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Abstract 

The field line pitch and its relation to the integrated magnetic shear is discussed for a low-,8 
tokamak plasma. Analytical results using a second order inverse aspect ratio expansion are 
presented and specifically discussed in the limits of peaked and fiat current profiles. The 
results are compared and contrasted with an earlier calculation of the local magnetic shear. 

1. Introduction 

Improved tokamak performance has been obtained in configurations with 
significant negative global magnetic shear (Lazarus et al. 1991, Hugon et al. 
1992). The global magnetic shear is a surface averaged quantity and, at least for 
localised modes, the local magnetic shear (Greene and Johnson 1968; Ware 1965) 
and the integrated shear (Dewar et al. 1984) are more fundamental quantities. 
Pressure driven modes in particular are often in the region of unfavourable 
curvature (Greene and Chance 1981), emphasising the importance of a local 
measure of the magnetic shear. 

The local magnetic shear comes in as a positive definite term in the 
magnetohydrodynamic (MHD) energy principle (Greene and Johnson 1968) and 
finite local magnetic shear is hence always stabilising. However, it is important 
to distinguish between the local shear and the surface averaged quantity. For 
instance, changing the sign of the surface averaged shear can increase the 
magnitude of the local quantity. 

In the following we will discuss the local field line pitch in tokamak plasmas. 
This will be compared and contrasted with an earlier calculation of the local 
magnetic shear. The rest of the paper is organised as follows. In the next 
section a brief review is presented of the equilibrium problem for low-,8 (the 
ratio of kinetic pressure to magnetic field pressure) tokamak plasmas. The 
Grad-Shafranov equation is solved and an analytical expression is given in this 
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asymptotic limit. In Section 3, the integrated magnetic shear and its relation to 
the field line pitch is discussed. These results are then compared and contrasted 
with earlier calculations (Lewandowski and Persson 1995) for the local magnetic 
shear. The results are visualised for a few specific profiles. 

2. The Equilibrium 

For a toroidally symmetric equilibrium, the toroidal angle if; is an ignorable 
coordinate. The contravariant form of the magnetic field can then be written in 
the form (White 1989): 

B = g('IjJ)'\l(, + Ir('IjJ)'\l()* + 8('IjJ, ()*)'\l'IjJ , (1) 

where 'IjJ is the magnetic poloidal flux, ()* is a general poloidal angle and the 
general toroidal angle 

(, = if; - A*('IjJ, ()*) (2) 

is defined in such a way (by choosing A*) that the magnetic field lines are 
straight in the ((" ()*) plane. In equation (1) 27rg( 'IjJ) is the poloidal current flowing 
outside the flux surface and 27rlr('IjJ) is the toroidal current flowing inside the 
flux surface. The last term in (1) represents the degree of nonorthogonality in 
the coordinate system (White 1989). In the low-,B limit considered in this paper, 
this term vanishes. 

Tokamak equilibria are governed by the Grad-Shafranov equation (Shafranov 
1958; Lust and Schluter 1957; Grad and Rubin 1959): 

'\l'IjJ dp gq dg 
'\l.- +q- +-- =0. 

X2q d'IjJ X2 d'IjJ 
(3) 

Here q( 'IjJ) is the safety factor and X is the distance from the axis of revolution 
to a point on a magnetic surface. In order to find an equilibrium, equation (3) 
is generally solved numerically. However, in the low-,B limit considered in this 
paper analytical solutions can be found (Shafranov 1963, 1965; Ware and Haas 
1966; Greene et at. 1971) order by order by expanding in the inverse aspect ratio 
€ == a/ R, where a and R are the minor and minor radii of the plasma respectively. 

To second order in such an expansion and assuming that ,B = 0(€2), the flux 
surfaces are circles shifted to the low field side to balance the kinetic pressure. 
This is the well-known Shafranov (1963) shift and it can be determined from the 
radial part of equation (3) using standard cylindrical coordinates: 

1 l r [q2 l rl r"3 ( R02q2 dP ) ,,] I b.(r) = - f"3 -2 1 - 2~ -II dr dr. (4) 
Ro 0 r 0 q Bo r dr 
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The poloidal part of equation (3) similarly provides an expression for A* in (2): 

aA* = qr} (1 _ X ) 
ae X r}' 

(5) 

where r}::= Ro[l - Acos(e)]. 
By writing the magnetic field in Clebsch form, 

B = V'a x V''IjJ , (6) 

where a ::= ( - q('IjJ)e* is the field line label, we obtain the components of the 
magnetic field (Shafranov 1963, 1965; Ware and Haas 1966; Greene et al. 1971): 

Bo = - 1 - - cos e + L'l cos e , Bor (r .) 
qRo Ro 

(7) 

( r L'l(r)) B", = Bo 1- - cose + -- , 
Ro Ro 

(8) 

where terms of order £3 and higher have been neglected. The second term on 
the right hand side of equation (7) is due to toroidal bending and the third term 
is due to flux surfaces compression. 

3. Integrated Local Shear 

High-n ballooning modes, at marginal stability, are described by the following 
equation (Coppi 1977): 

B.V'(IV'a*12 B.V'<i» _2_ dp (K. K. IIV''ljJ12 )<i>=0 
B + I V''IjJ I d'IjJ N + G B2 ' 

(9) 

where <i> is the ballooning eigenfunction. Equation (9) has to be solved along the 
field line with appropriate boundary conditions at e* = ±oo, on a given magnetic 
surface. Here K.N and K.G are the normal and geodesic curvatures respectively. 
The normal vector is perpendicular to the magnetic field line direction and 
is locally normal to a given magnetic surface. The geodesic curvature is the 
component of the magnetic field curvature which is perpendicular both to the 
normal vector and to the magnetic field direction. The integrated local shear is 
defined as follows: 

Here 

1::= 
V'a* . V''IjJ 
V''IjJ.V''IjJ 

a* = ¢ - A*('IjJ, e) - q('IjJ)e 

(10) 

(11) 
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is the field line label for a second order equilibrium. The so-called stream function 
A* is chosen so that the magnetic field lines appear to be straight; its expression 
can be found by direct integration of equation (5): 

A*('Ij;,8) = rO Q('Ij;,8')d8' - q('Ij;)(8 - 80 ), Joo 
(12) 

where it has been assumed that A*('Ij;,80 ) = O. The latter is an arbitrary function 
of 'Ij; (White 1989), reflecting the fact that the field lines are constrained to 
magnetic surfaces. Here Q == qry / X is the local pitch of the magnetic field lines, 
while 80 is the poloidal angle at which the along-the-field-line integration is 
started. For a second order equilibrium, the local pitch is given by 

where terms of order 103 have been neglected. Using equations (11) and equation 
(13), we obtain an expansion for the integrated local shear, accurate to 0(1): 

where 

2 

1(-2) = R02\s(8 - 80 ), 
r 

(14) 

(15) 

(17) 

As can be seen in the last term of equation (9), the destabilising influence of 
the normal curvature could be reduced when the integrated 1 is sufficiently large 
and positive. However, up to second order in 10, the geodesic curvature varies as 
sin(8), so that the normal curvature dominates in the last term of equation (9) 
near the plasma outboard (8 ~ 0). Note that a vanishing 80 maximises the driving 
force appearing in the last term of equation (9). For 80 -:f 0, the vanishing of the 
integrated local shear occurs in a region where the normal curvature destabilising 
influence is decreased while, at the same time, the stabilising influence of the 
geodesic curvature is increased. 
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The radial variation of the pitch of the magnetic field lines provides a measure 
of the shear and it is natural to introduce . 

8* == ~ aQ. 
Q ar 

We then note that to lowest order 

Expanding in powers of to we get 

8(0) _ :. dq 
* - q dr ' 

8~1) = -~ cos(O) [1 + RoLi] , 
Ro 

2 
8 (2) - ~ 

* - 2 Ro 

4. Local Magnetic Shear 

{ i::l 2 [ i::l .. J } Ro-;: + cos (0) 2 + Ro-;: + RoD. . 

(18) 

(19) 

(20) 

(21) 

(22) 

The local magnetic shear (LMS) is a structural parameter of the magnetic 
field configuration, crucial for plasma stability. The vanishing of the local 
shear in bad curvature regions has been found to be associated with unstable 
ballooning modes (Greene and Chance 1981). In the context of ideal MHD 
theory, for which viscosity effects, heat flow, ohmic dissipation and resistivity are 
neglected, the macroscopic plasma stability could be studied by introducing small 
perturbations in the equilibrium configuration (Greene and Johnson 1968; Furth 
et al. 1966). Linearising in the amplitude perturbations, a variational principle 
could be constructed (Berstein et al. 1958; Greene and Johnson 1968; Furth 
et al. 1966). In the associated perturbed energy, one of the stabilising terms 
involves the perturbed component of the magnetic field (Greene and Johnson 
1968) which, in turn, contains the local magnetic shear. Following Dewar et al. 
(1984), the LMS can be written: 

8 == -8· (\7 x 8) , (23) 

where 

B x \7'ljJ 
8 == --:---'-

\7'ljJ.\7'ljJ 
(24) 

is a vector lying in the magnetic surface along the direction of the binormal 
vector. The LMS vanishes when one can construct a surface that contains both 
the magnetic field B and the magnetic flux gradient vector \7'ljJ. 
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Expanding the LMS in powers of € yields (Lewandowski and Persson 1995) 

S = S(O) + S(1) + S(2) , (25) 

where 

(26) 

S (1) _ __ r_ [ .. Roli ] 
- 4 cos(8) 1 + Rob. + -r- (1 - 28) , 

Ro 
(27) 

(2) r 2 [. r .. (. r) Ii 2 ] S = --4 cos (8) 2b. - - + Rob. 3b. - Ro + R08-r 
Ro Ro 

Note that the LMS scales like Ro -3 as can be seen from the definition equation 
(23). Here 8 = (rdqjdr)jq is the lowest order global shear, the first term in 
equation (27) is the toroidal bending term, and the second and third terms are 
due to the Shafranov shift. These are residual contributions that average to zero 
on the magnetic surface. The second order term might give a positive or negative 
contribution to the global shear depending on the details of the equilibria. 

The high-n ballooning equation can be obtained from the energy principle. The 
formulation begins by assuming incompressible perturbations; an eikonal ansatz 
for the fluid displacement is assumed, <i> = <i> exp( is), where the amplitude <i> 
and the eikonal S are slowly varying functions of the position. For perturbations 
with long parallel wavelength and short perpendicular wavelength, the amplitude 
<i> could be expanded in powers of the 'mode fluteness' T == k11jk.l. Constraints 
on <i>(0) and <i>(1) (where the subscripts indicate the corresponding order in T) 
are obtained by minimising the parallel component of the perturbed magnetic 
field. A variational principle for high-n ballooning is then obtained (see for 
instance Freidberg 1987). Minimising the Euler-Lagrange equation for the general 
ballooning mode energy principle yields the high-n ballooning equation (9). 
Therefore, the integrated local shear equation (10) is the fraction of the LMS 
that survives for modes strongly elongated along the field line. Specifically, the 
high-n ballooning mode equation is used to determine the threshold (3 == (3* 
that the plasma can sustain before becoming unstable. The threshold (3* can 
be found by considering the limit of infinitely elongated modes, that is T --+ O. 
The stabilising contribution of the perturbed magnetic field enters the high-n 
ballooning equation as a quantity proportional to the integrated local shear. 
However, for (3 < (3*, one has to consider modes with small but finite T. The 
stabilising effect of the perturbed magnetic field is now described by the local 
magnetic shear. 
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As can be seen from (10) and (18), the integrated shear is a nondimensional 
quantity. The LMS, however, scales like Ro -3. For a given equilibrium, the two 
quantities can be compared since Ro is fixed. 

To lowest order in E, the LMS and the integrated shear do not differ and 
are equal to the global shear, s = (rdqjdrj)q. To first order in E, an extra 
contribution (proportional to the global shear) enters the LMS. For a specific 
value of the global shear (i.e. when s = ~), the LMS and the integrated shear are 
equal up to O( E). Since our expansion parameter E does not put any restriction 
on the safety factor, one could compare the LMS and its integrated version 
for a vanishing global shear (S ~ 0). In the reversed-q profile, the position 
where s = 0 is usually located close to the plasma edge. In this region, because 
of the strong pressure gradient, one has Li « b. so that the integrated shear 
is approximatively given by S* ,....., -r j Ro cos( B) which has the same poloidal 
dependence at the normal curvature, a destabilising contribution. In this low-shear 
regime, the second order contributions also become important and from equation 
(28) and (22), it is clear that the LMS and the integrated shear are quite 
different. 

For the following specific cases we use the plasma pressure 

p(r) = p(O)[I- (rja)2] , (29) 

and, except for the case with negative shear, the q profile 

q(r) = q(O)(1 + (rja)2A[(q(a)jq(0))A _ 1])1/A (30) 

as free functions. The safety factor profile for the negative global shear regime 
is given by a polynomial of the form: 

q(r) = q(O)[1 + 6rja + 6(rja)2], (31) 

where 6 and 6 are chosen so that dq j dr = 0 at r j a = 0·5 and so that the 
safety factor at the plasma edge [q(a)] is the same as the one given in equation 
(30). 

In Fig. 1 the Shafranov coordinates for a low-,B tokamak are displayed. The 
inverse aspect ratio for this case is E = O. 3 and the central ,B = 4%. Note the 
Shafranov shift (lJ.j Ro ,....., E2 ) of the circular magnetic surfaces. For a peaked q 
profile, A = 1· 2 (see Fig. 2a), the region of negative integrated shear is nearly 
circular and slightly shifted to the plasma outboard (because of the influence of 
the Shafranov shift). The lowest order in the expansion for the integrated local 
shear is proportional to the global shear. 
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Fig. 1. Shafranov coordinates for a tokamak with central (3 = 4·0% and inverse aspect ratio 
E = 0·3. 

For a flat q profile, A = 4·0 (see Fig. 3a), the global shear is small and the 
poloidal dependence of the integrated shear, the first order term in the expansion, 
plays an important role. The region of negative integrated shear is increased. 
When the aspect ratio is large (f = 0·1) (see Fig. 4a) the toroidicity effects are 
small. The region of negative integrated shear is substantial but not as extended 
as in Fig. 3a. 

Finally, in the negative global shear regime (Fig. 5a), the integrated shear 
is strongly negative since its lowest order contribution is negative. Note 
that the bean-type shape of the negative S* region extends close to the 
outside of the torus, where the normal curvature has a strongly destabilising 
influence. 

For the sake of comparison, the local magnetic shear has been displayed (see 
Figs 2b, 3b, 4b and 5b) for the same parameters used to calculate the integrated 
shear. In Fig. 2b, the plasma centre is characterised by a negative LMS; in this 
region, the global magnetic shear is negligible so that the first order contribution 
in equation (25) dominates. In Fig. 3b, the aspect ratio is small but the current 
profile is centrally peaked. The (positive) global shear is strong but the small 
aspect ratio tends to increase the region of negative LMS. For a small aspect 
ratio and a flat current profile, the global shear is rather small and the region 
of negative LMS is now extended towards the plasma outboard, as shown in 
Fig. 4b. Finally, in the negative global shear regime (Fig. 5b), the region of 
negative LMS extends in the whole region of bad curvature. 



(a
) 

\-
, 

F
ig

. 
2.

 
(a

) 
T

h
e 

in
te

gr
at

ed
 s

he
ar

 f
or

 a
 s

ec
on

d 
or

de
r 

eq
ui

li
br

iu
m

, 
w

it
h

 c
en

tr
al

 (
3 

=
 2

·0
%

, 
q(

O
) 

=
 1

·1
, 

q(
a)

 =
 2

·4
, 

€ 
=

 0
·3

 a
n

d
>

' =
 1

· 2
. 

(b
) 

T
h

e 
lo

ca
l 

m
ag

ne
ti

c 
sh

ea
r 

(L
M

S
) 

fo
r 

a 
se

co
nd

 o
rd

er
 e

qu
il

ib
ri

um
, 

w
it

h
 c

en
tr

al
 (

3 
=

 2
·0

%
, 

q(
O

) 
=

 1
·1

, 
q(

a)
 =

 2
·4

, 
€ 

=
 0

·3
 a

n
d

>
' =

 1
·2

. 
In

 b
o

th
 p

ar
ts

 p
os

it
iv

e 
va

lu
es

 o
f 

th
e 

sh
ea

r 
ar

e 
sh

ow
n 

in
 g

re
y 

sc
al

in
g 

w
it

h
 e

qu
al

 i
nt

er
va

ls
, 

w
hi

le
 n

eg
at

iv
e 

va
lu

es
 a

re
 s

ho
w

n 
in

 w
hi

te
. 

"l
j 

CD
· 

5:
 

t-<
 

~.
 

~
 .... g. § P
. t-<
 

0 n E.
 
~
 '" ()

q
 ::s CD
 .... o· 0
0

 
::s- CD

 '" ... .....
 

.....
 '" <0
 



1130 J. L. V. Lewandowski and M. Persson 



Field Line Pitch and Local Magnetic Shear 1131 

o 
II 



1132 J. L. V. Lewandowski and M. Persson 



Field Line Pitch and Local Magnetic Shear 1133 

References 

Berstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M. (1958). Proc. R. Soc. 
London A 244, 17. 

Connor, W., Hastie, R. J., and Taylor, J. B. (1978). Phys. Rev. Lett. 40, 396. 
Coppi, B. (1977). Phys. Rev. Lett. 39, 939. 
Dewar, R. L., Monticello, D. A., and Sy, W. N.-C. (1984). Phys. Fluids 27, 1723. 
D'Haeseler, W. D., Hitchon, W. N. G., Callen, J. D., and Shohet, A. H. (1991). 'Flux 

Coordinates and Magnetic Field Structure' (Springer: Heidelberg). 
Freidberg, J. P. (1987). In 'Ideal Magnetohydrodynamics' (Plenum: New York). 
Furth, H. P., Killeen, J., Rosenbluth, M. N., and Coppi, B. (1966). 'Plasma Physics and 

Controlled Fusion Research', Vol. 1, p. 617 (IAEA: Vienna). 
Gerver, M. J., Kesner, J., and Ramos, J. J. (1988). Phys. Fluids 31, 2674. 
Grad, H., and Rubin, H. (1959). Proc. 2nd United Nations Int. Conf. on the Peaceful Uses 

of Atomic Energy, Geneva, Vol. 31, p. 190 (Columbia University Press: New York). 
Greene, J. M. (1983). Commun. Pure Appl. Math. 36, 537. 
Greene, J. M., and Chance, M. S. (1981). Nucl. Fusion 21, 453. 
Greene, J. M., and Johnson, J. L. (1968). Plasma Phys. 10, 729. 
Greene, J. M., Johnson, J. L., and Weimer, K. E. (1971). Phys. Fluids 14, 67l. 
Hirose, A., Zhang, L., and Elia, M. (1994). Phys. Rev. Lett. 12, 3993. 
Hugon, M., Milligen, B. P., Smeulders, P., Appel, L. C., Gowers, C. W., Jacquinot, J. J., 

Porte, L., Rebut, P. H., Tibone, F., Tubbing, B. J. D., Watkins, M. L., and Zwingmann, 
W. (1992). Nucl. Fusion 32, 33. 

Kessel, C., Manickam, J., Rewoldt, G., and Tang, W. M. (1994). Phys. Rev. Lett. 12, 1212. 
Lazarus, E. A., Chu, M. S., Ferron, J. R., Helton, F. J., Hogan, J. J., Kellman, A. G., Lao, 

L. L., Lister, J. B., Taylor, T. S., and Turnbull, A. D. (1991). Phys. Fluids B 3, 2220. 
Lewandowski, J. L. V., and Persson, M. (1995). Plasma Phys. Cont. Fusion 31, 1199. 
Lust, R., and Schluter, A. (1957). Z. Naturforsch. 12a, 850. 
Nordman, H., Jarmen, A., Malinov, P., and Persson, M. (1995). Phys. Plasmas 2, 3440. 
Shafranov, V. D. (1958). Sov. Phys. JETP 6, 545. 
Shafranov, V. D. (1963). J. Nucl. Energy C5, 25l. 
Shafranov, V. D. (1965). In 'Reviews of Plasma Physics' (Ed. M. A. Leontovich), Vol. 2, 

p. 103 (Consultants Bureau: New York). 
Waltz, R. E., and Boozer, A. H. (1993). Phys. Fluids B 5, 220l. 
Ware, A. A. (1965). Culham Laboratory Report CLM-M53 (unpublished). 
Ware, A. A., and Haas, F. A. (1966). Phys. Fluids 9, 956. 
White, R. B. (1989). 'Theory of Tokamak Plasmas' (North Holland: Amsterdam). 

Manuscript received 27 March, accepted 30 May 1996 






