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Abstract

A simple expression is obtained for the origin dependent change of the gauge variant
paramagnetic and diamagnetic components of the electronic orbital magnetic moment. The
sum of the two is gauge invariant, as is the total magnetic susceptibility.

A partial proof that the sum of the paramagnetic and diamagnetic susceptibilities
of a molecule is invariant under a change of the origin of the vector potential
that describes the uniform magnetic field applied to the molecule was given long
ago in the book by Van Vleck (1932). However, the issue is one that still attracts
attention and a variety of proofs of this theorem continues to appear (Griffith
1961; Geersten 1989). In this note we provide a derivation of the theorem
that is applicable not only to the susceptibilities but to the magnetic moments
themselves. In contrast to' former treatments this derivation involves essentially
operators alone and therefore is independent of the basis wavefunctions that are
used or any particular perturbation scheme. The derivation both gives an explicit
expression for the change in the diamagnetic and paramagnetic moments due to
a shift of origin and explains naturally an observation of Chan and Das (1962)
that the magnitudes of the paramagnetic and diamagnetic moments are smallest
when the origin of coordinates is at the centre of charge of the molecule.

We start by considering the situation classically. The orbital magnetic moment
m of a particle with charge e and velocity v at a distance r from the origin of
coordinates (Fig. 1) is

e
m==-rXv.

2
(1)

In an interval of time St the position vector r sweeps out an area 8S == r X v 8t/2
so m == e dS/ dt. If the particle moves in a closed orbit of period T then the
time average value of the magnetic moment is

ffi = T-1iT m(t) cit
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Fig. 1. The particle with charge e
and velocity v is at position r . In
the unprimed system the origin of the
vector potential and the point about
which the orbital angular momentum
is calculated are both at r = O. In
the course of the calculation this
point is chosen to be at the centre
of charge of the molecule. In the
primed system the origin of the
vector potential is at RA and the
point about which the orbital angular
momentum is calculated is at RL.

or given by the usual expression iii = IS, where I = efT is the current and

s = f r X dr/2

is the projected area. If now, instead of taking the origin about which the angular
momentum is calculated to be at r = 0 we take it at r = R L (Fig. 1), then the
magnetic moment in this new (primed) system is m' = (r - RL) X ve/2 or

- e iTm' = iii - - R L X v(t) dt .
2 0

(2)

If there is no bulk transport current, so that the integral of v(t) is zero, it
follows that m' = iii and the average magnetic moment is independent of the
origin of coordinates. An identical result will be found to hold in the quantum
mechanical case which we consider next.

It is well known (Aitchison and Hey 1989) that, if the electromagnetic vector
potential A is transformed so that A ~ A' = A + \7X and the electrostatic
potential ¢ changes to ¢' = ¢ - aX/at, then the electromagnetic fields E and
B remain unaltered. The single valued scalar field x( r, t) is known as a gauge
field and is proportional to the unit quantum mechanical operator (it is called
a c-number). If the wavefunction W of the system that is transformed becomes
W~ w' = wexp(i ex/tt), then the transformed Hamiltonian H' (which involves
A' and ¢') and wavefunction W' will obey the same time dependent Schrodinger
equation as the untransformed system involving A and ¢. Physical variables such
as the charge and current densities are unchanged. Any operator that represents
a physical quantity must be gauge invariant in the sense that the matrix elements
of the transformed operator between the transformed states must be independent
of the gauge field.

In quantum mechanics the dynamical quantity of importance is not v but
the canonical momentum p = mv + eA, where rn is the mass of the particle.
According to the prescription for quantisation (Dirac 1947) the quantity p becomes
the quantum mechanical operator -i n\7. Accordingly the velocity operator is
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v = (p - eA)/m and the operator for the orbital angular momentum is

e
m = - r X (p - eA).

2m
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(3)

This expression may also be obtained (Stewart 1996) as the derivative m = - \7B H
with respect to a uniform magnetic field B of the Hamiltonian H = (p-eA)2/2m. It
is well known (Aitchison and Hey 1989) that, although the canonical momentum
p is not gauge invariant, the quantity mv = p - eA (commonly called the
kinematic momentum) is because the gradient operator acting on the phase of
the transformed wavefunction produces a term that cancels that coming from the
eA term. Because r is also gauge invariant it follows that the orbital magnetic
moment of a single particle is gauge invariant too. The gauge part of the phase
of the wavefunction of a many particle system may be constructed by adding up
the phases of the individual particles and so the same result holds for a many
particle system. It is also true that the magnetic moment of the spin is gauge
invariant because the spin is not associated with the electromagnetic potentials
in non-relativistic theory. Accordingly it follows quite generally that the total
magnetic moment of a body is independent of gauge. We ignore the spin in the
remainder of this note and consider the orbital moment only.

With a uniform magnetic field B = \7 X A the conventional choice for the
vector potential is A = B X r/2, with B a c-number, so that the orbital magnetic
moment operator m may be expressed as the sum of two terms

e e2

m= -r X p - -r X (B x·r),
2rn 4m

(4)

or m = m P + m d , where the paramagnetic moment is m P = r X p(e/2m) (no
assumption is made that the magnetisation associated with it is proportional to
the applied field) and the diamagnetic moment is m d = -r X (B X r)(e2/4m).

The diamagnetic moment is quadratic in r and linear in B and it may be
expressed in matrix form as m~ = ~,6 X~,6 B,6 where the Greek letters indicate
the Cartesian components and, by expansion of the triple vector cross product,

Ad ( 2~ 2Xo.,6 = - r uo.,6 - ro. r,6)e 14m, (5)

where 8 is the Kronecker delta. The quantity X~,6 is an operator; the. usual
diamagnetic susceptibility (Stewart 1994) is given by its expectation value or
thermal statistical average. We shall find that, although the expectation values of
the paramagnetic and diamagnetic terms are not generally individually independent
of the origins of A and the point about which the angular momentum is calculated,
the sum of them is.

To demonstrate this we calculate the expectation value of the magnetic moment
in the primed system in which the origin of the vector potential has been
changed from r = 0 to r = RA so that the vector potential is transformed
to A -+ A' = B X (r - RA)/2 = A - B X R A/2. The gauge field is found
by a trivial integration to be x(r,t) = -(B X RA).(r - C)/2, where C is
any vector in real space that does not depend on r. The origin about which
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the magnetic moment is calculated is also changed to R L so the magnetic
moment m transforms to m' = m)" + m'" where nv" = (r - R L ) X pe/2rn and
m d

, = -(r - RL) X {B X (r - RA)}e2 / 4m . The latter may be expressed as

m d
, = m d

- {RL X (B X R A) - r X (B X R A) - R L X (B X r)}e2/4m. (6)

We next calculate the result of the paramagnetic term acting on the transformed
wavefunction

mP'ljf' = -(r - R L ) X \7{ljfexp(iex/tL)}(ietL/2rn).

Noting that the gradient acts on both the phase and on ljf and using the
chain rule for differentiation we obtain for this quantity (e/2m) exp(i ex/Ii)
x (r - R L ) X {p - (B X R A ))e/ 2}ljf . If we now take the thermal statistical

average of mr' by taking the expectation values in the states ljf' we obtain

(mP ' ) = (mP ) - R L X (p)e/2m + {RL X (B X RA) - (r) X (B X R A)}e2 / 4rn ,
(7)

where (0) indicates the thermal statistical average of any operator 0 at temperature
T which is Trace{Oexp(-H/kT)}/Trace{exp(-H/kT)}, where k is Boltzmann's
constant. If the thermal average of equation (6) is now added to (7) we get

(m') = (m) - R L X (p - eA)e/2m , (8)

which is the quantum analogue of equation (2). If the gauge invariant quantity
(p - eA) = rn(v) is zero, which it will be if there is no bulk transport current
(a transport current is not consistent by Maxwell's equations with a uniform
magnetic field), then (m') = (m) and the total orbital magnetic moment is
independent of the changes of origin. It follows that the magnetic moment of an
assembly of independent atoms is equal to the sum of their individual magnetic
moments.

At zero temperature the calculation of the diamagnetic susceptibility requires
only a ground state expectation value to be taken but the paramagnetic
susceptibility is harder to obtain as it must be calculated by second order
perturbation theory which requires the excited states of the molecule to be
known. Because of this it is sometimes useful to calculate the diamagnetic and
paramagnetic moments separately. The question then arises of how to combine
individual moments arising from atoms situated at different origins. This may
be answered most simply by choosing the origin of the unprimed system to be
at the centre of charge of the atom so that (r) = O. Equation (7) is further
simplified by noting that (p) = O. Although p is a gauge dependent quantity
the gauge field is zero in the unprimed system in which (p) is calculated and so
for an atom, for example, the average value of p is well defined. Equations (6)
and (7) then become

(md
' ) = (md

) - R L X (B X R A )e2 / 4n1,

(mP' ) = (mP) + R L X (B X R A )e2 / 4n1.

(9a)

(9b)
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The correction for change of origin is linear in B and is only non-zero
when both R L and R A are non-zero. It has no component along R L and is
zero if B is parallel to R A or if R L is orthogonal to both R A and B. The
most usual case to be considered is when the properties of several atoms are
referred to the same origin so that R A == R L == R. In this case the correction
is quadratic in R. This provides an explanation for the observation of Chan
and Das (1962) that the magnitudes of both their calculated paramagnetic and
diamagnetic susceptibilities were least when the origin was at the centre of
charge and varied quadratically with distance away from it. The interpretation
of equations (9) in this situation is as follows. The Q Cartesian component of
the quantity R X (B X R)e21411~ is given by ~fJ BfJ (R28a; ,{3 - Ra; R(3)e2/4m. If
the diamagnetic susceptibility were calculated with respect to an origin at R
then it would be given by replacing r in (5) with (r - R). This would result
in a susceptibility operator of -{(R - r)28a;,fJ - (r - R)a;(r - R)fJ}e2/4'm. Since
we have chosen (r) to be zero the cross terms in this expression vanish and the
result is equal to the sum of the two terms in (9a). The second term in (9b) is
needed to ensure the gauge invariance of the total magnetic moment. It is clear
that in general the paramagnetic and diamagnetic parts of the orbital moment
have no meaning on their own, only their sum has. Similar arguments may be
applied to the chemical shift.
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