clusters (RSL2 potentials) and model argon (Lennard-Jones) clusters are obtained 
using the Metropolis Monte Carlo procedure (Metropolis et al. 1953) and the 
Bennett (1976) method for calculating free energy differences. This method was 
first applied to argon (Lennard-Jones) clusters by Hale and Ward (1982). And 
some initial work was done on water clusters with non-fixed centre of masses 
(Kemper and Hale 1988; Kemper 1990); however, computer resources limited 
reliable results to clusters with n ::; 24. For purposes of comparison the present 
work extends the argon studies to larger cluster sizes, and concentrates primarily 
on the RSL2 water clusters. 

2. Model and Calculational Procedures 

The starting point for the present approach is the law of mass action for a 
(vapour) system with volume V, composed of a non-interacting mixture of ideal 
gases, with each cluster size constituting an ideal gas system. One further assumes 
that the Hamiltonian for an individual cluster has 3n independent degrees of 
freedom and that the potential energy is a function of only atomic position 
vectors. In this case the law of mass action gives the following classical statistical 
mechanical expression for the number of clusters with n atoms Nn , in terms of 
Z(n), the canonical partition function for the n cluster: 

Z(n) 
Z(l)n 

Z:} VnQ(n)/n! 
[ZT VQ(l)]n 

Q(n) 
n!Q(l)n' 

(1) 

(2) 

where Z:} = (27fmkT / h2)3n/2 is the kinetic energy contribution to the canonical 
partition function (arising from the integration over 3n atomic momentum 
coordinates) and Q(n) is the unitless configurational integral given by 

Q(n) == v-n J J J ... J exp[-U(rl' r2, r3,"· rn)/kT] drl dr2 dr3 ... drn· (3) 

The ri is the position vector of the ith atom with mass m, U is the total 
interaction potential energy for the cluster, T is the temperature and k is 
the Boltzmann constant. Finally, after some algebra one obtains the following 
expression for N n: 

Nn = Nl exp [ L In ( , Q(n') ) - Io + In s] 
n'=2,n Q(n - 1) Qn,(l) 

(4) 

== Nl exp L'~n -oFc(n') - 10 + In s] , (5) 
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where Qn(1) == Q(1)vn jV = vnjV, S == NdNP, and Np!V == Pvapour is the 
equilibrium monomer concentration, 

_ ( Q(n) ) 
-8Fe(n) = In Q(n _ 1) Qn(1) , (6) 

and 

1 ( n j Vn ) 1 (PliqUid) _ /, n -0- ~ n --- = o· 
Nl jV Pvapour 

(7) 

In these simulations the n cluster is defined (and thus approximated) as an 
n-molecule system contained in a spherical volume, aVn = a(nj Pliquid), fixed on 
the centre of mass, a = 5 and Pliquid is the experimental bulk liquid number 
density at the temperature T. Molecules are not allowed to move outside the 
constraining volume. This definition of the cluster has been used by Lee et al. 
(1973) who found minimal effects on the Helmholtz free energy of the cluster 
due to variation in Vn when a ~ 5. Too small a cluster volume produces the 
same effect as an external pressure and too large a volume allows the cluster 
to break up. The argon clusters are modelled with the Lennard-Jones potential 
using Ejk= 119·4 K and a = 3·4 A and the water clusters are modelled with the 
RSL2 three point charge revised central force potential of Rahman and Stillinger 
(1978). The water molecules are rigid with ROH = 0·958 A and H-O-H angle 
equal to 104.5°. 

The standard Bennett technique allows one to determine configurational free 
energy differences between two ensembles with different interaction potentials. 
In the present work the goal is to calculate -8Fc(n), as given by equation (6). 
Thus the two ensembles are defined as follows (Hale and Ward 1982): (1) the 
'n ensemble' represents n molecules interacting normally in volume Vn ; and (2) 
the 'n -1 ensemble' represents n molecules in Vn with one molecule (the probe) 
having its total interaction energy reduced by a factor A «1. As A -+ 0, the 
'n - 1 ensemble' becomes the n -1 cluster plus a monomer. One can show that 
corrections to 8Fe due to non-zero A include terms of the form Ad(8Fe)jdA and 
A2d2(8Fe)jdA2 and are negligible in the present simulations for A = 0·01. The 
8Fe(n) then becomes the free energy difference between the n cluster and the 
n - 1 cluster plus a monomer. Both systems have a fixed centre of mass and 
the same density. This density is the same for all cluster systems studied at the 
same T. In all cases the free energies Fc(n) and 8Fc(n) have been divided by 
kT and are unitless. 

The Bennett procedure is as follows. The simulations for each ensemble 
are carried out independently and in each ensemble a Fermi function average, 
(f( ± x) )rn, is calculated where x = (1 - A)~Up + C, rn = n, n - 1 and ~Up is the 
interaction potential energy of the probe molecule; C is a constant of the order 
of -8Fc. In the n ensemble every molecule is used as a probe and the Fermi 
functions for all molecules are averaged. In a Monte Carlo simulation the system 
is assumed to be in thermal equilibrium and the ZT factors are known. Thus 
we are primarily concerned with the configurational part of the Helmholtz free 
energy, Fe(n) == -In[Q(n)jn !]. Bennett's technique applied to this calculation 
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relates the constants e and the Fermi function averages as follows: 

Q(n) (f(X))n-l C -"---'---'-'--- e . 
(f( -x))n 

(8) 

The Fermi function averages are calculated for a range of e values with A = 0·01 
and stored. At any step one can determine -8Fc(n) from the value of e == en 
for which the Fermi function averages are equal, or apply equation (8) directly 
for a range of e values. 

The 8Fc(n) is not quite Fc(n) - Fc(n - 1) but rather 

8Fc(n) = Fc(n) - Fc(n - 1) -In(Pliquid V) (9) 

:::::: _ In Z ( n ) _ /I - 10 
Z(n - 1) /"",vapour . (10) 

If one takes the limit as n ----+ 00, 

I "P ( ) I Pvapour imit u en:::::: ILliquid - ILvapour - 0 + 
n -+ CX) Pliquid 

(11) 

:::::: - 10 + 10-5 , 

so that -8Fc ( 00) :::::: 10 = In(Pliquid/ Pvapour)' Finally, it is necessary to relate the 
8Fc(n) to a theoretical model involving n dependence. We use the classical 
droplet model of Fisher (1967) and assume 

-8Fc(n) = 10 - 8[An~ + T In(n) + constant] 

2 n 
= 10 - 8[An 3 ]- TIn -

n-1 

for large n, 

(12) 

where in the classical liquid drop model An~ == 47rr;,o-jkT and (J is the liquid 
surface tension. Here T is a parameter which near the critical point is ::::::2·2. For 
T below the critical point T is not known and for small n, T could depend on n. 
Fortunately, the Tln[n/(n - 1)] term is small for large n and should not affect 
strongly the slope of -8Fc versus n- 1/:3. In a previous study (Hale 1982, 1986) 
we noted that (J :::::: (Jo(Tc -T) and (JO/kPliqUii/ 3 == D :::::: 2 for most substances and 
proposed that a scaled (or 'law of corresponding states') form for A is given by 

1 (Tc ) A = (367r)3D T -1 

:::::: (367r) + (J / (phT) . (13) 

With this model for 8Fc(n), the slope of -8Fc(n) versus n- 1/ 3 should give 
:::::: - ~ A. Subsequently one can estimate an effective surface tension for small 

clusters and examine the results for consistency with the scaled form for A using 
D and T. 
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to n = 2-15, 18, 20, 24, 30, 40, 60, 80, 96 and 192. 
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3. Results of the Monte Carlo Simulations and Estimates of n and T c 

The free energy differences -8Fc(n) are calculated for n values ranging from 2 
to 192 using the experimental values for Pliquid to determine V n . Note that while 
we calculate the free energy differences for a volume avn , the plotted values in 
Figs 2 and 3 are [-8Fcalc + In(a)] corresponding to -8Fc as defined in (6). In 
practice one has to run for more than n x 106 steps to obtain a reliable Cn value; 
and with the model water clusters it is necessary to make runs with a number of 
initial configurations and average the Cn values. The present calculations Were 
done on an HP 735 workstation and took ~1· 3 hours per million steps for two 
ensembles with n = 60. 

The calculated -8Fc (n) values for the model argon Lennard-Jones clusters 
at T = 60 K clusters are plotted versus n- 1/ 3 in Fig. 2. At n = 00 the filled 
symbol indicates the experimentally predicted intercept, In[Pliquid/ Pvapour] = 9·6. 
There is a slight curve in the results for n < 6. We note that rln[n/(n -1)] 
corrections cannot be ruled out in this range. If one applies (12) and (13) and 
the experimental Tc = 150 K for argon to the larger cluster data (n > 10), a 
value of n = 2·1 is obtained. The experimental bulk liquid value for argon is 
2 ·17 and we see that even clusters as small as 6 to 10 appear to fall on a line 
with the same slope as the larger clusters. The predicted effective surface tension 
for these clusters (as well as those for n > 10) could thus be well approximated 
by n = 2· 17 extracted from the bulk liqUid surface tension. 
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The model water cluster results at T = 240, 263 and 280 K are shown in 
Fig. 3. The experimentally predicted intercepts (solid symbols at n = 00) are 
surprisingly consistent with the calculated data. For the model RSL2 water 
clusters care must be taken concerning Te , as the RSL2 potentials could produce 
a different critical temperature. (A rough estimate of TeRSL2 ~ 755 ± 100 K can 
be extracted from the present small cluster results.) But with -oFe at three 
temperatures, one can test for consistency with the temperature dependence of 
A in (13) and examine how well the experimental value for Te = 647 K fits the 
data. The following analysis is motivated by the success of the scaled form for 
A in predicting nucleation rates (Hale 1982, 1986, 1988, 1992a, 1992b; Hale and 
Kemper 1989; Hale and Kelly 1992) and is justified in part by the observation 
that the experimental intercepts fo are also nearly proportional to (T~XP IT - 1). 
For example, at T = 240, 263 and 280 K (where the experimental values of fo 
are 14·9, 12·9 and 11·7 respectively) the values of fo/(T~XPIT -1) reduce to 
8·79, 8·84 and 8·89 respectively. So one expects that both the intercept and the 
slope in (12) are proportional to (TeIT - 1). In Fig. 4 the results for all three 
temperatures for the model water clusters are plotted as -oFc/(Tc/T - 1) using 
the experimental Te. The calculated values appear to collapse onto a single set 
of scaled free energy differences, suggesting a universal T dependence similar to 
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Fig. 4. Configurational Helmholtz free energy differences 
between nand n -1 molecule water (RSL2) clusters scaled with 
(T~XP IT - 1) versus n-1j:l at T = 240, 263 and 280 K. The 
clashed line is 8·8 - ~(367r)1/:lnn-l/3, where T~xP = 647 K 
and n = 1· 9. The points at n = 00 (filled symbols) are the 
experimental values of Io/(T:}xp IT - 1) for water. 
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equation (13). The scaled form for the t5Fc(n) is shown in (14) from which (with 
Tc = 647 K) one can extract [2 = 1· 9, a value close to that for argon, 

2 ( ) .! ( Tc ) _ 1 - t5Fc ~ 10 - :3 367l' 3 [2 T - 1 n 3'. (14) 

The predicted effective surface tension for the small clusters is ~99 mN m- I at 
T = 283 K. If the -t5Fc for n > 192 follow the pattern in Fig. 4 and approach the 
experimental value of the intercept at n = 00, one would estimate a bulk liquid 
surface tension for RSL2 water of ~99 mN m- I at T = 283 K. The experimental 
value is 74 mNm- l . Unfortunately, other calculated values for the surface tension 
of model RSL2 water are not available for comparison. In any case the results 
presented in Figs 2 and 3 indicate that the small cluster slope of -t5Fc (or [2 
value) should be close to the larger (approaching bulk) cluster value. 

4. Comments and Conclusions 

The configurational free energy differences for both model argon and model 
RSL2 water clusters indicate that an effective surface tension for the small clusters 
can be approximated from a/kTp~~7Iid ~ [2(Tc /T - 1) and that clusters down 
to about 10 molecules (atoms) appear to be well approximated by the bulk 
(large) cluster values. The data for the model RSL2 water clusters are consistent 
with [2 = 1· 9 and a critical temperature close to the experimental value, 647 K. 
These results suggest in part a theoretical corroboration of the scaling law, 
lnScrit ~ 0·53 [[2(Tc/T _1)j3/2, where Scrit == P/Po is the onset supersaturation 
ratio for formation of liquid embryos from the vapour (Hale 1982, 1986). Here P 
is the ambient pressure and Po is the equilibrium vapour pressure at temperature 
T. The fact that the smallest clusters display a fairly uniform representation in 
terms of A = (367l')1/3[2(Tc/T - 1) indicates that one should be able to apply 
this surface energy term in the calculation of nucleation rates down to clusters 
of the order of 10 molecules or atoms. The effective surface tension for the 
small RSL2 water clusters is ~99 mN m- I at 283 K. This value is larger than 
the experimental bulk liquid surface tension for water, 74 mNm- l . The RSL2 
potential has no quadrupole moment and (consisting as it does of three point 
charges) a tendency to produce less order in the surface layer and in the bulk. 
This effect could increase the value of [2 (and hence the surface tension). Some 
preliminary calculations using the ST2 potential (Stillinger 1975) which has a 
quadrupole moment indicate that the [2 values are smaller. Similar calculations 
of small cluster effective surface tension are in progress using TIP4P (Jorgensen 
et al. 1983), another four site water-water potential. The RSL2 potential is also 
known to produce too large an internal pressure at a density of 1 gcm-3. If this 
increase in pressure is also found for the RSL2 vapour pressure our data should 
predict an intercept, as n -+ 00, smaller than the experimental value. In Fig. 4 
one can see that this is the case for the RSL2 clusters. If all of the discrepancy 
were attributed to the vapour pressure it would imply that the vapour pressure 
for the RSL2 potentials is about a factor of 2 larger than the experimental value 
for both 263 and 280 K. Finally, it is interesting to note that the [2 parameter is 
nearly the same for both the Lennard-Jones argon clusters (2 ·1) and the RSL2 
water clusters (1· 9). 
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