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Abstract

Gravitational effects cause the visual appearance of the external universe to be distorted to
observers near a Kerr-Newman black hole. This paper introduces the problem and presents
some computer-generated pictures which show how the 'sky' appears to an observer near a
Kerr black hole.

1. Introduction

The lensing effects of gravitation upon the images of objects has received
increased attention in recent years. Most of the work has been devoted to the
effects as seen by an observer at a great distance from the lensing influence.
The detailed effects seen by a nearby observer are a less urgent topic but can
nonetheless reveal interesting and significant aspects of the gravitational field.

This paper provides an introduction to the lensing effects seen by an observer
in a stationary, asymptotically flat, black-hole spacetime. Cunningham (1975)
investigated the problem in the case of a Schwarzschild spacetime. In such a
spacetime, one can normalise by a factor of M (the mass parameter of the
black hole) and thereby reduce the investigation to that of a single spacetime.
Metzenthen (1990) did a similar investigation for a charged non-rotating black hole
spacetime (the Reissner-Nordstrom spacetimes). In this case there is an essential
one-parameter (the charge/mass ratio) family of spacetimes to be investigated.
The Reissner-Nordstrom spacetime includes the Schwarzschild spacetime as a
limiting case provided that the limit is taken in the appropriate manner (the
difficulty being that the two spacetimes have a different topology).

The most general class of a stationary, asymptotically flat, electro-vac black-hole
spacetime is the Kerr-Newman family of spacetimes. These are believed to
describe the gravitational field of a rotating charged black hole. There is essentially
a two parameter (charge/mass and rotation/mass) family to be considered in the
Kerr-Newman spacetimes, although the charge is less effective than the rotation
in providing interesting features.

The Reissner-Nordstrorn family (which is a limiting case of the Kerr-Newman
family, provided that the appropriate limit is taken) has a spherical symmetry
which simplifies the required analysis. Any geodesic will be confined entirely to
some 3-dimensional hypersurface, thus reducing the complexity of the required
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analysis. Using appropriate coordinates, the projection of a geodesic onto a
three-spacelike-dimension view will lie entirely within a plane. This symmetry is
lacking in the Kerr-Newman family and considerably complicates the analysis;
with the exception of a few special cases, geodesics are not confined to simply
defined lower-dimensional surfaces.

2. Geodesics in Kerr-Newman Spacetimes

We make the usual assumptions: principally that the observer has no influence
upon the spacetime or the propagation of light, and that light is described by
photons which follow null geodesics.

(2a) The Metric

The Kerr-Newman metric in Beyer-Lindquist coordinates (t, r, (), ¢) is

1- (2Mr - e2/~) 0 0 a(2Mr - e2)sin 2()/~

0 -~/~ 0 0
gJ.LV == I

0 -~ 00

a(2Mr - e2)sin2()/~ 0 0 -( (r 2 + a2)2 - a2~sin2())sin2()/~

where M is the mass parameter, e is the charge parameter, a is the rotation
parameter, and

~ == r 2 + a2 cos2 (),

~ == r2 + a2 - (2Mr - e2) .

(1)

(2)

(2b) The Geodesic Equations

The classical method of solving the geodesic equations in a Kerr-Newman
spacetime is to solve the Hamilton-Jacobi equation (Carter 1968). Alternatively,
we may use proposition C.3.1 of Wald (1984): If ea is a Killing vector field and
'"'(b is the tangent vector of a geodesic then ea'"'(a is constant along the geodesic.
a/at and a/a¢ are obvious Killing vectors. Therefore any geodesic with tangent
'"'(J.L will have

'"'(J.L == {E,'"'(r,'"'(o,-L z } , (3)

where E and L, are constants. Two other constants of the motion can be found
by using a similar property of Killing tensor fields, and by scaling the affine
parameter. This leads to

'Yr = ±EVR
~'

(4)
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~(}=±Eve,

where

8 = K- (a sin 0 - Lz / sin 0)2 - a2p? cos2 0 ,

R = (r2+a2 _ aLz ) 2 - tJ.(p2r2 + fi,) ,
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(5)

(6)

(7)

and where K and p are the two extra constants of the motion. A null geodesic
has p = o.

Equations (3) to (5) can be manipulated to give

j dO j dr
± ve=± Vii'

A.- j(2Mr-e
2

) - aLz d L- j~
YJ - =fa ~ r -F z ~ .

~ V R sin 2 Ov 8

With the exception of degenerate cases, these are elliptic integrals.

(8)

(9)

(2c) The Roots of the Quartics

The roots of the polynomials R(r) and 8(0) are a key to the behaviour of
the integrals:

• 'Bounce'. Near a simple root (multiplicity = 1), the behaviour of the
geodesic is approximately parabolic (e.g. near a simple root of R(r), r
as a function of 0 approximates a parabola).

• 'Spiral'. In the neighbourhood of a root with multiplicity two, geodesics
exhibit an approximately exponential behaviour (e.g. near a simple root
of R(r), r as a function of 0 approximately decays exponentially towards
or grows exponentially away from the root).

• Higher multiplicity roots occur only for exceptional geodesics.

The quartic 8(0) did not arise in the earlier investigations, but it has a simple
behaviour, the two typical cases being shown in Fig. 1. Here TJ = K- (a - Lz )2
is found to be a useful combination of parameters.

The R(r) quartic has a more complicated behaviour than the corresponding
quartic of the earlier studies (Metzenthen 1990), but the behaviour of the roots
above the event horizon (at r+ = M + JlVI2 - (a 2 + e2 ) ) is essentially the same.

(2d) A Geodesic Example

The integrals in equations (8) and (9) may be evaluated using existing
algorithms (Bulirsch 1965a, 1965b, 1969) for elliptic integrals after applying the
appropriate transformations. Fig. 2 shows an example of a computed geodesic.
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As the spiralling behaviour (in r) shows, this geodesic is close to having a double
root of R(r). This geodesic demonstrates a behaviour which is visually much
more interesting than those possible for similar cases in the spherically symmetric
spacetimes.

Roots of Th(theta). a=O.99, Lz=O.2, mu=O, e=O
2. x X 51 X X A X X I X X I * k I k k

1 L) ) '>x-

-1 P' <~

-1 o 1 2

Roots of Th(theta). a=O.99, Lz=2, mu=O, e=O

21o-1
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2. * * 51 * * A X J. j k X I k X I k k I k k L X k.

o

1

Fig. 1. Roots of e(cosO) versus 'f} for null geodesics. Both diagrams are for a Kerr spacetime
with a == 0 .99. For illustration, the black dots show the four real roots at 'f} == - i. The
hatching shows where e is negative; a null geodesic with the given L, cannot have a (rJ, cos
0) in these regions (see equation 5).

3. Views of Distant Objects

The views seen by an observer can be computed by establishing a suitable
arrangement of distant objects and then tracing null geodesics from the distant
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Fig. 2. Geodesic, L z '== 1· 27237, rr"'== 13·9588, where the
ingoing portion (thicker line) passes through ro == 10, 1/0 == O·9
for Kerr spacetime (a == Il-99).

objects to the observer. The view is then determined by the motion of the
observer. Some views which would be seen by a static observer, i.e, one at fixed
r, (), cP, are shown in Figs 3, 4 and 5. Each of these diagrams shows two views,
a foreview where the centre of the diagram is in a direction towardsr: :;='0, and
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Fig. 3. The view seen by a static observer in a Kerr spacetime at ro = 5, 00 = 0°. The
spacetime has M = 1, a = 0·99, e = o. The small diagram at the upper right gives an
indication of the position of the observer in the spacetime.
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Fig. 4. The sky for a static observer at t» == 5, 00 == 60° in a Kerr spacetime with M == 1,
a == 0·99.
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Fig. 5. A static observer's sky in a Reissner-Nordstrom spacetime for ro == 5, 00 == 60° with
M==l,e==O·gg.
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an aft view where the centre is in the opposite direction. Each view shows the
whole sky as seen by the observer, thus the periphery of each view is the same
point as the centre of the other view. Consequently the projections have large
distortions of shape away from the centres of the views.

The various features on the distant sky are designed to aid the interpretation
of the diagrams. Apart from the broad lines between the poles and around the
poles, there are arrow heads and blocks. Fig. 3 shows on-axis views. Figs 4 and
5 show off-axis views, from similar positions, in a Kerr and a Reissner-Nordstrom
spacetime. Some of the main effects of the rotation in the Kerr spacetime are
apparent by comparing these two diagrams.

The results presented here were obtained by direct evaluation of the integrals
rather than finite-difference techniques or similar. This was believed to be
computationally more efficient for this investigation. This appears to be
supported by the fact that the views can be computed on a personal computer
in about five minutes, a time which is believed to be comparable with that taken
on a super-computer when finite-difference techniques are used.

4. Conclusion

This paper has presented an introduction to the views seen by observers
in Kerr-Newman spacetimes. A more complete treatment appears in a PhD
thesis (Metzenthen 1995). Topics such as the views seen by non-static observers,
caustics, and redshift are dealt with there. Some of those results will be submitted
for publication.
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