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Abstract 

In the weak field approximation to the gravitational field equations, we study gravitational 
paramagnetism and diamagnetism, the gravitational Meissner effect and gravitational 
superconductivity. The spontaneous symmetry breaking corresponds to crossing from 
closed geodesics to open ones, and to the existence of a critical temperature in the frame of 
a gauge model at finite temperature. In this later case one can obtain expressions giving the 
dependence of several superconducting parameters on temperature. 

1. Introduction 

Recent results (Peng 1983, 1990; Ciubotariu 1991; Ciubotariu et al. 1993) 
have shown that Einstein's equations in the weak field, low speed (v« c) 
approximation reduce to Maxwell-type equations: 

<:7 B 4· aEg vX g=- 7fJ +--, 
m at 

aBg v x Eg = - --, at 

V .Bg = 0, 

E = - aAg _ VV, 
g at g, 

(1) 

(2) 

(3) 

(4) 

(5) 
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where Bg is the gravitomagnetic field, Eg the gravitoelectric field, Ag the vector 
potential, V g the scalar potential, jm = Pm V the mass current density, and 
Pm = nm is the proper mass density with n the number density of particles 
having rest mass m. In the same approximation, the geodesic equation reduces 
to a Lorentz-type equation (Peng 1983; Ciubotariu 1991): 

dv 
- = Eg + 4(v X Bg). 
dt 

(6) 

The analogy between the gravitational and the electromagnetic field is almost 
perfect both in the weak field approximation (Peng 1983, 1990; Fuchs 1981; Ho 
and Morgan 1994; Agop et al. 1996) and in strong fields (Ferrari 1988a, 1988b; 
Morgan 1971; Piran and Safiev 1985). An exception is the lack of a gravitational 
Meissner-type effect (Ciubotariu and Agop 1996). 

The 'scope' of the present work is to study several effects induced by 
the gravitomagnetic field-gravitational paramagnetism and diamagnetism, the 
gravitational Meissner effect, gravitational superconductivity-and to derive 
expressions for several superconducting parameters. 

2. Quantum Gravitomagnetic Moment 

For a particle of mass m, which moves in a gravitational field with 4-vector 
potential (V g' Ag), the Lagrangian is expressed as 

and the corresponding Hamiltonian is 

where the canonical momentum P is defined via the Lagrangian (7) as 

8L 
p = - = mv + 4mAg . 

8v 

(7) 

(8) 

(9) 

Once the classical Hamiltonian (8) is known, the corresponding quantum 
mechanical equation is obtained by replacing the classical parameters with their 
respective quantum operators. Then, the Schrodinger equation becomes 

'Ii 8'I! [1 A A 2 ] -;--+ -(P-4mAg) +mVg 'I!=O. 
1 8t 2m 

(10) 

Since 

(11) 
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expression (10) when expanded becomes 

and the complex conjugate equation is 

!!:. aw* + ~ \72w* _ 41i A \7w* _ 21i (\7. A )(w )w* - 8mA2 w* - mY, w* = o. 
i at 2m i gig g g g 

(13) 

By multiplying equation (12) with W*, (13) with wand then by adding them, 
the continuity equation is obtained for the probability density Pp = w*w 

app n . at + v .J p = 0, (14) 

where 

j = ~(W*\7W - W\7W*) - 4A w*w 
p 2mi g 

(15) 

defines the probability current. 
If the particle has mass m, then one can associate the mass density Pm = 4mpp 

with the probability density, and the mass current density, jm = 4mjp, with 
the probability current density (Agop et al. 1996). These parameters satisfy a 
continuity equation of the form (14) which expresses mass conservation. 

Under these circumstances, the quantum gravitomagnetic moment is given by 
(Titeica 1984) 

(16) 

or explicitly 

J-lg = 1i j[w*(r X i- 1 \7W) + (r X i-l\7W)*W] dV - 8m j W*(r X Ag)W dV. 

(17) 

The first integral in (17) corresponds to the permanent gravitomagnetic moment 
of the moving particle (Agop et al. 1996), i.e. 

{LOg = 21iL, (18) 

where i is the kinetic moment operator. The second integral 

J-llg = -8m j W*(r X Ag)w dV (19) 
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is the mean value on the \II state of the operator 

{Llg = -8m( r X Ag) . (20) 

We will call {Llg the gravitomagnetic moment induced by the gravitomagnetic 
field. Therefore, a particle moving in a gravitomagnetic field develops a 
permanent gravitomagnetic moment, defined by (18), simultaneously with an 
induced gravitomagnetic moment, defined by (20). Thus the total gravitomagnetic 
moment (16) becomes 

(21) 

3. Gravitational Paramagnetism and Diamagnetism 

Let us allow the particle of mass m to be subjected simultaneously to the 
static gravitoelectric field Eg and to a homogeneous gravitomagnetic field B g, 
given by 

In this case, the Hamiltonian operator takes the form 

Since 

A 1 2 
H= -(j)+2mr X Bg) +mVg 

2m 

then (23) becomes 

(22) 

(23) 

iI = pp - 2(f x j))Bg + 2m[r2 B~ - (r. Bg)2] + mVg . (25) 
2m 

We define the total gravitomagnetic moment (Titeica 1984) by 

(26) 

Noting that r X p = nL, the first term on the right side of (26) takes the value 
/-LOg, When the external gravitomagnetic field is weak in the Hamiltonian (25), 
the first order term in Bg is dominant (Agop et al. 1996): 

-2(r x j))Bg = {LOg' B g , (27) 
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which represents the energy of the permanent moment flog in the external field B g. 
The macroscopic effect of this energy is expressed by the tendency of orienting 
the permanent gravitomagnetic moments of a macroscopic body containing many 
'elementary gyroscopes' along the Bg direction. Consequently, the body exhibits 
gravitational paramagnetism. For this feature to show, it is necessary that the 
permanent gravitomagnetic moment be non-zero, implying L .; O. 

In the states with L = 0, the permanent gravitomagnetic moment is null, so 
that only the induced gravitomagnetic moment 

(28) 

remains, the average value of which is 

(29) 

The L = 0 states have a spherical symmetry, and therefore the function \[1*\[1 

depends only on the distance r. Calculating the integral (29) in spherical polar 
coordinates system and knowing that (Titeica 1984) 

J XiXj dO = 0 (i'; j); J x; dO = ~ J r2 dO (i = j = 1, 2, 3), (30) 

one gets 

(31) 

where 

(32) 

denotes a positive integral. The induced gravitomagnetic moment is proportional 
to the field Bg and oriented antiparallel to it; thus 

(33) 

The coefficient 0:, defined as the gravitational polaris ability of the 'elementary 
gyroscope', is given by 

(34) 

In this situation, the effect of the field Bg on a macroscopic body involves induction 
of a gravitomagnetic moment antiparallel to the field. We call this property 
gravitational diamagnetism. One can notice that, even ifthe 'elementary gyroscopes' 
of the substance have permanent gravitomagnetic momwents, gravitational 
diamagnetism does not disappear but, since it is weak, it is hidden by the 
gravitational paramagnetism. Indeed in the terrestrial gravitomagnetic field we 



1068 M. Agop et al. 

have IBgl ~ 10-14 8-1 (Ljubicic and Logan 1992), and by considering the atom 
as an 'elementary gyroscope' we get IPlgl/IPogl ~ 10-2 . 

Within this context, the gravitational Einstein-de Haas and gravitational 
Zeeman effects, vortices in a superfluid placed in an external gravitomagnetic 
field, have been also studied (Agop et at. 1996). 

4. Wave Function Rigidity and the Absence of the Meissner Effect 

Let the mass current density be 

jm = 2.1i ('IJI*V''IJI - 'IJIV''IJI*) - 16mAg 'IJI*'IJI . 
I 

(35) 

In the absence of the gravitomagnetic field we have Ag = 0 and, with 'IJI = 'IJIo, 
the mass current density is zero, i.e. 

jom = 2.1i ('IJI~V''lJlo - 'IJIo V''lJlo) = O. 
I 

(36) 

If we allow the wave function 'IJI to be 'rigid' (Balla and Deutsch 1970), meaning 
that it does not vary when a gravitomagnetic field is applied, then 'IJI ~ 'IJIo in 
all situations, i.e. the wave function is equal to this value in the absence of the 
gravitomagnetic field. Consequently, by considering both this feature and relation 
(35), we have 

(37) 

or, by applying the curl operator with Pm ~ constant, 

(38) 

When the driving current BEg/at is absent, on applying the curl operator 
equation (1) takes the form 

from which, taking into account (4) and (38), one obtains 

V'2 Bg + 167rPm Bg = o. 

(39) 

(40) 

This result shows that Bg does not 'induce' a gravitational Meissner effect, but 
orders space (Ciubotariu and Agop 1996) as a monocrystal, the gravitational lattice 
constant being A = (1/167rPm)1/2. For n = 1'IJI12 = 1028 m-3 , the gravitational 
lattice constant A is about 1013 m, which is the same order of magnitude as the 
diameter of Pluto's orbit, a tiny distance compared to the cosmic scale (Peng 
1990). Considerations based on very large currents up to 1021 A (Linet 1990) 
which can be carried by the cosmic string may ultimately give much smaller 
limits for A. Consequently, the 'rigidity' of the wave function is responsible for 
the space's 'ordering'. 
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Obviously, the wave function is not completely 'rigid'. As a result, one can 
assume that relation (37) is only a first approximation. Under such conditions 
the difference between the electromagnetic and the linear gravitational field is 
evident; the wave functions 'rigidity' implies the presence of a Meissner effect for 
the electromagnetic field and its absence for the gravitational field. 

5. Gravitational Superconductivity 

Let us consider the Schrodinger-type Lagrangian 

(41) 

where \1e = ae - i(4m/Ii)Age is the covariant derivative, IJr is the wave function 
coupled minimally to the gravitomagnetic field, Bg is the gravitomagnetic field 
intensity, 4m/1i is the coupling constant and (3 > 0 is the self-interaction constant. 

Using the Euler-Lagrange equations for the Lagrangian (41), the field equations 
are 

_" B - 2im(IJr*"1Jr -1Jr"1Jr*) 16m2 A 1Jr*1Jr v X g - Ii v v + li2 g , (42) 

(43) 

The energy minimum is obtained for a < 0 and IJr = (-a/(3)1/2 (Chaichian and 
Nelipam 1984). For this value of 1Jr, (42) becomes 

16m2 a 
- \1 X Bg = ----:;;:x- /3 Ag , (44) 

from which, by applying the curl operator and taking into account (4), we obtain 

216m2 a 
\1 Bg - ----:;;:x- /3 Bg = O. (45) 

This means that spontaneous symmetry breaking produces a gravitational Meissner 
effect, the penetration depth being 

>.. = ~(~)1/2 
4m a 

(46) 

In the absence of spontaneous symmetry breaking, i.e. for a > 0, relation (45) 
takes the form 

0, (47) 

which reflects a space 'ordering' as a monocrystal where>.. is the lattice constant. 
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By comparing the ordinary Schrodinger equation with the one derived from 
(43), we obtain a = 2mE/1i2 , where E is the total energy of the test particle. 
Under these conditions, one can associate with spontaneous symmetry breaking 
a bonding state of the test particle (E < 0), and in the absence of spontaneous 
symmetry breaking we obtain free motion of the same test particle (E > 0). 
Therefore, any system of particles moving along the geodesics may be called 
a gravitational superconductor, since no external (either non-gravitational or 
gravitational) forces act on the particle. As an example, consider a dust filled 
Universe. When the particles move along open geodesics, there is no gravitational 
Meissner effect. However, when they move along closed geodesics, a gravitational 
Meissner effect occurs. Passing from one effect to another is achieved by 
spontaneous symmetry breaking. 

Generally, speaking, one associates spontaneous symmetry breaking with a 
critical temperature in finite temperature field theories. The method is based on 
the following idea (Dariescu et at. 1992): the functional Z[J], which expresses 
the amplitude of a vacuum-to-vacuum transition (at T = 0) will be redefined 
at a temperature T 1= 0 and identified with the quantum statistical partition 
function. One can associate a temperature T f'V 1/f3o with the \If field. For Z[J] 
to be invariant to 'temporal' translations in f3o, \If needs to be a time periodic 
function, with the period f3o. Making use of this procedure one can define aef as 

aef = a - f3 + -- 8T2 ( 16m2) 
1i2 ' 

(48) 

with 8 a dimensional constant, from which, by restricting aef = 0, we introduce 
the critical temperature 

[ / ( 16m2)]! 
Tc= a 8 f3+~ (49) 

Dimensional analysis of (43) and (46) leads us to postulate the existence of a 
'coherence length' ~ = 1/ va, and a penetration depth A, respectively, so that 
(49) becomes 

/[ 216m2(A2 )]! 
Tc = 1 8~ ~ e +1 

If A/~ « 1, equation (50) takes the form 

1i 1 
Tc(l) = 4m~ V8' 

and if A/~ » 1, equation (50) becomes 

1i 1 
Tc(2) = 4mA V8 . 

(50) 

(51) 

(52) 
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This means that there are two types of gravitational superconductor, corresponding 
to the critical temperatures in (51) and (52); this is analogous to type I and 
type II superconductors in electromagnetism (Burns 1992). 

In this context, one can define the following temperature dependencies: 
(i) The coherence length at temperature T, 

1 
~(T) = ~(T) 

~(O) 

\11 - (T /Te)2 ' 

where ~(O) = 1/ va is the coherence length at T = o. 
(ii) The energy gap at temperature T, 

E(T) = E(O)yl - (T /Te)2 , 

(53) 

(54) 

where E(O) is the energy gap at T = O. This result is obtained on condition 
that (43) should reduce to the linear Schr6dinger equation. Then, we have 

2m e(T) = aef; 
h2 

2m E(O) = a. 
h2 

(iii) The critical gravitomagnetic field at temperature T, 

Bge(T) = Bge(O)[1 - (T/Te)2] , 

(55) 

(56) 

where Bge(O) is the critical gravitomagnetic field at T = o. This result comes 
from 

B~e(T) = a:f(T)/fJ (57) 

by making an analogy with the result in Burns (1992), whence we note 
Bge(O) = a(O)/v7J. 

In terms of the way the gravitational field is defined, we interpret the previous 
results as follows: . 

(i) Equation (53) is the minimum distance for two neighbouring geodesics to be 
indiscernible. In this way, one can introduce the 'space quantum' ~(T) = h/V2mE, 
which depends on temperature. 

(ii) Equation (54) corresponds to the minimum energy necessary for a test 
particle to pass from the bonding to the non-bonding state. This energy is lower 
as T--tTe . 

(iii) Equation (56) corresponds to a critical gravitomagnetic field through which 
a test particle passes from a bonding to a non-bonding state. The value of this 
field is lower as T --t Te. 

(iv) In the absence of the gravitomagnetic field, equation (49) reduces to 
Te rv (a/ fJ)1/2 (Vilenkin 1985), Le. a critical temperature corresponding to 
the cosmological phase transition. As the Universe cools through the critical 
temperature, the 'field' acquires expectation values +(a/fJ)1/2 and -(a/fJ)1/2 at 
random in different regions of space. One can introduce a correlation length, 
~ = 1/ va, such that the values of (w) are uncorrelated over distances greater 
than ~ (Vilenkin 1985). 
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(v) Cosmic dust condensing by a gravitational Meissner effect on the cosmic 
string forms the galactic nucleus. Along the z = constant planes (oriented parallel 
to the string axis), and in the absence of the gravitational Meissner effect, 
positively defined transverse stresses arise which, in principle, are responsible for 
the galactic arms (Vilenkin 1985). 

6. Conclusions 

The main results of this paper may be summarised as follows: 
(i) A microparticle in a gravitomagnetic field has both a permanent and an 

induced gravitomagnetic moment. The permanent gravitomagnetic moment is 
responsible for the gravitational paramagnetism, and the induced one, for the 
gravitational diamagnetism. 

(ii) The 'rigidity' of the wave function is interpreted as an 'ordering' of the 
space-time variety, i.e. the absence of a gravitational Meissner effect. 

(iii) By using a nonlinear Schrodinger-type Lagrangian, spontaneous symmetry 
breaking can be reconciled with the gravitational Meissner effect. In this context 
the gravitational superconductivity was defined and the temperature dependencies 
of the superconducting parameters were found. 

(iv) The dual properties of the microparticle are conditioned by the space 
'ordering'. Indeed, for a free microparticle we have E = p2/2m, and thus from 
(55), with a = 11k2 , P = 1ik results where k is the wave number. 
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